

IC: 9930A-EVOLVE10

Page: 1 / 84 Rev.: 01

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247

Test Standard	FCC Part 15.247 RSS-247 issue 2 and RSS-GEN issue 5
Product name	Evolve Universal 10 inch Headrest Monitor
Brand Name	Ford
Model No.	661183
Test Result	Pass
Statements of Conformity	Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory).

Approved by:

Komil Tson

Kevin Tsai **Deputy Manager**

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City , Taiwan /新北市五股區五工六路 11 號 t:(886-2) 2299-9720 f:(886-2) 2299-9721 www.sgs.com.tw www.ccsrf.com

Page: 2 / 84 Rev.: 01

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	July 28, 2021	Initial Issue	ALL	Doris Chu
01	August 3, 2021	See the following Note Rev. (01)	P.33, P.39-40, P.47	Doris Chu

Rev. (01)

1. Revised test result in section 5.4.4.

2. Revised test result in section 5.5.4.

Page: 3 / 84 Rev.: 01

Table of contents

1.	GENERAL INFORMATION
1.1	EUT INFORMATION
1.2	EUT CHANNEL INFORMATION5
1.3	ANTENNA INFORMATION
1.4	MEASUREMENT UNCERTAINTY6
1.5	FACILITIES AND TEST LOCATION7
1.6	INSTRUMENT CALIBRATION7
1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT9
1.8	TEST METHODOLOGY AND APPLIED STANDARDS9
2.	TEST SUMMARY 10
3.	DESCRIPTION OF TEST MODES 11
3.1	THE WORST MODE OF OPERATING CONDITION 11
3.2	THE WORST MODE OF MEASUREMENT 12
4.	EUT DUTY CYCLE 13
5.	TEST RESULT 14
5.1	AC POWER LINE CONDUCTED EMISSION 14
5.2	6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)15
5.3	OUTPUT POWER MEASUREMENT 25
5.4	POWER SPECTRAL DENSITY 32
5.5	CONDUCTED BANDEDGE AND SPURIOUS EMISSION
5.6	RADIATION BANDEDGE AND SPURIOUS EMISSION
	APPENDIX 1 - PHOTOGRAPHS OF EUT

Page: 4 / 84 Rev.: 01

Report No.: T210429C12-RP3

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	JET OPTOELECTRONICS CO., LTD. 3F., No.300, Yangguang St., Neihu Dist., Taipei City 11491, Taiwan
Manufacturer	JET OPTOELECTRONICS CO., LTD. 3F., No.300, Yangguang St., Neihu Dist., Taipei City 11491, Taiwan
Equipment	Evolve Universal 10 inch Headrest Monitor
Model No.	661183
Model Discrepancy	N/A
Trade Name	Ford
Received Date	April 29, 2021
Date of Test	June 21 ~ August 3, 2021
Power Supply	Power from Power Supply: DC 12V
HW Version	20210126 D01
SW Version	95126
EUT Serial #	(1) Conducted: GA51RX0011030083 (2) Radiated: GA51RX 0011030014
Romark:	

Remark:

1. For more details, please refer to the User's manual of the EUT.

2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

3. The EUT (model: 661183) had been tested under operating condition.

Page: 5 / 84 Rev.: 01

٦

1.2 EUT CHANNEL INFORMATION

Frequency Range	802.11b/g/n HT 20: 2412MHz ~ 2462MHz
Modulation Type	1. IEEE 802.11b mode: CCK 2. IEEE 802.11g mode: OFDM 3. IEEE 802.11n HT 20 MHz mode : OFDM
Number of channel	1. IEEE 802.11b mode: 11 Channels 2. IEEE 802.11g mode: 11 Channels 3. IEEE 802.11n HT 20 MHz mode : 11 Channels

Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

Number of frequencies to be tested				
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation				
☐ 1 MHz or less	1	Middle		
□ 1 MHz to 10 MHz	2	1 near top and 1 near bottom		
🛛 More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

Page: 6 / 84 Rev.: 01

1.3 ANTENNA INFORMATION

Antenna Type	🛛 Ceramic 🗌 PCB 🗌 Dipole 🗌 Coils
Antenna Gain	chain0: Gain :1 dBi chain1: Gain :1 dBi Power Directional Gain: 4.01 dBi
Antenna Connector	N/A

Remark:

1. The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203 and RSS-Gen 6.8.

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 0.0014
RF output power, conducted	+/- 1.14
Power density, conducted	+/- 1.40
3M Semi Anechoic Chamber / 30M~200M	+/- 4.12
3M Semi Anechoic Chamber / 200M~1000M	+/- 4.68
3M Semi Anechoic Chamber / 1G~8G	+/- 5.18
3M Semi Anechoic Chamber / 8G~18G	+/- 5.47
3M Semi Anechoic Chamber / 18G~26G	+/- 3.81
3M Semi Anechoic Chamber / 26G~40G	+/- 3.87

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

Page: 7 / 84 Rev.: 01

Report No.: T210429C12-RP3

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. (R.O.C.)

CAB identifier: TW1309

Test site	Test Engineer	Remark
AC Conduction Room	-	Not applicable, because EUT doesn't connect to AC Main Source direct.
Radiation	Ray Li	-
RF Conducted	Lance Chen	-

Remark: The lab has been recognized as the FCC accredited lad under the KDB 974614 D01 and is listed in the FCC pubic Access Link (PAL) database, FCC Registration No. :444940, the FCC Designation No.:TW1309

1.6 INSTRUMENT CALIBRATION

	RF Conducted Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Coaxial Cable	Woken	WC12	CC003	06/28/2021	06/27/2022	
Coaxial Cable	Woken	WC12	CC001	06/28/2021	06/27/2022	
EXA Signal Analyzer	KEYSIGHT	N9010B	MY55460167	09/07/2020	09/06/2021	
Power Meter	Anritsu	ML2487A	6K00003260	05/24/2021	05/23/2022	
Power Seneor	Anritsu	MA2490A	032910	05/24/2021	05/23/2022	
Software			N/A			

Page: 8 / 84 Rev.: 01

3M 966 Chamber Test Site						
Equipment	Manufacturer	Model	Serial Number	Cal Date	Cal Due	
Band Reject Filters	MICRO TRONICS	BRM 50702	120	02/08/2021	02/07/2022	
Bilog Antenna	Sunol Sciences	JB3	A030105	07/24/2020	07/23/2021	
Horn Antenna	ETS LINDGREN	3116	00026370	12/11/2020	12/10/2021	
Coaxial Cable	HUBER SUHNER	SUCOFLEX 104PEA	20995	02/24/2021	02/23/2022	
Coaxial Cable	EMCI	EMC105	190914+327109/4	09/19/2020	09/18/2021	
K Type Cable	Huber+Suhner	SUCOFLEX 102	29406/2	12/09/2020	12/08/2021	
K Type Cable	Huber+Suhner	SUCOFLEX 102	22470/2	12/09/2020	12/08/2021	
Digital Thermo-Hygro Meter	WISEWIND	1206	D07	01/06/2021	01/05/2022	
double Ridged Guide Horn Antenna	ETC	MCTD 1209	DRH13M02003	09/30/2020	09/29/2021	
Loop Ant	COM-POWER	AL-130	121051	04/07/2021	04/06/2022	
Pre-Amplifier	EMEC	EM330	060609	02/24/2021	02/23/2022	
Pre-Amplifier	HP	8449B	3008A00965	12/25/2020	12/24/2021	
Pre-Amplifier	MITEQ	AMF-6F-18004000-37-8P	985646	09/02/2020	09/01/2021	
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	07/24/2020	07/23/2021	
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R	
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R	
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R	
Software		e3 6.11-2	20180413			

Remark: Each piece of equipment is scheduled for calibration once a year.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment						
No.	No. Equipment Brand Model Series No. FCC ID					
	N/A					

	Support Equipment							
No. Equipment Brand Model Series No. FCC ID IC								
1	DC Power Source	Agilent	E3640A	N/A	N/A	N/A		
2	NB(E)	Lenovo	IBM 7663	N/A	N/A	N/A		
3	NB(L)	Toshiba	PORTEGE R30-A	N/A	PD97260H	1000M-7260H		

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, RSS-247 Issue 2 and RSS-GEN Issue 5.

Page: 10 / 84 Rev.: 01

Report No.: T210429C12-RP3

2. TEST SUMMARY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	RSS-Gen 6.8	1.3	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	N/A
15.247(a)(2)	RSS-247(5.2)(a)	4.2	6 dB Bandwidth	Pass
-	RSS-GEN 6.7	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(3)	RSS-247(5.4)(d)	4.3	Output Power Measurement	Pass
15.247(e)	RSS-247(5.2)(b)	4.4	Power Spectral Density	Pass
15.247(d)	RSS-247(5.5)	4.5	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.5	Conducted Emission	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.6	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.6	Radiation Spurious Emission	Pass

Page: 11 / 84 Rev.: 01

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	IEEE 802.11b mode :1Mbps IEEE 802.11g mode :6Mbps IEEE 802.11n HT20 mode :MCS8
Test Channel Frequencies	IEEE 802.11b mode : 1. Lowest Channel : 2412MHz 2. Middle Channel : 2437MHz 3. Highest Channel : 2462MHz IEEE 802.11g mode : 1. Lowest Channel : 2412MHz 2. Middle Channel : 2437MHz 3. Highest Channel : 2462MHz IEEE 802.11n HT20 mode : 1. Lowest Channel : 2437MHz 2. Middle Channel : 2437MHz 3. Highest Channel : 2462MHz
Operation Transmitter	IEEE 802.11b mode : 2T2R IEEE 802.11g mode : 2T2R IEEE 802.11n HT20 mode : 2T2R

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

2. The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the peak power, average power and PSD across all date rates, bandwidths, and modulations. The device supports SISO and MIMO at 802.11 n mode, per pre-test, MIMO 2TX mode was the worst and reported.

Page: 12 / 84 Rev.: 01

Report No.: T210429C12-RP3

3.2 THE WORST MODE OF MEASUREMENT

Radiated Emission Measurement Above 1G					
Test Condition	Test Condition Radiated Emission Above 1G				
Power supply Mode Mode 1: EUT power by Power supply					
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4					
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 				

Radiated Emission Measurement Below 1G						
Test Condition	Test Condition Radiated Emission Below 1G					
Power supply Mode	Power supply Mode Mode 1: EUT power by Power supply					
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4						

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(Z-Plane) were recorded in this report

Page: 13 / 84 Rev.: 01

4. EUT DUTY CYCLE

Temperature:	20.5 ~ 25.7℃	Humidity:	55% RH	
Tested by: Lance Chen Test date: July 5 ~ 6, 2021				

	Duty Cycle							
Configuration	Duty Cycle (%)	Duty Factor (dB) =10*log (1/Duty Cycle)	1/T (kHz)	VBW setting (kHz)				
802.11b	98.91	0.05	0.12	0.01				
802.11g	93.42	0.30	0.72	1.00				
802.11n HT20	87.14	0.60	1.49	2.00				

Page: 14 / 84 Rev.: 01

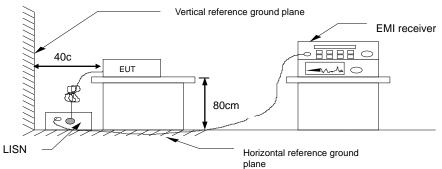
5. TEST RESULT

5.1 AC POWER LINE CONDUCTED EMISSION

5.1.1 Test Limit

According to §15.207(a)(2) and RSS-GEN section 8.8,

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	


* Decreases with the logarithm of the frequency.

5.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

5.1.3 Test Setup

5.1.4 Test Result

Not applicable, because EUT doesn't connect to AC Main Source direct.

Page: 15 / 84 Rev.: 01

5.2 6dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

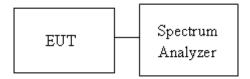
5.2.1 Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a),

6 dB Bandwidth :

Limit

Shall be at least 500kHz


Occupied Bandwidth(99%) : For reporting purposes only.

5.2.2 Test Procedure

Test method Refer as ANSI C63.10: 2013,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

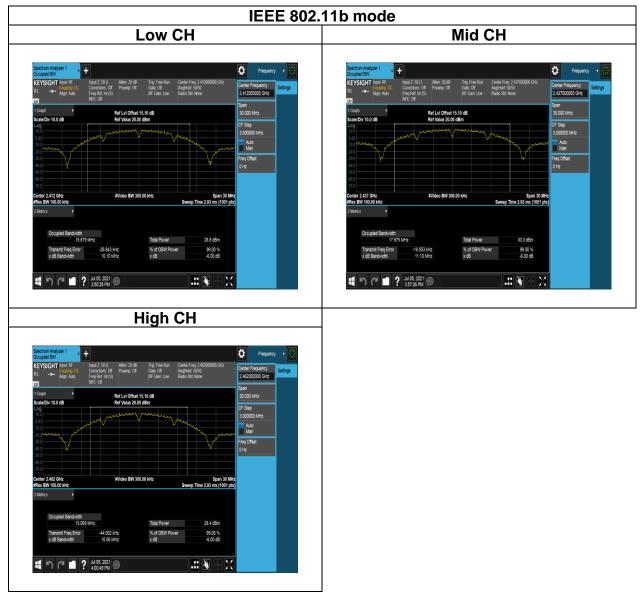
5.2.3 Test Setup

Page: 16 / 84 Rev.: 01

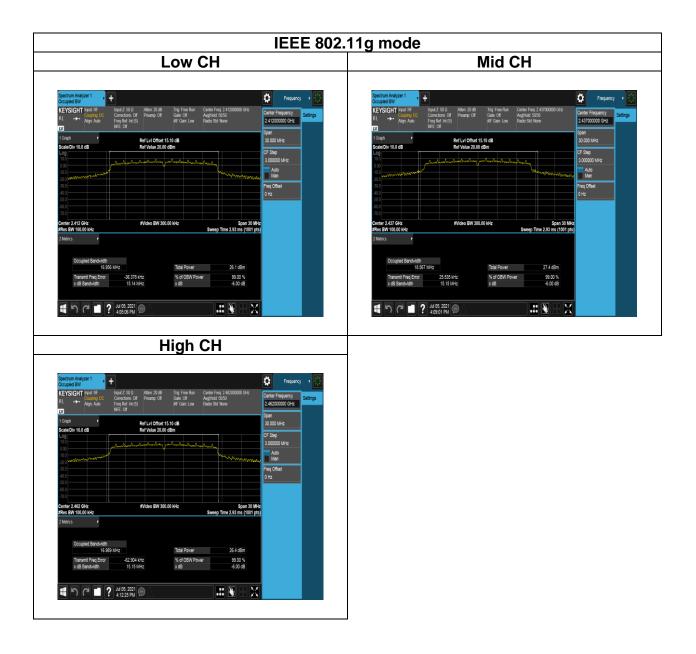
5.2.4 Test Result

Temperature:	20.5 ~ 25.7 ℃	Humidity:	55% RH
Tested by:	Lance Chen	Test date:	July 5 ~ 6, 2021

Test mode: IEEE 802.11b mode / 2412-2462 MHz							
Channel Frequency (MHz) OBW (99%) 6dB BW (MHz) 6dB limit (kHz)							
Low	2412	15.897	10.10				
Mid	2437	17.973	11.10	≥500			
High	2462	15.089	10.06				


Test mode: IEEE 802.11g mode / 2412-2462 MHz							
Channel Frequency (MHz) OBW (99%) 6dB BW (MHz) 6dB limit (kH							
Low	2412	17.791	15.14				
Mid	2437	19.150	15.15	≥500			
High	2462	17.799	15.15				

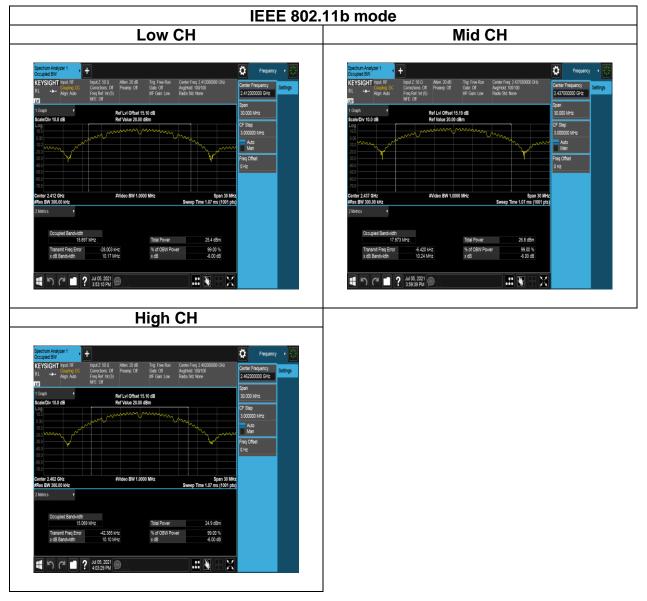
Test mode: IEEE 802.11n HT 20 MHz mode / 2412-2462 MHz								
ChannelFrequency (MHz)Chain 0 OBW(99%) (MHz)Chain 1 OBW(99%) (MHz)Chain 0 GBW(99%) (MHz)Chain 1 6dB BW (MHz)Chain 1 6dB BW (MHz)6dB Im (MHz)								
Low	2412	17.775	17.674	15.15	15.14			
Mid	2437	18.660	19.781	15.15	15.15	≥500		
High	2462	17.714	17.633	15.15	15.15			


Page: 17 / 84 Rev.: 01

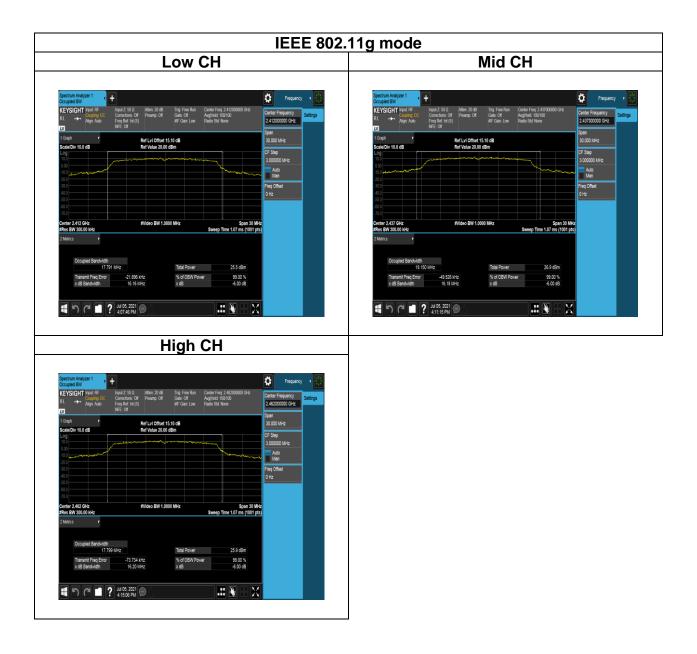
Test Data 6dB BANDWIDTH

Page: 18 / 84 Rev.: 01

Page: 19 / 84 Rev.: 01


Page: 20 / 84 Rev.: 01

IEEE 802.11n HT20 mode-chain1								
Low CH	Mid CH							
Spectrum Analyzer 1 Image: Registration of the sector	Concerner Analyser 1 •							


Page: 21 / 84 Rev.: 01

Test Data BANDWIDTH 99%

Page: 22 / 84 Rev.: 01

Page: 23 / 84 Rev.: 01

IEEE 802.11n HT20 mode-chain0							
Low CH	Mid CH						
Concurso Avaluant Image: Concurso State The provide State State State State S	Concepted Bind Productory Productor						

Page: 24 / 84 Rev.: 01

IEEE 802.11n HT20 mode-chain1							
Low CH	Mid CH						
<figure></figure>	Construm Analyzer 1 Image: 2.10 Image: 2.						
Spectrum Analyser 1 Coccupied Bandwidth Net CH Image: Ch Band: 20:80 Domestance (of party of the party of party o							

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 25 / 84 Rev.: 01

5.3 OUTPUT POWER MEASUREMENT

5.3.1 Test Limit

According to §15.247(b) and RSS-247 section 5.4(d),

Peak output power :

FCC:

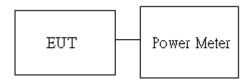
For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement,

IC:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm) and the e.i.r.p. shall not exceed 4Watt(36 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement,

 Antenna not exceed 6 dBi : 30dBm Antenna with DG greater than 6 dBi :
[Limit = 30 − (DG − 6)] □ Point-to-point operation :


Average output power : For reporting purposes only.

5.3.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

5.3.3 Test Setup

Page: 26 / 84 Rev.: 01

5.3.4 Test Result

Temperature:	20.5 ~ 25.7 ℃	Humidity:	55% RH
Tested by:	Lance Chen	Test date:	July 5 ~ 6, 2021
Peak output power			

802.11b Ch0								
СН	Freq. (MHz)	Data Rate	Limit (dBm)	RESULT				
1	2412	1	20	23.92	30.00	PASS		
6	2437	1	23	25.09	30.00	PASS		
11	2462	1	19	23.71	30.00	PASS		

802.11b Ch1								
сн	Freq. (MHz)	Data Rate	Power set	Peak Output Power (dBm)	Limit (dBm)	RESULT		
1	2412	1	19	23.55	30.00	PASS		
6	2437	1	21	24.89	30.00	PASS		
11	2462	1	19	23.68	30.00	PASS		

802.11g Ch0									
сн	Freq. (MHz)	Data Rate	Power set	Peak Output Power (dBm)	Limit (dBm)	RESULT			
1	2412	6	19	24.72	30.00	PASS			
6	2437	6	23	24.96	30.00	PASS			
11	2462	6	18	24.67	30.00	PASS			

802.11g Ch1								
сн	Freq. (MHz)	Data Rate	Power set	Peak Output Power (dBm)	Limit (dBm)	RESULT		
1	2412	6	18	24.34	30.00	PASS		
6	2437	6	19	24.69	30.00	PASS		
11	2462	6	18	24.35	30.00	PASS		

Page: 27 / 84 Rev.: 01

802.11n_HT20M MIMO									
	Data Rate	Peak Out Power Powe set (dBm		wer	Total Peak Output Power	Limit (dBm)	RESULT		
	、 ,			CH 0	CH 1	(dBm)			
1	2412	MCS8	18	24.11	23.50	26.83	30.00	PASS	
6	2437	MCS8	23	25.20	24.51	27.88	30.00	PASS	
11	2462	MCS8	17	23.74	23.38	26.57	30.00	PASS	

Page: 28 / 84 Rev.: 01

Report No.: T210429C12-RP3

Average output power :

802.11b Ch0								
СН	Freq. (MHz)	Data Rate	Power set	Max. Avg. Output include tune up tolerance Power (dBm)	Limit (dBm)	RESULT		
1	2412	1	20	22.48	30.00	PASS		
6	2437	1	23	23.98	30.00	PASS		
11	2462	1	19	22.06	30.00	PASS		

802.1	802.11b Ch1									
СН	Freq. (MHz)	Data Rate	Power set	Max. Avg. Output include tune up tolerance Power (dBm)	Limit (dBm)	RESULT				
1	2412	1	19	21.83	30.00	PASS				
6	2437	1	21	23.79	30.00	PASS				
11	2462	1	19	21.94	30.00	PASS				

802.1	802.11g Ch0										
СН	Freq. (MHz)	Data Rate	Power set	Max. Avg. Output include tune up tolerance Power (dBm)	Limit (dBm)	RESULT					
1	2412	6	19	19.49	30.00	PASS					
6	2437	6	23	20.73	30.00	PASS					
11	2462	6	18	18.82	30.00	PASS					

802.1	802.11g Ch1									
СН	Freq. (MHz)	Data Rate	Power set	Max. Avg. Output include tune up tolerance Power (dBm)	Limit (dBm)	RESULT				
1	2412	6	18	18.92	30.00	PASS				
6	2437	6	19	19.75	30.00	PASS				
11	2462	6	18	18.75	30.00	PASS				

Page: 29 / 84 Rev.: 01

802.1	802.11n_HT20M MIMO									
СН	Freq. (MHz)	Data Rate	Power set	(dBm)		Max. Avg. Output include tune up tolerance Power	Limit (dBm)	RESULT		
						(dBm)				
1	2412	MCS8	18	17.12	16.98	20.66	30.00	PASS		
6	2437	MCS8	23	21.13	19.94	24.18	30.00	PASS		
11	2462	MCS8	17	16.28	16.25	19.87	30.00	PASS		

EIRP power :

802.1	802.11b Ch0									
сн	Freq. (MHz)	Data Rate	Avg. Output Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	RESULT			
1	2412	1	22.48	1.00	23.48	36	PASS			
6	2437	1	23.98	1.00	24.98	36	PASS			
11	2462	1	22.06	1.00	23.06	36	PASS			

802.1	802.11b Ch1									
сн	Freq. (MHz)	Data Rate	Avg. Output Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	RESULT			
1	2412	1	21.83	1.00	22.83	36	PASS			
6	2437	1	23.79	1.00	24.79	36	PASS			
11	2462	1	21.94	1.00	22.94	36	PASS			

802.1	1g Ch0		-	-	-		
СН	Freq. (MHz)	Data Rate	Avg. Output Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	RESULT
1	2412	6	19.49	1.00	20.49	36	PASS
6	2437	6	20.73	1.00	21.73	36	PASS
11	2462	6	18.82	1.00	19.82	36	PASS

802.1	802.11g Ch1									
СН	Freq. (MHz)	Data Rate	Avg. Output Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	RESULT			
1	2412	6	18.92	1.00	19.92	36	PASS			
6	2437	6	19.75	1.00	20.75	36	PASS			
11	2462	6	18.75	1.00	19.75	36	PASS			

Page: 30 / 84 Rev.: 01

Page: 31 / 84 Rev.: 01

Report No.: T210429C12-RP3

802.1	802.11n_HT20M MIMO									
CH Freq. (MHz)		Data Rate	Avg. Output Power (dBm)		Output Power		EIRP (dBm)	Limit (dBm)	RESULT	
	、 ,		CH 0 CH 1 (dBm)	(dBm)	(dBi)					
1	2412	MCS8	24.11	23.50	20.66	4.01	24.67	36	PASS	
6	2437	MCS8	25.20	24.51	24.18	4.01	28.19	36	PASS	
11	2462	MCS8	23.74	23.38	19.87	4.01	23.88	36	PASS	

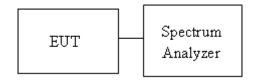
Page: 32 / 84 Rev.: 01

5.4 POWER SPECTRAL DENSITY

5.4.1 Test Limit

According to §15.247(e) and RSS-247 section 5.2(b),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


Limit \bigtriangleup Antenna not exceed 6 dBi : 8dBm \Box Antenna with DG greater than 6 dBi :[Limit = 8 - (DG - 6)] \Box Point-to-point operation :

5.4.2 Test Procedure

Test method Refer as ANSI C63.10:2013

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

5.4.3 Test Setup

Page: 33 / 84 Rev.: 01

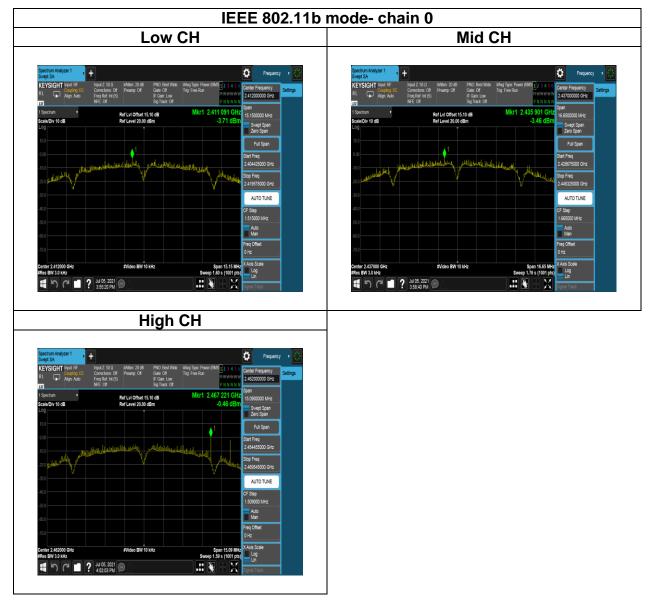
5.4.4 Test Result

Temperature:	20.5 ~ 25.7 °C	Humidity:	55% RH
Tested by:	Lance Chen	Test date:	July 5 ~ 6, 2021

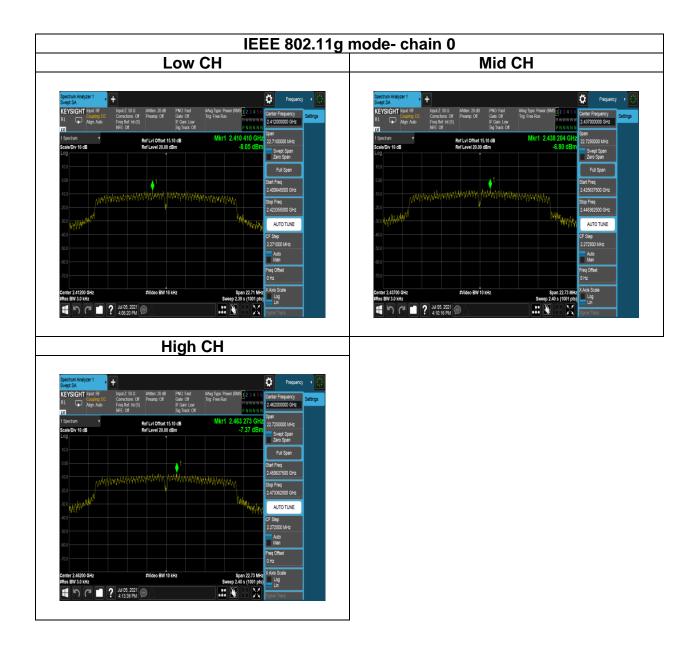
	POWE	R DENSITY 8	02.11b	
Freq. (MHz)	Ch0 PSD	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
2412	-3.71	-3.71	8.00	PASS
2437	-3.46	-3.46	8.00	PASS
2462	-0.46	-0.46	8.00	PASS

Remark: Due to the same characteristics, select a port for record.

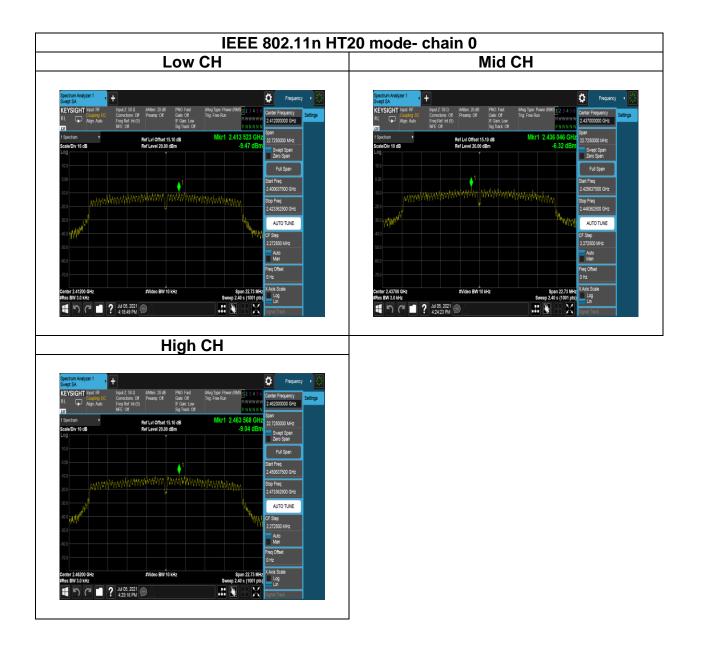
	POWE	R DENSITY 8	02.11g	
Freq. (MHz)	Ch0 PSD	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
2412	-8.05	-8.05	8.00	PASS
2437	-6.8	-6.80	8.00	PASS
2462	-7.37	-7.37	8.00	PASS


Remark: Due to the same characteristics, select a port for record.

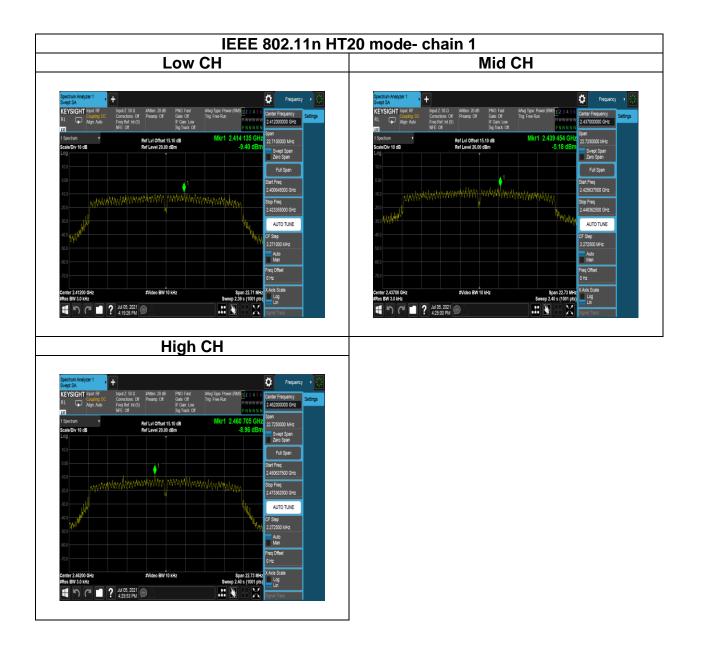
POWER DENSITY 802.11n HT20					
Freq. (MHz)	Ch0 PSD	Ch1 PSD	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Result
2412	-9.47	-9.4	-6.42	8.00	PASS
2437	-6.32	-5.18	-2.70	8.00	PASS
2462	-9.04	-8.96	-5.99	8.00	PASS


Page: 34 / 84 Rev.: 01

Test Data



Page: 35 / 84 Rev.: 01


Page: 36 / 84 Rev.: 01

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 37 / 84 Rev.: 01

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 38 / 84 Rev.: 01

5.5 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

5.5.1 Test Limit

According to §15.247(d) and RSS-247 section 5.5,

FCC:

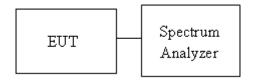
In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

IC:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, aspermitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

5.5.2 Test Procedure


Test method Refer as ANSI C63.10:2013.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

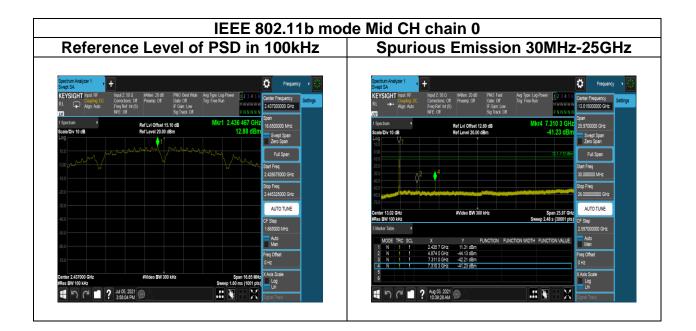
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.5.3 Test Setup

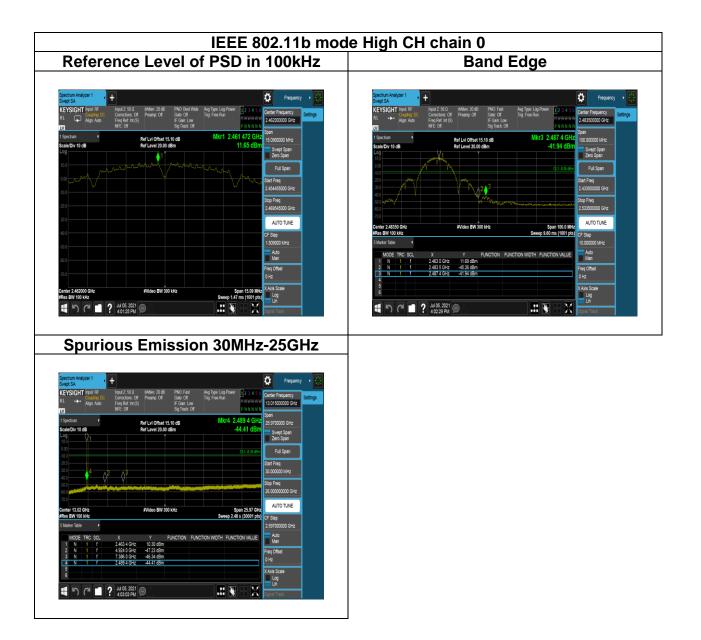
Page: 39 / 84 Rev.: 01

5.5.4 Test Result

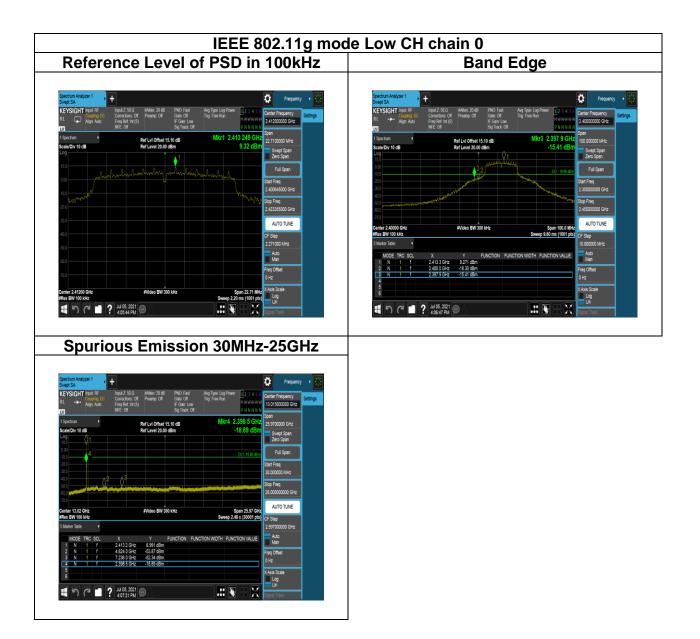
Test Data


Temperature:	20.5 ~ 25.7 °C	Humidity:	55% RH
Tested by:	Lance Chen	Test date:	July 5 ~ 6, 2021
Temperature:	26.3 ℃	Humidity:	57% RH

Chain 0:

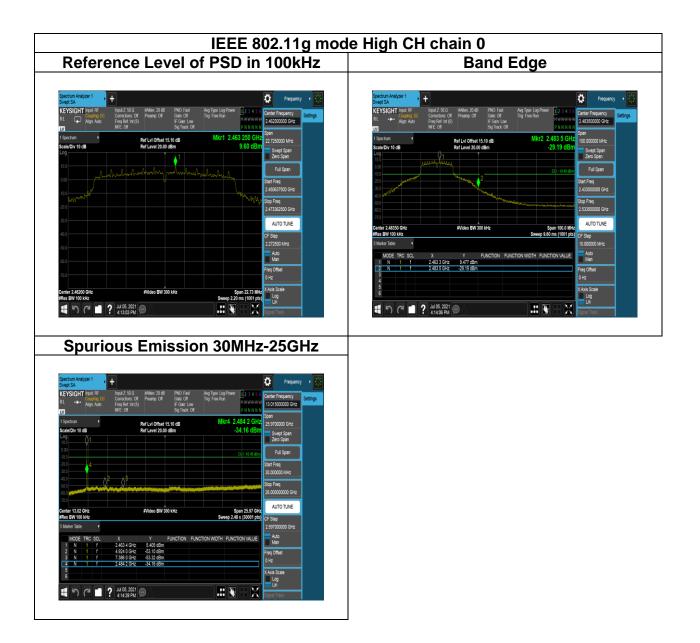


Page: 40 / 84 Rev.: 01



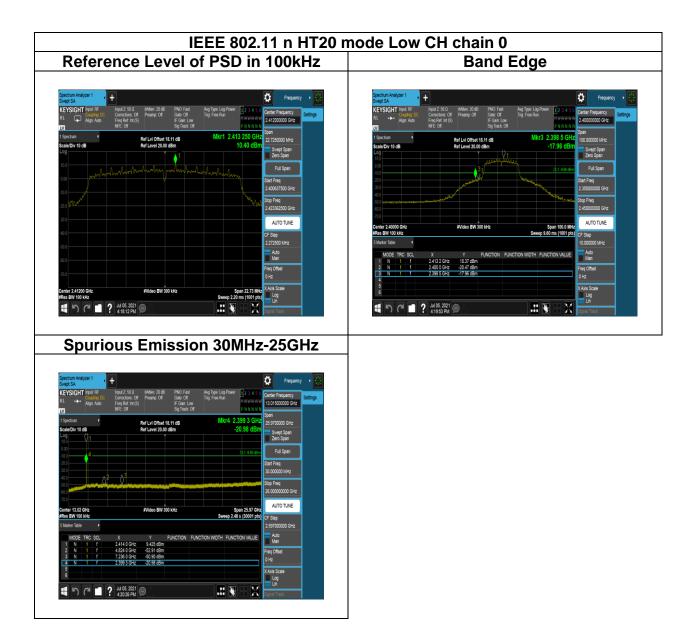
Page: 41 / 84 Rev.: 01

Page: 42 / 84 Rev.: 01



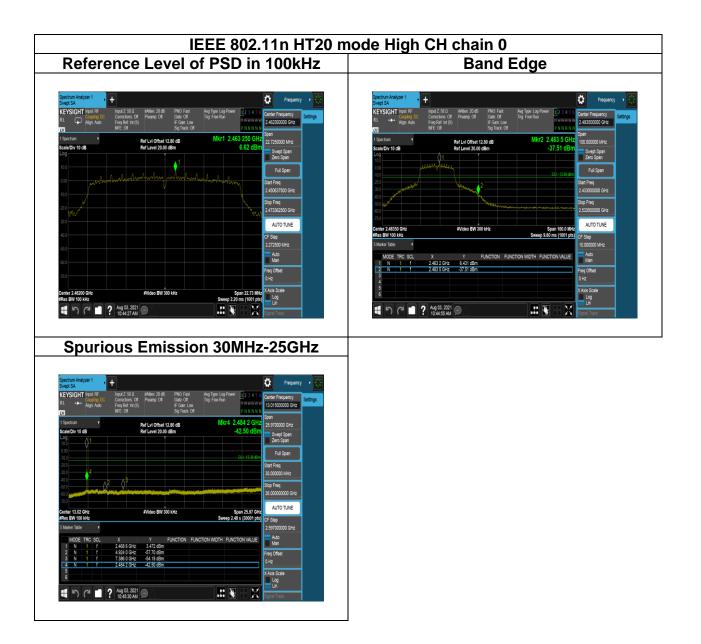
Page: 43 / 84 Rev.: 01

Reference Level of PSD in 100kHz				Spurious Emission 30MHz-25GH			
ipectrum Analyzer 1			Frequency	Spectrum Analyzer 1 +			Frequency ,
Couping DC Co Align: Auto Fre	ut Z: 50 0 WAtten: 20 dB PNO Fast rrections: Off Preamp: Off Gate: Off aq Ref. Int (S) IF Gain: Low E: Off Sig Track: Off	Avg Type Log-Power 1 2 3 4 5 6 Trig: Free Run	Center Frequency 2.437000000 GHz	RL +++ Couping DC Co Align: Auto Fre	ut Z:50.0 #Atten:20.dB PNO:Fast rections:Off Preamp:Off Gate:Off xq Ref. Int (S) IF Gain: Low E:Off Sig Track: Off	Avg Type: Log-Power 1 2 3 4 5 6 Trig: Free Run MWWWWW P N N N N N	Center Frequency 13.015000000 GHz
Spectrum	Ref Lvi Offset 15.10 dB Ref Level 20.00 dBm	Mkr1 2.438 273 GHz 10.33 dBm	Span 22.7250000 MHz Swept Span Zero Span	1 Spectrum Scale/Div 10 dB Log 10	Ref Lvi Offset 15.10 dB Ref Level 20.00 dBm	Mkr4 25.354 2 GHz -47.22 dBm	Span 25.9700000 GHz Swept Span Zero Span
10.0	el och and trading particultions to	whenhally Worshing	Full Span Start Freq 2.425637500 GHz Stop Freq 2.448362500 GHz	000 -000 -200 -300 -400 -500 -000	¢ ³	Di 1.487 dim	Full Span Start Freq 30.000000 MHz Stop Freq 25.00000000 GHz
			AUTO TUNE CF Step	-70 0 Center 13.02 GHz #Res BW 100 kHz	#Video BW 300 kHz	Span 25.97 GHz Sweep 2.48 s (30001 pts)	AUTO TUNE CF Step
			2.272500 MHz Auto Man	5 Marker Table MODE TRC SCL X	Y FUNCTION FUN 130 5 GHz 8.158 dBm	CTION WIDTH FUNCTION VALUE	2.597000000 GHz Auto Man
			Freq Offset 0 Hz	2 N 1 f 4.8 3 N 1 f 7.3	374 0 GHz -55.40 dBm 311 0 GHz -52.00 dBm 354 2 GHz -47.22 dBm		Freq Offset 0 Hz
enter 2.43700 GHz Res BW 100 kHz	#Video BW 300 kHz	Span 22.73 MHz Sweep 2.20 ms (1001 pts)	X Axis Scale Log Lin	; ∎ ∽ ⊂ ∎ ? ‡	# 05.2021 🕢 🔿		X Axis Scale Log Lin



Page: 44 / 84 Rev.: 01

Page: 45 / 84 Rev.: 01



Page: 46 / 84 Rev.: 01

Reference Level of PSD in 100kHz				Spurious Emission 30MHz-25GHz			
Spectrum Analyzer 1 + Swept SA KEYSIGHT input RF Inp	putZ 58 Ω #Atten 20 d6 PNO Fast	Avg Type: Log-Power 123456	Center Frequency	Spectrum Analyzer 1 Swept SA KEYSIGHT Input RF Input	Z.500. #Atkin 26:d8 PNO Fast	Aug Type: Log Power 12 3 4 5 6	Frequency
RL Couping DC Co Align: Auto Fre	vrrections: Off Preamp: Off Gate: Off eq Ref. Int (S) IF Gain: Low E: Off Sig Track: Off	Trig: Free Run NWWWWW P N N N N N	2.437000000 GHz	Couping DC Corre	ctions: Off Preamp: Off Gate: Off Ref. Int (S) IF Gain: Low Off Sig Track: Off	Trig: Free Run MWWWWW	13.015000000 GHz
1 Spectrum v Scale/Div 10 dB	Ref Lvi Offset 18.11 dB Ref Level 20.00 dBm	Mkr1 2.438 227 GHz 13.33 dBm	Span 22.7250000 MHz Swept Span Zero Span	1 Spectrum Scale/Div 10 dB Log 100 11 100 100 100 100 100 10	Ref Lvi Offset 18.11 dB Ref Level 20.00 dBm	Mkr4 25.805 2 GHz -44.19 dBm	Span 25.9700000 GHz Swept Span Zero Span
10.0 mohimle	alantralwebry jardreadwadwa	mostapolin	Full Span	-10.0		UL1 -5.5/ d8m	Full Span
0.00		hun	Start Freq 2.425637500 GHz	-200	3	/	Start Freq 30.000000 MHz
			Stop Freq 2.448362500 GHz	-50 0 -60 0			Stop Freq 26.000000000 GHz
			AUTO TUNE	-70.0 Center 13.02 GHz #Res BW 100 KHz	#Video BW 300 kHz	Span 25.97 GHz	AUTO TUNE
			CF Step 2.272500 MHz	5 Marker Table v		Sweep 2.48 s (30001 pts)	CF Step 2.597000000 GHz
			Auto Man	MODE TRC SCL X	Y FUNCTION FUN 5.7 GHz 12.71 dBm	CTION WIDTH FUNCTION VALUE	Auto Man
			Freq Offset 0 Hz	2 N 1 f 4.87 3 N 1 f 7.31	4 0 GHz -51.44 dBm 1 0 GHz -48.70 dBm 5 2 GHz -44.19 dBm		Freq Offset 0 Hz
Center 2.43700 GHz #Res BW 100 kHz	#Video BW 300 kHz	Span 22.73 MHz Sweep 2.20 ms (1001 pts)	X Axis Scale	5 6			X Axis Scale Log
¶ h a ∎ ? ;	ul 05, 2021	X - V 1.	Signal Track	📲 h c 🗖 ? 🐙	05, 2021	.: 🕅 – 🕅	Signal Track

Page: 47 / 84 Rev.: 01

This document cannot be reproduced except in full, without prior written approval of the Company. 本報告未經本公司書面許可,不可部份複製。

Page: 48 / 84 Rev.: 01

5.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

5.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength (microvolts/m)	Measurement Distance (metres)
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

Page: 49 / 84 Rev.: 01

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

<u>RSS-Gen Table 3 and Table 5 – General Field Strength Limits for Transmitters and</u> <u>Receivers at Frequencies Above 30 MHz</u> (Note)

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)				
(MHz)	Transmitters	Receivers			
30-88	100 (3 nW)	100 (3 nW)			
88-216	150 (6.8 nW)	150 (6.8 nW)			
216-960	200 (12 nW)	200 (12 nW)			
Above 960	500 (75 nW)	500 (75 nW)			

Note: Measurements for compliance with the limits in table 3 may be performed at distances other than 3 metres, in accordance with Section 6.6.

<u>RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies</u> <u>Below 30 MHz (Transmit)</u>

Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement Distance (m)
9-490 kHz ^{Note}	6.37/F (F in kHz)	300
490-1,705 kHz	63.7/F (F in kHz)	30
1.705-30 MHz	0.08	30

Note: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

Page: 50 / 84 Rev.: 01

5.6.2 Test Procedure

Test method Refer as ANSI C63.10:2013.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

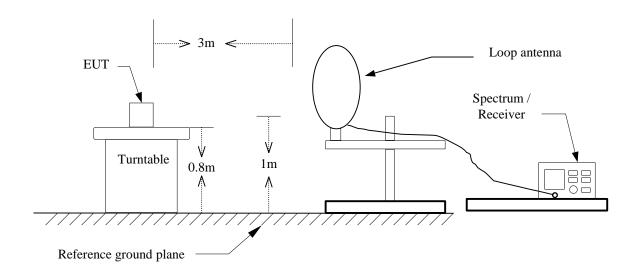
Note: No emission found between lowest internal used/generated frequency to 30MHz (9KHz~30MHz)

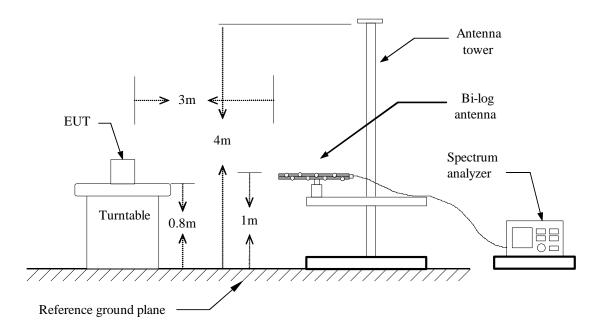
Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

- 4. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

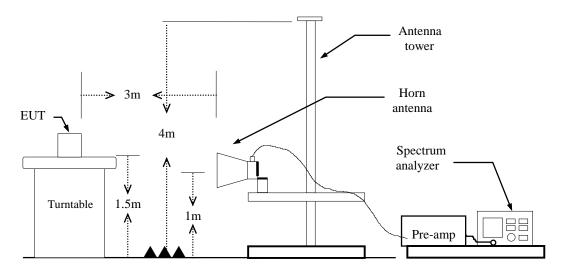
If Duty Cycle \geq 98%, VBW=10Hz.


'If Duty Cycle < 98%, VBW=1/T.


Page: 51 / 84 Rev.: 01

5.6.3 Test Setup

<u>9kHz ~ 30MHz</u>


<u>30MHz ~ 1GHz</u>

Page: 52 / 84 Rev.: 01

Above 1 GHz

5.6.4 Test Result

Band Edge Test Data

Test Mod	le	E 802.11b Low C 2412MHz		emp/Hum		63%RH
Test Iten	n	Band Edge		Test Date	June 2	22, 2021
Polarize	;	Vertical	Tes	st Engineer	Ra	ay Li
Detecto	r F	Peak / Average				
120 Level (dBuV/	m)					
					\sim	、
90					1	
70					1	
			1		1 1	
50	Harrison Marana Mara	mannenny	munar			
50 	Mulana,	nd non and normal		Y		
30 10	Mw/w,	no an	m			
30	2334.	2358. Freq	2: uency (MHz)	382.	2406.	2430
30 10 0 2310		Freq	uency (MHz)			
30 10	Detector	Freq Spectrum		Actual	Limit	2430 Margin
30 10 0 2310 Frequency	Detector Mode	Freq Spectrum Reading Level	uency (MHz) Factor	Actual FS	Limit @3m	Margin
30 10 2310 Frequency (MHz)	Detector Mode (PK/QP/AV)	Freq Spectrum Reading Level (dBµV)	uency (MHz) Factor (dB)	Actual FS (dBμV/m)	Limit @3m (dBµV/m)	Margin (dB)
30 10 0 2310 Frequency (MHz) 2387.04	Detector Mode (PK/QP/AV) Peak	Freq Spectrum Reading Level (dBµV) 57.39	uency (MHz) Factor (dB) -1.00	Actual FS (dBµV/m) 56.39	Limit @3m (dBµV/m) 74.00	Margin (dB) -17.61
30 10 2310 Frequency (MHz)	Detector Mode (PK/QP/AV)	Freq Spectrum Reading Level (dBµV)	uency (MHz) Factor (dB)	Actual FS (dBμV/m)	Limit @3m (dBµV/m)	Margin (dB)

Test Mod	de	E 802.11b Low 2412MHz		Temp/Hum		′ 63%RH
Test Iter	n	Band Edge	-	Test Date	June 22, 2021	
Polariz	е	Horizontal		st Engineer	Ra	ay Li
Detecto	or	Peak / Average				
120 Level (dBuV	/m)]
110					\sim	
90					1	\
70				\sim	/	
50	-	and and a second and	un manana and		• 	
30						
10						
0 <mark></mark> 2310	2334.	2358. Free	2 quency (MHz)	382.	2406.	2430
Frequency	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	Ū
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
2386.80	Peak	53.60	-1.00	52.60	74.00	-21.40
	A	47.65	-1.00	46.65	54.00	-7.35
2386.80	Average			1		
	Peak	47.83	-1.00	46.83	74.00	-27.17

Page: 55 / 84 Rev.: 01

Test Mod	e IEEE	802.11b High 2462MHz	CH Te	emp/Hum	23(℃)/	23(℃)/ 63%RH	
Test Item	1	Band Edge	Т	est Date	June 2	June 22, 2021	
Polarize		Vertical	Tes	st Engineer	Ra	ay Li	
Detector	· P	eak / Average					
120 Level (dBuV/r	m)						
90							
70	\sim						
50		Jumuman	when har were	mana	~~~~~	and an and a second	
30							
10				· · · · · · · · · · · · · · · · · · ·			
0 <mark></mark>	2470.	2490.		510.	2530.	2550	
		Free	quency (MHz)				
Frequency	Detector	Spectrum	Factor	Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m	-	
Frequency (MHz) 2483.50		-	Factor (dB) -0.66			Margin (dB) -25.88	

Page: 56 / 84 Rev.: 01

Test Mod	le IEEI	IEEE 802.11b High CH 2462MHz		emp/Hum	. ,	[/] 63%RH
Test Item	า	Band Edge	-	Test Date	June 22, 2021	
Polarize	•	Horizontal		st Engineer	Ra	ay Li
Detector	r	Peak / Average				
120 Level (dBuV/r	m)]
110	~~					
90						
70	\sim			I I		
50			ul manage	provent and the second	-man-alin	utet and the
30						
10						
0 ^L 2450	2470.	2490. Freq	29 Juency (MHz)	510.	2530.	2550
Frequency	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
Frequency (MHz)		-	Factor (dB)			Margin (dB)
	Mode	Reading Level		FS	@3m	(dB)
(MHz)	Mode (PK/QP/AV)	Reading Level (dBµV)	(dB)	FS (dBµV/m)	@3m (dBµV/m)	Margin (dB) -25.33 -9.75
(MHz) 2483.50	Mode (PK/QP/AV) Peak	Reading Level (dBµV) 49.33	(dB) -0.66	FS (dBμV/m) 48.67	@3m (dBµV/m) 74.00	(dB) -25.33

		IEEE 802.11g Low CH 2412MHz Bond Edge			emp/Hum	23(°C)/ 63%RH	
Test It			Band Edge		Test Date		22, 2021
Polari			Vertical		st Engineer	Ra	ay Li
Detec	tor	Р	eak / Average				
120 Level (dB	BuV/m)	:		÷			
110			· · · · · · · · · · · · · · · · · · ·				
						James	~
90						1	
70					and and		· my
50	mahummun	e-managed	and mandation and	harden vontration	a working "2		
30		 					
10							
0 <mark></mark> 2310	2	334.	2358.		382.	2406.	2430
			Fre	quency (MHz)			
Frequency	Mo	ector ode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
(MHz)	· · ·	P/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
2390.00	P€	eak	63.89	-1.00	62.89	74.00	-11.11
2390.00	Ave	rage	52.13	-1.00	51.13	54.00	-2.87

Page: 58 / 84 Rev.: 01

Test Mode	e	E 802.11g Low (2412MHz		emp/Hum		′ 63%RH
Test Item	1 I	Band Edge		Fest Date	June 2	22, 2021
Polarize		Horizontal	Tes	st Engineer	Ra	ay Li
Detector	· F	Peak / Average				
120 Level (dBuV/m 110	n)					
70				1.000	1	hunge
50 30	where a star way and	antinental frances and frances and the second	and way on the state of the sta	2		
10						
0 <mark></mark> 2310	2334.	2358. Freq	23 Juency (MHz)	382.	2406.	2430
Frequency (MHz)	Detector Mode (PK/QP/AV)	Spectrum Reading Level (dBµV)	Factor (dB)	Actual FS (dBµV/m)	Limit @3m (dBµV/m)	Margin (dB)
2390.00	Peak	59.42	-1.00	58.42	74.00	-15.58
2390.00		+	-1.00	45.49	54.00	-8.51

Page: 59 / 84 Rev.: 01

Test Mod	e IEEE	802.11g High (2462MHz		emp/Hum	23(℃)/ 63%RH	
Test Item	า	Band Edge		Test Date	June 2	22, 2021
Polarize		Vertical	Tes	st Engineer		ay Li
Detector	r F	Peak / Average				
120 Level (dBuV/) 110 90 70 50 30	m)		m			
10 0 2450	2470.	2490.		510.	2530.	255
2450	2470.		uency (MHz)	510.	2000.	200
Frequency (MHz)	Detector Mode (PK/QP/AV)	Spectrum Reading Level (dBµV)	Factor (dB)	Actual FS (dBµV/m)	Limit @3m (dBµV/m)	Margin (dB)
	Peak	65.61	-0.66	64.95	74.00	-9.05
2483.50	1	+				
2483.50 2483.50	Average	53.05	-0.66	52.39	54.00	-1.61

Page: 60 / 84 Rev.: 01

Test Mod	le IEEE	IEEE 802.11g High CH 2462MHz		emp/Hum	23(℃)/ 63%RF	
Test Iten	n	Band Edge		Test Date	June 2	22, 2021
Polarize	;	Horizontal	Tes	st Engineer		ay Li
Detecto	r F	Peak / Average				
120 Level (dBuV// 110 90 70 50	m)		Ran James			
30						
10				1 1 4		
0 <mark></mark> 2450	2470.	2490. Fred	29 quency (MHz)	510.	2530.	2550
Frequency (MHz)	Detector Mode (PK/QP/AV)	Spectrum Reading Level (dBµV)	Factor (dB)	Actual FS (dBµV/m)	Limit @3m (dBµV/m)	Margin (dB)
2483.50	Peak	64.10	-0.66	63.44	74.00	-10.56
2483.50	Average	51.98	-0.66	51.32	54.00	-2.68

Page: 61 / 84 Rev.: 01

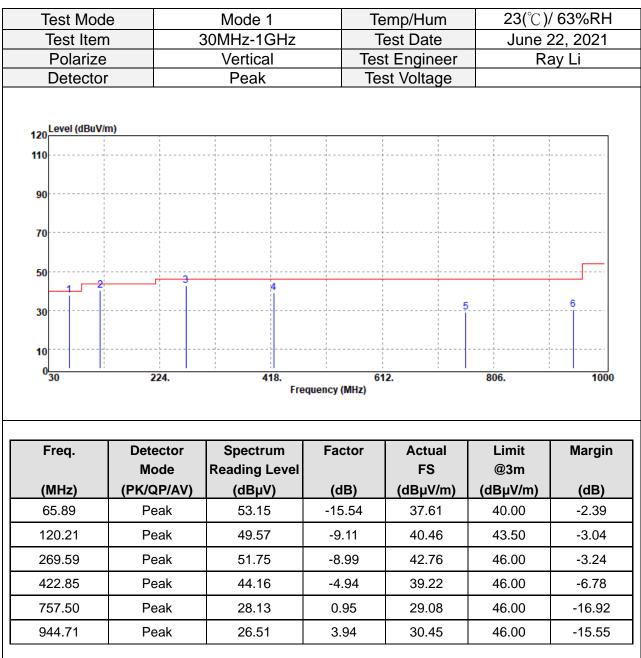
Test Mode		.11n HT20 Low 2412MHz	CH T	emp/Hum	23(℃)/	′ 63%RH
Test Item	E	Band Edge	7	Test Date	June 22, 2021	
Polarize		Vertical	Tes	Test Engineer		ay Li
Detector	Pe	ak / Average				
120 Level (dBuV/r 110 90 70 50 30	n)			mmman		
10						
0 <mark></mark>	2334.	2358.	2	382.	2406.	2430
Frequency	Detector Mode	Free Spectrum Reading Level	quency (MHz) Factor	Actual FS	Limit @3m	Margin
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
2390.00	Peak	64.03	-1.00	63.03	74.00	-10.97
	Average	53.03	-1.00	52.03	54.00	-1.97
2390.00						

Page: 62 / 84 Rev.: 01

Test Mod	Lc	EEE 802.11 n20 w CH 2412MHz	z I	ēmp/Hum		63%RH
Test Iten		Band Edge		Test Date	June 22, 202	
Polarize)	Horizontal	Te	st Engineer	Ra	ay Li
Detecto	r F	Peak / Average				
120 Level (dBuV/ 110 90 70 50	m)			Maria		
30						
10						
0 <mark></mark> 2310	2334.	2358. Fred	2 juency (MHz)	382.	2406.	2430
Frequency	Detector Mode (PK/QP/AV)	Spectrum Reading Level (dBµV)	Factor (dB)	Actual FS (dBµV/m)	Limit @3m (dBµV/m)	Margin (dB)
(MHz)		65.24	-1.00	64.24	74.00	-9.76
(MHz) 2390.00	Peak	05.24				
	Peak Average	50.66	-1.00	49.66	54.00	-4.34

Page: 63 / 84 Rev.: 01

Test Mode		1n HT20 High 462MHz	CH T	emp/Hum	23(℃)/	63%RH
Test Item	Ba	and Edge	7	Test Date	June 2	22, 2021
Polarize		Vertical	Tes	st Engineer		ay Li
Detector	Pea	k / Average				
120 120 110 90 70 50 30 10 0 2450	m)	2490.	2!	510.	2530.	2550
2100	21101		quency (MHz)		20001	2000
Frequency	Detector Mode	Spectrum Reading Level (dBµV)	Factor (dB)	Actual FS (dBµV/m)	Limit @3m (dBµV/m)	Margin (dB)
(MHz)	I (PK/QP/AV)					
(MHz)	(PK/QP/AV) Peak		-0.66	64 97	74 00	-9.03
(MHz) 2483.50 2483.50	Peak Average	65.63 53.40	-0.66 -0.66	64.97 52.74	74.00 54.00	-9.03 -1.26



Page: 64 / 84 Rev.: 01

Test Mod	le	IEEE 802.11n20 High CH 2462MHz		Temp/Hum	. ,	23(℃)/ 63%RH	
Test Iter	n	Band Edge		Test Date	June 2	22, 2021	
Polarize	9	Horizontal		Test Engineer	Ra	ay Li	
Detecto	r	Peak / Average	;				
120 Level (dBuV/ 110	m)	mmm 1				·····	
30							
10			 				
0 <mark></mark> 2450	2470.	2490. Fred	juency (MHz)	2510.	2530.	2550	
Frequency	Detector Mode (PK/QP/AV)	Spectrum Reading Level (dBµV)	Factor (dB)	Actual FS (dBµV/m)	Limit @3m (dBµV/m)	Margin (dB)	
(MHz)	Deals	62.54	-0.66	61.88	74.00	-12.12	
(MHz) 2483.50	Peak	0=.0.					
	Average	50.73	-0.66	50.07	54.00	-3.93	

Below 1G Test Data

Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

Page: 66 / 84 Rev.: 01

Test Mo	de	Mode 1	1	Temp/Hum	23(°C),	/ 63%R⊦
Test Ite	m	30MHz-1GHz	,	Test Date	June 2	22, 2021
Polariz		Horizontal		st Engineer	Ra	ay Li
Detecto	or	Peak	T	est Voltage		
120 Level (dBu\	//m)					
110						
90						
70						
50						
1	2 3	4	5			6
30						
10						
0 <mark></mark>	224.	418.		12.	806.	1000
		Fre	quency (MHz)			
Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
109.54	Peak	44.58	-10.52	34.06	43.50	-9.44
172.59	Peak	50.69	-11.00	39.69	43.50	-3.81
230.79	Peak	50.66	-11.20	39.46	46.00	-6.54
420.91	Peak	41.19	-5.02	36.17	46.00	-9.83
	Peak	31.87	-1.85	30.02	46.00	-15.98
600.36	1 out					

Note: No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz)

Above 1G Test Data

Test Mod	le IEEE	802.11b Low (СН Т	emp/Hum	22.8(°C)/ 52%R	
Test Iten	n	Harmonic	-	Test Date	June 21, 2021	
Polarize)	Vertical	Te	st Engineer	Ra	ay Li
Detecto	r	Peak				
120 Level (dBuV/	m)					
90						
70						
50	2					
30						
10						
0 <mark></mark>	<u>6100.</u>	11200.	: 16	5 300.	21400.	26500
Freq.	Detector	Spectrum	iuency (MHz) Factor	Actual	Limit	Margin
rieq.	Mode	Reading Level	Factor	FS	@3m	wargin
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4824.00	Peak	42.08	5.68	47.76	74.00	-26.24
7236.00	Peak	41.28	13.17	54.45	74.00	-19.55
N/A						
mark:						

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 68 / 84 Rev.: 01

Test Mo	de IEE	E 802.11b Low	CH T	emp/Hum	22.8(°C)/ 52%R	
Test Iter	m	Harmonic		Test Date	June 2	21, 2021
Polariz	e	Horizontal	Tes	st Engineer	Ra	ay Li
Detecto	or	Peak				
120 Level (dBu\	//m)					
	,					
110						
90						
70					i i i i i i i i i i i i i i i i i i i i	
	2					
50	······					
30				· · · · · · · · · · · · · · · · · · ·		
10						
0 <mark></mark>	6100.	11200.		300.	21400.	26500
		Fre	quency (MHz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4824.00	Peak	41.89	5.68	47.57	74.00	-26.43
7236.00	Peak	43.86	13.17	57.03	74.00	-16.97
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 69 / 84 Rev.: 01

Test Mo	de IEEI	IEEE 802.11b Mid CH		emp/Hum	22.8(℃)	/ 52%RI
Test Ite	m	Harmonic		Test Date	June 2	1, 2021
Polariz	e	Vertical	Te	st Engineer		ıy Li
Detecto	or	Peak				
120 Level (dBu\	//m)					
110						
90						
90						
70					1 1 1 1 1 1 1	
	2					
50		 				
30	·		· · · · · · · · · · · · · · · · · · ·			
10	·			· · · · · · · · · · · · · · · · · · ·		
0 <mark></mark>	6100.	11200.		300.	21400.	26500
		Fre	quency (MHz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
•	Mode	Reading Level		FS	@3m	U
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4874.00	Peak	41.51	5.92	47.43	74.00	-26.57
7311.00	Peak	41.34	13.26	54.60	74.00	-19.40
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 70 / 84 Rev.: 01

Test Mod	de IEEE	E 802.11b Mid	СН Т	emp/Hum	22.8(°C)/ 52%R	
Test Iter	m	Harmonic		Test Date	June 2	21, 2021
Polariz	e	Horizontal	Те	st Engineer	Ra	ay Li
Detecto	or	Peak				
120 Level (dBuV	//m)					
120						
90						
70			 		 	
	2					
50	1		 		i i i 	
30			·	- <u>i</u>	iiiiii	
10						
0 <mark></mark>	6100.	11200. Fre	16 quency (MHz)	300.	21400.	2650
			quonoj (initz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4874.00	Peak	43.20	5.92	49.12	74.00	-24.88
7311.00	Peak	44.40	13.26	57.66	74.00	-16.34
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 71 / 84 Rev.: 01

0 <mark></mark>	6100.	11200.	16 quency (MHz)	300.	21400.	26500
10			 			
30						
50	1 2			· · · · · · · · · · · · · · · · · · ·		
70						
90	 		 			
110			·	+		
120 Level (dBuV/m						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 72 / 84 Rev.: 01

Freq.	Detector Mode	Spectrum Reading Level	Factor	Actual FS	Limit @3m	Margin	
0 <mark></mark> 1000	6100 .	11200. Fre	163 equency (MHz)	300 .	21400.	26500	
10				 			
30							
50	1 2						
70							
90							
110							
120 Level (dBu	V/m)	i i	i	i			
Detecto	or	Peak					
Polarize		Horizontal		t Engineer	Ray Li		
Test Mode IEEE Test Item		E 802.11b High Harmonic		emp/Hum		22.8(℃)/ 52%RI June 21, 2021	

Remark:

7386.00

N/A

Peak

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

39.93

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

13.07

53.00

74.00

-21.00

Page: 73 / 84 Rev.: 01

Test Mod	de IEEE	EE 802.11g Low CH		emp/Hum	22.8(°C)	/ 52%RI
Test Iter		Harmonic		Test Date	June 2	21, 2021
Polarize	e	Vertical	Tes	st Engineer		ay Li
Detecto	r	Peak				
120 Level (dBuV	//m)					
120						
110						
90	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
70	 					
	2					
50	11					
30	······					
10						
0 ^L 1000	6100.	11200. Free	16 quency (MHz)	300.	21400.	26500
			40010) (11112)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4824.00	Peak	42.44	5.68	48.12	74.00	-25.88
7236.00	Peak	42.43	13.17	55.60	74.00	-18.40
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 74 / 84 Rev.: 01

Test Mod	de IEEE	802.11g Low	CH T	emp/Hum	22.8(°C)	/ 52%RI
Test Iter		Harmonic		Test Date	June 2	21, 2021
Polarize	e	Horizontal	Tes	st Engineer		ay Li
Detecto	r	Peak				
120 Level (dBuV	//m)					
110						
110						
90	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
70	 			· · · · · · · · · · · · · · · · · · ·	I I I I I I I I	
	2					
50	1			i 		
30						
10			1			
0 <mark>1000</mark>	6100.	11200. Fre	16 quency (MHz)	300 .	21400.	26500
		116	queriey (mirz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4824.00	Peak	42.92	5.68	48.60	74.00	-25.40
7236.00	Peak	42.20	13.17	55.37	74.00	-18.63
N/A						
	1					

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 75 / 84 Rev.: 01

Test Mod	e IEEE	802.11g Mid (СН Т	emp/Hum	22.8(℃))/ 52%Rł
Test Item		Harmonic		Test Date		22, 2021
Polarize		Vertical	Tes	st Engineer		ay Li
Detector	ſ	Peak				
120 Level (dBuV/r	m)					
110						
90						
30						
70						
	2					
50	1		· · · · · · · · · · · · · · · · · · ·			
30						
10						
0 <mark></mark> 1000	6100.	11200.		300.	21400.	26500
		Fre	quency (MHz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	•
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4874.00	Peak	43.19	5.92	49.11	74.00	-24.89
7311.00	Peak	42.47	13.26	55.73	74.00	-18.27
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 76 / 84 Rev.: 01

Test Mod	de IEEE	E 802.11g Mid (СН Т	emp/Hum	22.8(°C)/ 52%R	
Test Iter	m	Harmonic		Test Date	June 2	2, 2021
Polarize	e	Horizontal		st Engineer	Ra	ay Li
Detecto	or	Peak				
120 Level (dBuV	//m)					
110						
90	· · · · · · · · · · · · · · · · · · ·				 	
70	2					
	1					
50						
30						
10	· · · · · · · · · · · · · · · · · · ·					
0 <mark></mark>	<u>6100.</u>	11200.	: 16	: :300.	21400.	26500
		Free	quency (MHz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4874.00	Peak	44.29	5.92	50.21	74.00	-23.79
7311.00	Peak	46.62	13.26	59.88	74.00	-14.12
N/A						
				1		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 77 / 84 Rev.: 01

Test Mod	de IEEE			Temp/Hum 22.8(°℃		c)/ 52%RF	
Test Iter	n	Harmonic		Fest Date	June 2	2, 2021	
Polarize		Vertical	Tes	st Engineer	Ra	ıy Li	
Detector		Peak					
120 Level (dBuV	//m)						
110							
90	· · · · · · · · · · · · · · · · · · ·						
70							
50	1 2						
30							
10							
10							
0 <mark></mark> 1000	6100.	11200. Free	16 Juency (MHz)	300.	21400.	26500	
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin	
	Mode	Reading Level		FS	@3m		
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4924.00	Peak	38.02	6.37	44.39	74.00	-29.61	
7386.00	Peak	34.92	13.07	47.99	74.00	-26.01	
N/A							

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 78 / 84 Rev.: 01

Test Mod	le IEEE	802.11g High (CH T	emp/Hum	22.8(°C)/ 52%R	
Test Iten		Harmonic		Fest Date	June 2	2, 2021
Polarize		Horizontal		st Engineer	Ra	ay Li
Detecto	r	Peak				
120 Level (dBuV	(m)					
110	 					
90						
70						
F 0	2					
50						
30						
10	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		i i 		
0 <mark></mark>	6100.	11200.		300.	21400.	26500
		Free	quency (MHz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	J
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4924.00	Peak	39.36	6.37	45.73	74.00	-28.27
7386.00	Peak	35.87	13.07	48.94	74.00	-25.06
N/A						
	-	4				

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 79 / 84 Rev.: 01

est Mode	IEEE 802.	11n HT20 Low	CH T	emp/Hum	22.8(°C)/ 52%R	
Test Item	۲ - F	Harmonic		Test Date	June 22, 2021	
Polarize		Vertical	Te	st Engineer	Ra	ay Li
Detector		Peak				
120 Level (dBuV	m)					
110						
90						
70	 			· · · · · · · · · · · · · · · · · · ·		
50	1			i 		
30				- <u>i</u>		
10			1			
0 <mark></mark> 1000	6100.	11200. Free	16 quency (MHz)	300 .	21400.	26500
		116	quency (minz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4824.00	Peak	38.17	5.68	43.85	74.00	-30.15
7236.00	Peak	37.04	13.17	50.21	74.00	-23.79
N/A						
				1		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 80 / 84 Rev.: 01

Fest Mode	IEEE 802.	11n HT20 Low	CH T	emp/Hum	22.8(°C)/ 52%R	
Test Item		Harmonic		Test Date		2, 2021
Polarize	ŀ	Horizontal	Te	st Engineer	Ra	ıy Li
Detector		Peak				
120 Level (dBuV	/m)					
110						
90						
70						
70						
50	1				 	
30	· · · · · · · · · · · · · · · · · · ·					
10						
0 <mark></mark>	6100.	11200.		300.	21400.	26500
		Free	quency (MHz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4824.00	Peak	41.87	5.68	47.55	74.00	-26.45
7236.00	Peak	40.23	13.17	53.40	74.00	-20.60
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 81 / 84 Rev.: 01

Test Mode	IEEE 802	.11n HT20 Mid	CH 1	ſemp/Hum	22.8(°C)/ 52%R	
Test Item		Harmonic		Test Date	June 22, 2021	
Polarize		Vertical	Te	st Engineer	Ra	ay Li
Detector		Peak				
120 Level (dBuV	//m)					
120						
110						
90	· · · · · · · · · · · · · · · · · · ·					
70						
	2					
50						
30						
10						
0 <mark></mark>	6100.	11200. Free	1(quency (MHz)	6300.	21400.	26500
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4874.00	Peak	41.78	5.92	47.70	74.00	-26.30
7311.00	Peak	41.40	13.26	54.66	74.00	-19.34
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 82 / 84 Rev.: 01

Fest Mode	IEEE 802.	IEEE 802.11n HT20 Mid CH			22.8(°C)/ 52%RI	
Test Item		Harmonic				2, 2021
Polarize	F			st Engineer	Ra	ıy Li
Detector		Peak				
120 Level (dBuV	/m)	· · · · ·				
110						
90	i 			· · · · · · · · · · · · · · · · · · ·		
70						
	2					
50				- 		
20						
30						
10		· · · · · · · · · · · · · · · · · · ·				
0		11200.			24.400	
1000	6100.		uency (MHz)	3300 .	21400.	26500
_	-		_			
Freq.	Detector	Spectrum	Factor	Actual FS	Limit @3m	Margin
(MHz)	Mode (PK/QP/AV)	Reading Level	(dB)			(dB)
4874.00	Peak	(dBµV) 44.49	5.92	(dBµV/m) 50.41	(dBµV/m) 74.00	-23.59
7311.00	Peak	45.70	13.26	58.96	74.00	-15.04
	FEAR	45.70	13.20	50.90	74.00	-13.04
N/A						

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 83 / 84 Rev.: 01

est Mode		1n HT20 High (emp/Hum	22.8(°C)/ 52%RI	
est Item		armonic		est Date		2, 2021
Polarize	\	/ertical	Tes	st Engineer	Ra	ıy Li
Detector		Peak				
120 Level (dBuV	//m)					
110						
90				· · · · · · · · · · · · · · · · · · ·		
70						
50	1 1		 			
30						
10				· · · · · · · · · · · · · · · · · · ·		
0 <mark>1000</mark>	6100.	11200. Free	16 quency (MHz)	300.	21400.	26500
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4924.00	Peak	36.27	6.37	42.64	74.00	-31.36
7386.00	Peak	33.90	13.07	46.97	74.00	-27.03
N/A						
				1		

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Page: 84 / 84 Rev.: 01

est Mode	IEEE 802.1	I1n HT20 High	CHT	emp/Hum	22.8(°C)/ 52%R	
Test Item	F	larmonic	-	Test Date	June 2	2, 2021
Polarize	H	lorizontal	Te	st Engineer	Ra	ay Li
Detector		Peak				
120 Level (dBuV	/m)					
120						
110						
90	 					
70	i 			i 	+	
50	1 2			· · · · · · · · · · · · · · · · · · ·		
30	· · · · · · · · · · · · · · · · · · ·					
10						
0 <mark></mark>	6100.	11200. Fre	16 quency (MHz)	;300.	21400.	26500
			queries (initz)			
Freq.	Detector	Spectrum	Factor	Actual	Limit	Margin
	Mode	Reading Level		FS	@3m	
(MHz)	(PK/QP/AV)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
4924.00	Peak	38.68	6.37	45.05	74.00	-28.95
7386.00	Peak	36.04	13.07	49.11	74.00	-24.89
N/A						
	+					

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

- End of Test Report -