

TEST REPORT

Applicant Name : Sun Cupid Technology (HK) Ltd.

Address: 16/F, CEO Tower, 77 Wing Hong St, Cheung Sha Wan,

Kowloon, Hong Kong

Report Number: SZNS220527-23262E-RF-00D

FCC ID: 2ADINS6303L

Test Standard (s)

FCC PART 15.407

Sample Description

Product Type: LTE Smart Phone

Model No.: S6303L

Multiple Model(s) No.: A9L (Please refer to DOS for Model difference)

Trade Mark: NUU

Date Received: 2022/05/27 Report Date: 2022/06/29

Test Result: Pass*

Prepared and Checked By:

Approved By:

Robert li

Andy Yu

EMC Engineer

Andy. Yu

Robert Li

EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* "

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 10: 2021-11-09 Page 1 of 66 FCC-5G Wi-Fi

^{*} In the configuration tested, the EUT complied with the standards above.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	_
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT Exercise Software	7
Duty cycle	
EQUIPMENT MODIFICATIONS	7
SUMMARY OF TEST RESULTS	9
TEST EQUIPMENT LIST	10
FCC §1.1307 (B) (3) & §2.1093 – RF EXPOSURE	
APPLICABLE STANDARD	12
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	13
FCC §15.407 (B) (6) §15.207 (A) – CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT Setup	
EMI Test Receiver Setup	
TEST PROCEDURE	
Transd Factor & Margin Calculation Test Data	
§15.205 & §15.209 & §15.407(B)– UNDESIRABLE EMISSION	
APPLICABLE STANDARD	
EUT SETUPEMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
Factor & Margin Calculation	
Test Data	20
FCC §15.407(A),(E) – 26 DB & 6DB EMISSION BANDWIDTH	31
APPLICABLE STANDARD	31
Test Procedure	31
Test Data	32
FCC §15.407(A) – CONDUCTED TRANSMITTER OUTPUT POWER	33
APPLICABLE STANDARD	33
Test Procedure	33
TEST DATA	34
FCC §15.407(A) - POWER SPECTRAL DENSITY	35
TEST PROCEDURE	
Test Data	36

Shenzhen Accurate Technology Co., Ltd. Report No.: SZNS220527-23262E-RF-00D APPENDIX 37 APPENDIXA1: EMISSION BANDWIDTH 37 APPENDIXA2: OCCUPIED CHANNEL BANDWIDTH 41 APPENDIXA3: MIN EMISSION BANDWIDTH 48 APPENDIX B: MAXIMUM CONDUCTED OUTPUT POWER 52 APPENDIX C: MAXIMUM POWER SPECTRAL DENSITY 53 APPENDIX D: DUTY CYCLE 60

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	5G Wi-Fi: 5150-5250MHz; 5725-5850MHz
Mode	802.11a/n20/n40
Maximum Conducted Average Output Power	5150-5250 MHz: 15.44dBm 5725-5850 MHz: 13.84dBm
Modulation Technique	OFDM
Antenna Specification*	1.35dBi (provided by the applicant)
Voltage Range	DC 3.8V from battery or DC 5V from adapter
Sample serial number	SZNS220527-23262E-RF-S1 for Conducted and Radiated Emissions SZNS220527-23262E-RF-S2 for RF Conducted Test (Assigned by ATC)
Sample/EUT Status	Good condition
Adapter information	Model: HJ-0501000E1-US Input: AC 100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 1000mA

Report No.: SZNS220527-23262E-RF-00D

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and E of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. And KDB789033 D02 General U-NII Test Procedures New Rules v02r01.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Version 10: 2021-11-09 Page 4 of 66 FCC-5G Wi-Fi

Para	meter	Uncertainty
Occupied Cha	nnel Bandwidth	5%
RF Fre	equency	$0.082*10^{-7}$
RF output por	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines C	onducted Emissions	2.72dB
	9kHz - 30MHz	2.66dB
.	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
	26.5GHz - 40GHz	4.72dB
Temperature		1℃
Humidity		6%
Supply	voltages	0.4%

Report No.: SZNS220527-23262E-RF-00D

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

Version 10: 2021-11-09 Page 5 of 66 FCC-5G Wi-Fi

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode, which was provided by manufacturer.

Report No.: SZNS220527-23262E-RF-00D

The device support 802.11a/n20/n40 modes.

For 5150-5250MHz Band, 6 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
38	5190	46	5230
40	5200	48	5240

For 802.11a/n20 mode: channel 36, 40, 48 were tested; For 802.11n40 mode: channel 38, 46 were tested;

For 5725-5850MHz Band, 7 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	157	5785
151	5755	159	5795
153	5765	161	5805
/	/	165	5825

For 802.11a/n20 mode: channel 149, 157, 165 were tested; For 802.11n40 mode: channel 151, 159 were tested;

Version 10: 2021-11-09 Page 6 of 66 FCC-5G Wi-Fi

EUT Exercise Software

EUT was test in engineering mode.

The worst case was performed under:

			Power Level		
U-NII	Mode	Data rate	Low Channel	Middle Channel	High Channel
	802.11a	6Mbps	17	17	17
5150 – 5250MHz	802.11n-HT20	MCS0	17	17	17
	802.11n-HT40	MCS0	16	/	17
	802.11a	6Mbps	17	17	17
5725 – 5850MHz	802.11n-HT20	MCS0	17	17	17
	802.11n-HT40	MCS0	17	/	17

Report No.: SZNS220527-23262E-RF-00D

The worse-case data rates are determined to be as follows for each mode based upon investigations by measuring the output power and PSD across all data rated bandwidths, and modulations.

The power level was provided by the applicant.

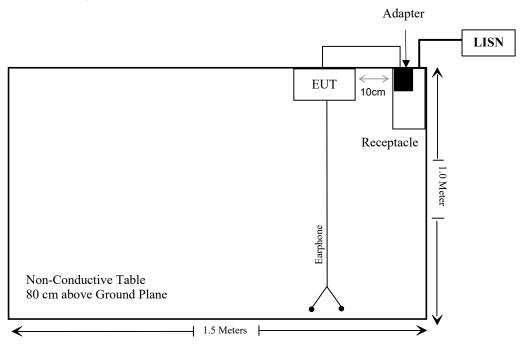
Duty cycle

Test Result: Pass. Please refer to the Appendix.

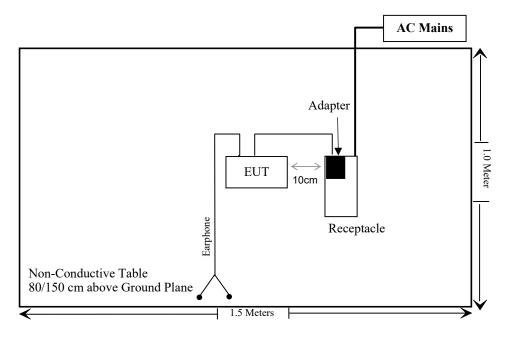
Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
Unknown	Earphone	Unknown	Unknown

External I/O Cable


Cable Description	Length (m)	From/Port	To
Unshielded detachable USB cable	1.0	adapter	EUT

Block Diagram of Test Setup

For conducted emission:

For Radiated Emissions:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307 (b) (3) & §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.407(b)(9)& §15.207(a)	Conducted Emissions	Compliant
§15.205& §15.209 &§15.407(b)	Undesirable Emission& Restricted Bands	Compliant
§15.407(a) (e)	26 dB Emission Bandwidth & 6dB Bandwidth	Compliant
§15.407(a)	Conducted Transmitter Output Power	Compliant
§15.407 (a)	Power Spectral Density	Compliant
§15.407 (h)	Transmit Power Control (TPC)	Not Applicable
§15.407 (h)	Dynamic Frequency Selection (DFS)	Not Applicable*

Report No.: SZNS220527-23262E-RF-00D

Not Applicable: the EUT has no TPC function which was declarded by the applicant. Not Applicable*: the EUT not operating within frequency range of 5250-5350MHz&5470-5725MHz.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	Conducted Emissions Test						
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2021/12/13	2022/12/12		
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2021/12/13	2022/12/12		
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2021/12/13	2022/12/12		
Unknown	RF Coaxial Cable	No.17	N0350	2021/12/14	2022/12/13		
	Conducted E	mission Test Soft	tware: e3 19821b ((V9)			
		Radiated Emissi	ons Test				
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12		
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12		
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08		
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08		
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2021/11/11	2022/11/10		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04		
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04		
	Radiated En	nission Test Softv	ware: e3 19821b (V	V9)			
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13		
CD	Band Reject Filter	BRM- 5.15/5.35g-45	075	2021/12/14	2022/12/13		
CD	Band Reject Filter	BRM- 5.725/5.875G- 45	065	2021/12/14	2022/12/13		

Report No.: SZNS220527-23262E-RF-00D

Version 10: 2021-11-09 Page 10 of 66 FCC-5G Wi-Fi

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		RF Conducted	d Test		
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101590	2022/01/19	2023/01/18
Tonscend	RF Control Unit	JS0806-2	19G8060182	2021/10/26	2022/10/25
Unknown	RF Coaxial Cable	No.31	RF-01	Each time	
Unknown	RF Cable	Unknown	1	Each time	

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1307 (b) (3) & §2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (3), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Report No.: SZNS220527-23262E-RF-00D

Measurement Result

Please refer to SAR test report: SZNS220527-23262E-SA.

Version 10: 2021-11-09 Page 12 of 66 FCC-5G Wi-Fi

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: SZNS220527-23262E-RF-00D

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

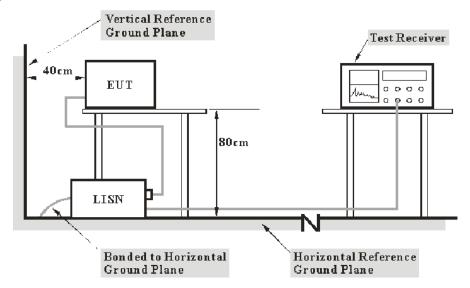
And according to FCC 47 CFR section 15.407 (a), if the transmitting antennas of directional gain greater than 6dBi are used, the transmit power and power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one internal antenna arrangement for 5G Wi-Fi which were permanently attached. Please refer to the EUT photos.

Туре	Antenna Gain	Impedance	Frequency Range
FPC	1.35dBi	50 Ω	5150-5850MHz

Result: Compliant.


Version 10: 2021-11-09 Page 13 of 66 FCC-5G Wi-Fi

FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207, §15.407(b) (6)

EUT Setup

Report No.: SZNS220527-23262E-RF-00D

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W				
150 kHz – 30 MHz	9 kHz				

Test Procedure

During the conducted emission test, the adapter was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and Average detection mode.

Version 10: 2021-11-09 Page 14 of 66 FCC-5G Wi-Fi

Transd Factor & Margin Calculation

The Transd factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

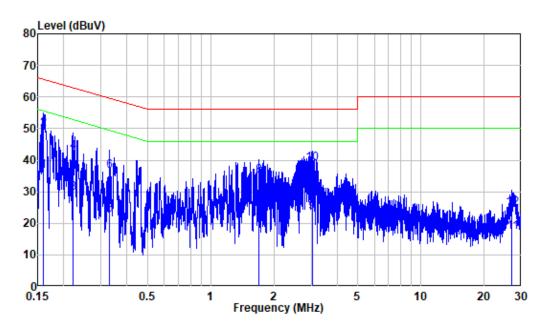
Report No.: SZNS220527-23262E-RF-00D

Factor = LISN VDF + Cable Loss

The "Over limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Test Data

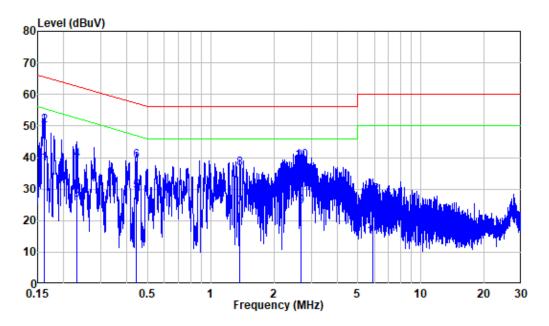

Environmental Conditions

Temperature:	23°C
Relative Humidity:	50%
ATM Pressure:	101.0 kPa

The testing was performed by Jason Liu on 2022-06-20.

EUT operation mode: Transmitting (worst case is 802.11a, 5240MHz)

AC 120V/60 Hz, Line:


Site : Shielding Room

Condition: Line Mode : 5G WIFI Model : S6303L

Power : AC 120V 60Hz

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	——dB	
1	0.159	9.80	26.74	36.54	55.50	-18.96	Average
2	0.159	9.80	40.07	49.87	65.50	-15.63	QP
3	0.220	9.80	19.81	29.61	52.81	-23.20	Average
4	0.220	9.80	32.77	42.57	62.81	-20.24	QP
5	0.331	9.80	12.97	22.77	49.44	-26.67	Average
6	0.331	9.80	26.78	36.58	59.44	-22.86	QP
7	1.700	9.82	9.52	19.34	46.00	-26.66	Average
8	1.700	9.82	25.06	34.88	56.00	-21.12	QP
9	3.031	9.83	13.75	23.58	46.00	-22.42	Average
10	3.031	9.83	29.07	38.90	56.00	-17.10	QP
11	27.145	10.07	7.24	17.31	50.00	-32.69	Average
12	27.145	10.07	14.65	24.72	60.00	-35.28	QP

AC 120V/60 Hz, Neutral:

Site : Shielding Room

Condition: Neutral Mode : 5G WIFI Model : S6303L

Power : AC 120V 60Hz

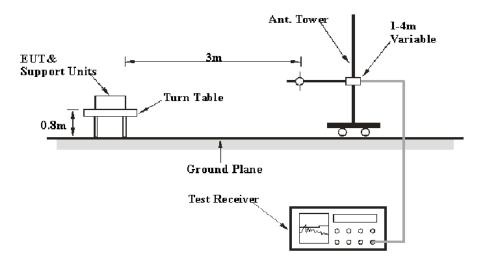
	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.161	9.80	28.18	37.98	55.39	-17.41	Average
2	0.161	9.80	40.38	50.18	65.39	-15.21	QP
3	0.230	9.80	16.89	26.69	52.46	-25.77	Average
4	0.230	9.80	29.42	39.22	62.46	-23.24	QP
5	0.441	9.80	19.44	29.24	47.05	-17.81	Average
6	0.441	9.80	29.29	39.09	57.05	-17.96	QP
7	1.378	9.81	14.39	24.20	46.00	-21.80	Average
8	1.378	9.81	26.82	36.63	56.00	-19.37	QP
9	2.698	9.83	14.48	24.31	46.00	-21.69	Average
10	2.698	9.83	29.10	38.93	56.00	-17.07	QP
11	5.875	9.93	5.01	14.94	50.00	-35.06	Average
12	5.875	9.93	18.01	27.94	60.00	-32.06	QP

§15.205 & §15.209 & §15.407(B)- UNDESIRABLE EMISSION

Applicable Standard

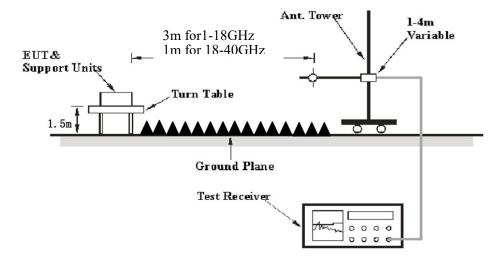
FCC §15.407 (b); §15.209; §15.205;

(b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:


Report No.: SZNS220527-23262E-RF-00D

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.


EUT Setup

Below 1 GHz:

Report No.: SZNS220527-23262E-RF-00D

Above 1 GHz:

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC 15.209 and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1 MHz	3 MHz	/	PK
Above 1 GHz	1MHz	10 Hz Note 1	/	Average
	1MHz	>1/T Note 2	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Radiated Spurious Emission

During the radiated emission test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all the installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

Version 10: 2021-11-09 Page 19 of 66 FCC-5G Wi-Fi

According to ANSI C63.10-2013,9.4: For field strength measurements made at other than the distance at which the applicable limit is specified, extrapolate the measured field strength to the field strength at the distance specified by the limit using an inverse distance correction factor (20 dB/decade of distance). In

Report No.: SZNS220527-23262E-RF-00D

some cases, a different distance correction factor may be required;

$$E_{\text{SpecLimit}} = E_{\text{Meas}} + 20 \log \left(\frac{d_{\text{Meas}}}{d_{\text{SpecLimit}}} \right)$$

where

 $E_{\text{SpecLimit}}$ is the field strength of the emission at the distance specified by the limit, in

dBμV/m

 E_{Meas} is the field strength of the emission at the measurement distance, in dB μ V/m

 d_{Meas} is the measurement distance, in m $d_{\text{SpecLimit}}$ is the distance specified by the limit, in m

So the extrapolation factor of 1m is $20*\log(1/3) = -9.5$ dB, for 18-40GHz range, the limit of 1m distance was added by 9.5dB from limit of 3m to compared with the result measurement at 1m distance.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

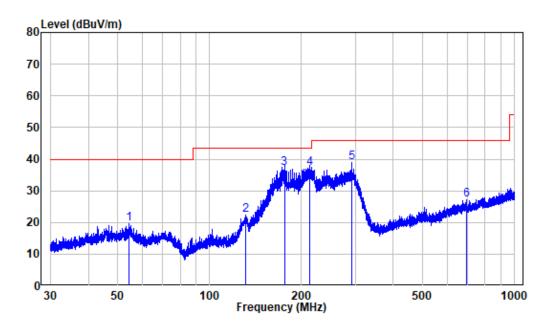
Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	25.1~31 °C
Relative Humidity:	52~54 %
ATM Pressure:	101.0~101.1 kPa

The testing was performed by Level Li on 2022-06-23 for below 1GHz and Jeff Jiang on 2022-06-13 for above 1GHz


EUT operation mode: Transmitting(Pre-scan in the X,Y and Z axes of orientation, the worst case X-axes of orientation was recorded)

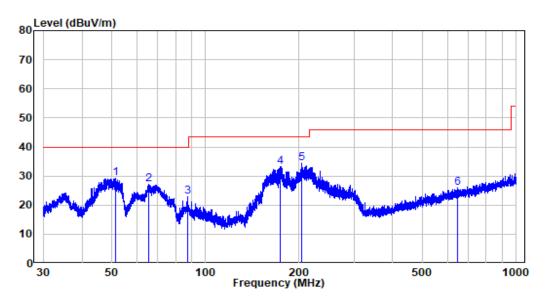
Version 10: 2021-11-09 Page 20 of 66 FCC-5G Wi-Fi

30 MHz – 1 GHz: (worst case is 802.11a, 5240MHz)

Note: When the test result of peak was less than the limit of QP more than 6dB, just peak value were recorded. Hardware version: V1.0

Horizontal

Site : chamber


Condition: 3m HORIZONTAL

Job No. : SZNS220527-23262E-RF

Test Mode: 5G WIFI

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	54.428	-10.32	29.84	19.52	40.00	-20.48	Peak
2	130.780	-14.92	37.41	22.49	43.50	-21.01	Peak
3	175.729	-13.09	50.29	37.20	43.50	-6.30	QP
4	212.642	-11.76	48.82	37.06	43.50	-6.44	QP
5	291.802	-9.29	48.13	38.84	46.00	-7.16	Peak
6	697.162	-1.57	28.65	27.08	46.00	-18.92	Peak

Vertical

Site : chamber Condition: 3m VERTICAL

Job No. : SZNS220527-23262E-RF

Test Mode: 5G WIFI

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	51.143	-9.95	39.29	29.34	40.00	-10.66	Peak
2	65.458	-12.68	39.80	27.12	40.00	-12.88	Peak
3	87.303	-14.79	37.68	22.89	40.00	-17.11	Peak
4	174.424	-13.16	46.31	33.15	43.50	-10.35	Peak
5	203.166	-11.68	46.11	34.43	43.50	-9.07	Peak
6	647.102	-1.82	27.92	26.10	46.00	-19.90	Peak

Above 1GHz:

5150-5250 MHz:

Frequency	Receiver		Turn- Table Rx An		itenna	Corrected	Corrected	FCC Part 15.407	
(MHz)	Reading (dBµV)	PK/QP/AV	Angle Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
				802	.11a				
				5180	MHz				
4500	63.81	PK	126	1.3	Н	-4.72	59.09	74	-14.91
4500	50.11	AV	126	1.3	Н	-4.72	45.39	54	-8.61
4500	63.90	PK	152	2.1	V	-4.72	59.18	74	-14.82
4500	50.27	AV	152	2.1	V	-4.72	45.55	54	-8.45
5150	63.14	PK	272	1.7	Н	-2.73	60.41	74	-13.59
5150	50.95	AV	272	1.7	Н	-2.73	48.22	54	-5.78
5150	63.24	PK	122	2	V	-2.73	60.51	74	-13.49
5150	50.65	AV	122	2	V	-2.73	47.92	54	-6.08
10360	42.33	PK	57	1.3	Н	8.12	50.45	68.2	-17.75
10360	41.90	PK	255	1.3	V	8.12	50.02	68.2	-18.18
				802.11a,	5200MHz				
10400	42.78	PK	278	1.9	Н	8.24	51.02	68.2	-17.18
10400	41.81	PK	357	1.9	V	8.24	50.05	68.2	-18.15
				5240	MHz				
5350	63.60	PK	182	1.2	Н	-2.33	61.27	74	-12.73
5350	51.06	AV	182	1.2	Н	-2.33	48.73	54	-5.27
5350	63.42	PK	292	1.1	V	-2.33	61.09	74	-12.91
5350	50.53	AV	292	1.1	V	-2.33	48.20	54	-5.80
5460	63.32	PK	272	1.3	Н	-2.26	61.06	74	-12.94
5460	51.13	AV	272	1.3	Н	-2.26	48.87	54	-5.13
5460	63.14	PK	332	2.5	V	-2.26	60.88	74	-13.12
5460	50.94	AV	332	2.5	V	-2.26	48.68	54	-5.32
10480	41.80	PK	70	1.7	Н	8.56	50.36	68.2	-17.84
10480	41.32	PK	121	1.7	V	8.56	49.88	68.2	-18.32

Frequency	Receiver		Turn- Table	Rx An	tenna	Corrected	Corrected	FCC Pai	rt 15.407
(MHz)	Reading (dBμV)	PK/QP/AV	Angle Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBμV/m)	Margin (dB)
	•			1n20	•	•	•	•	
				5180	MHz				
4500	64.03	PK	93	2.2	Н	-4.72	59.31	74	-14.69
4500	50.24	AV	93	2.2	Н	-4.72	45.52	54	-8.48
4500	63.92	PK	10:	5 1.8	V	-4.72	59.20	74	-14.80
4500	50.31	AV	10:	5 1.8	V	-4.72	45.59	54	-8.41
5150	64.54	PK	33	7 2.1	Н	-2.73	61.81	74	-12.19
5150	50.76	AV	33	7 2.1	Н	-2.73	48.03	54	-5.97
5150	63.56	PK	67	1.6	V	-2.73	60.83	74	-13.17
5150	50.68	AV	67	1.6	V	-2.73	47.95	54	-6.05
10360	42.50	PK	225	9 1.8	Н	8.12	50.62	68.2	-17.58
10360	42.13	PK	23	6 1.8	V	8.12	50.25	68.2	-17.95
	•			5200]	MHz				
10400	42.59	PK	359	9 2	Н	8.24	50.83	68.2	-17.37
10400	41.98	PK	35	1 2	V	8.24	50.22	68.2	-17.98
				5240]	MHz				
5350	63.88	PK	17	8 1.4	Н	-2.33	61.55	74	-12.45
5350	51.42	AV	17	8 1.4	Н	-2.33	49.09	54	-4.91
5350	63.39	PK	18:	5 1.8	V	-2.33	61.06	74	-12.94
5350	50.49	AV	18:	5 1.8	V	-2.33	48.16	54	-5.84
5460	63.27	PK	21	8 1.4	Н	-2.26	61.01	74	-12.99
5460	50.96	AV	21	8 1.4	Н	-2.26	48.70	54	-5.30
5460	63.45	PK	37	2.2	V	-2.26	61.19	74	-12.81
5460	50.94	AV	37	2.2	V	-2.26	48.68	54	-5.32
10480	41.93	PK	20:	2 1.7	Н	8.56	50.49	68.2	-17.71
10480	41.39	PK	359	9 1.7	V	8.56	49.95	68.2	-18.25

Frequency	Rec	ceiver	Turn- Table	Rx A	ntenna	Corrected	Corrected		rt 15.407
(MHz)	Reading (dBμV)	PK/QP/AV	Angle Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
				802.	l 1n40				
				5190	MHz				
4500	63.64	PK	80	1.2	2 H	-4.72	58.92	74	-15.08
4500	50.13	AV	80	1.2	2 H	-4.72	45.41	54	-8.59
4500	63.88	PK	25	1 1.7	' V	-4.72	59.16	74	-14.84
4500	50.20	AV	25	1 1.7	V	-4.72	45.48	54	-8.52
5150	72.60	PK	192	2 1.4	H	-2.73	69.87	74	-4.13
5150	53.73	AV	192	2 1.4	H	-2.73	51.00	54	-3.00
5150	71.76	PK	20	1 2.3	S V	-2.73	69.03	74	-4.97
5150	53.64	AV	20	1 2.3	3 V	-2.73	50.91	54	-3.09
10380	41.63	PK	26	1.1	Н	8.18	49.81	68.2	-18.39
10380	40.99	PK	340	6 1.1	. V	8.18	49.17	68.2	-19.03
				5230	MHz				
5350	63.49	PK	87	2.3	Н	-2.33	61.16	74	-12.84
5350	51.15	AV	87	2.3	Н	-2.33	48.82	54	-5.18
5350	63.07	PK	242	2 1.9	V	-2.33	60.74	74	-13.26
5350	51.33	AV	242	2 1.9	V	-2.33	49.00	54	-5.00
5460	63.55	PK	260	6 1.6	Н	-2.26	61.29	74	-12.71
5460	51.14	AV	260	6 1.6	Н	-2.26	48.88	54	-5.12
5460	63.21	PK	278	8 1.3	V	-2.26	60.95	74	-13.05
5460	51.32	AV	278	8 1.3	V	-2.26	49.06	54	-4.94
10460	40.87	PK	34:	5 1.7	' H	8.47	49.34	68.2	-18.86
10460	40.64	PK	4	1.7	v V	8.47	49.11	68.2	-19.09

5725-5850 MHz:

Frequency	Re	eceiver	Turn- Table	Rx Aı	itenna	Corrected	Corrected	FCC Par	rt 15.407	
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Angle Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)	
				802.	11a					
				5745	MHz					
5650	65.22	PK	113	1.5	Н	-1.95	63.27	68.2	-4.93	
5650	65.23	PK	205	1.8	V	-1.95	63.28	68.2	-4.92	
5700	65.17	PK	310	1.7	Н	-2.02	63.15	105.2	-42.05	
5700	65.02	PK	98	1.8	V	-2.02	63.00	105.2	-42.20	
5720	66.30	PK	354	1.6	Н	-1.97	64.33	110.8	-46.47	
5720	66.05	PK	202	2	V	-1.97	64.08	110.8	-46.72	
5725	75.09	PK	199	2.4	Н	-1.96	73.13	122.2	-49.07	
5725	75.12	PK	38	2.3	V	-1.96	73.16	122.2	-49.04	
11490	43.72	PK	156	1.8	Н	6.63	50.35	74	-23.65	
11490	43.33	PK	222	2.2	V	6.63	49.96	74	-24.04	
				802.11a,5	785MHz					
11570	43.92	PK	6	1.2	Н	6.59	50.51	74	-23.49	
11570	42.99	PK	57	2.5	V	6.59	49.58	74	-24.42	
				802.11a,5	825MHz					
5850	69.44	PK	154	1.4	Н	-1.81	67.63	122.2	-54.57	
5850	69.66	PK	195	1	V	-1.81	67.85	122.2	-54.35	
5855	66.50	PK	77	2.3	Н	-1.81	64.69	110.8	-46.11	
5855	66.27	PK	124	2.1	V	-1.81	64.46	110.8	-46.34	
5875	66.10	PK	177	1.2	Н	-1.84	64.26	105.2	-40.94	
5875	65.87	PK	111	1.4	V	-1.84	64.03	105.2	-41.17	
5925	65.69	PK	319	2.1	Н	-1.82	63.87	68.2	-4.33	
5925	65.92	PK	203	2.4	V	-1.82	64.10	68.2	-4.10	
11650	42.06	PK	302	2.1	Н	6.77	48.83	74	-25.17	
11650	41.63	PK	91	1.6	V	6.77	48.40	74	-25.60	

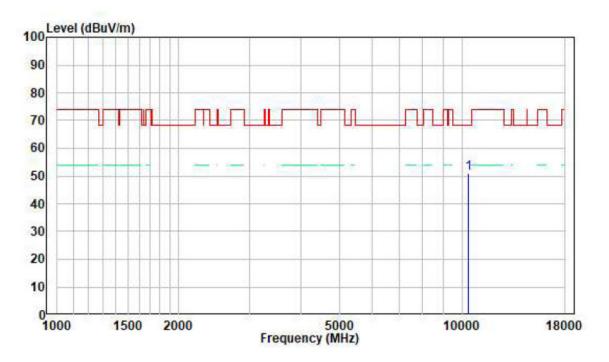
Frequency	Receiver		Turn- Table	Rx Antenna		Corrected	Corrected	FCC Part 15.407		
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Angle Degree	Height (m)	Polar (H / V)		Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)	
				802.1	1n20					
	5745 MHz									
5650	65.43	PK	111	1	Н	-1.95	63.48	68.2	-4.72	
5650	65.06	PK	168	1.4	V	-1.95	63.11	68.2	-5.09	
5700	65.11	PK	91	2.2	Н	-2.02	63.09	105.2	-42.11	
5700	65.43	PK	216	1.3	V	-2.02	63.41	105.2	-41.79	
5720	66.18	PK	310	2	Н	-1.97	64.21	110.8	-46.59	
5720	66.31	PK	212	2	V	-1.97	64.34	110.8	-46.46	
5725	76.18	PK	114	2	Н	-1.96	74.22	122.2	-47.98	
5725	76.00	PK	38	1.1	V	-1.96	74.04	122.2	-48.16	
11490	43.45	PK	246	1.6	Н	6.63	50.08	74	-23.92	
11490	43.16	PK	10	1.6	V	6.63	49.79	74	-24.21	
	802.11n20,5785MHz									
11570	43.54	PK	8	1.4	Н	6.59	50.13	74	-23.87	
11570	43.27	PK	73	1.4	V	6.59	49.86	74	-24.14	
			8	02.11n20,	5825MHz					
5850	70.45	PK	247	1.7	Н	-1.81	68.64	122.2	-53.56	
5850	70.26	PK	5	1.9	V	-1.81	68.45	122.2	-53.75	
5855	68.39	PK	253	1.5	Н	-1.81	66.58	110.8	-44.22	
5855	68.67	PK	238	2.2	V	-1.81	66.86	110.8	-43.94	
5875	65.23	PK	277	1.4	Н	-1.84	63.39	105.2	-41.81	
5875	65.98	PK	135	2.3	V	-1.84	64.14	105.2	-41.06	
5925	65.50	PK	138	2.2	Н	-1.82	63.68	68.2	-4.52	
5925	65.63	PK	29	1	V	-1.82	63.81	68.2	-4.39	
11650	42.02	PK	114	1.1	Н	6.77	48.79	74	-25.21	
11650	41.87	PK	34	1.4	V	6.77	48.64	74	-25.36	

Frequency	Receiver		Turn- Table	Rx Aı	ıtenna	Corrected	Corrected	FCC Part 15.407	
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Angle Degree	Height (m)	Polar (H / V)	Factor (dB/m)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
				802.1	ln40				
5755 MHz									
5650	65.44	PK	138	1.6	Н	-1.95	63.49	68.2	-4.71
5650	65.10	PK	340	2	V	-1.95	63.15	68.2	-5.05
5700	68.21	PK	134	1.6	Н	-2.02	66.19	105.2	-39.01
5700	68.46	PK	199	1.8	V	-2.02	66.44	105.2	-38.76
5720	76.38	PK	99	2.3	Н	-1.97	74.41	110.8	-36.39
5720	76.13	PK	311	2	V	-1.97	74.16	110.8	-36.64
5725	78.43	PK	41	1.4	Н	-1.96	76.47	122.2	-45.73
5725	77.96	PK	12	1.1	V	-1.96	76.00	122.2	-46.20
11510	43.19	PK	18	1.3	Н	6.59	49.78	74	-24.22
11510	42.72	PK	123	1.7	V	6.59	49.31	74	-24.69
	5795MHz								
5850	70.62	PK	161	1.9	Н	-1.81	68.81	122.2	-53.39
5850	70.28	PK	171	1.4	V	-1.81	68.47	122.2	-53.73
5855	67.29	PK	162	2	Н	-1.81	65.48	110.8	-45.32
5855	67.39	PK	59	1.4	V	-1.81	65.58	110.8	-45.22
5875	66.57	PK	228	1.4	Н	-1.84	64.73	105.2	-40.47
5875	67.18	PK	178	2.5	V	-1.84	65.34	105.2	-39.86
5925	65.77	PK	89	1.4	Н	-1.82	63.95	68.2	-4.25
5925	65.49	PK	359	1.3	V	-1.82	63.67	68.2	-4.53
11590	43.34	PK	73	1.5	Н	6.57	49.91	74	-24.09
11590	42.85	PK	265	2.1	V	6.57	49.42	74	-24.58

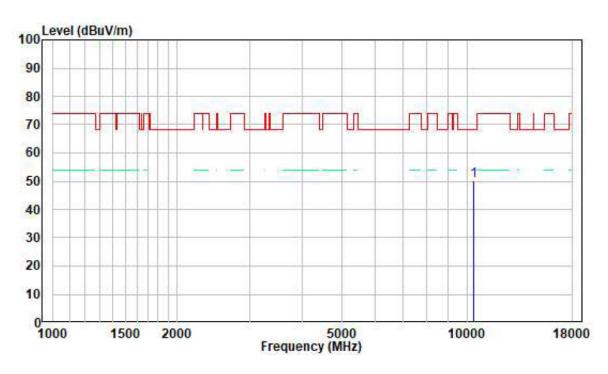
Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading


Margin = Corrected. Amplitude - Limit
The other spurious emission which is in the noise floor level was not recorded.

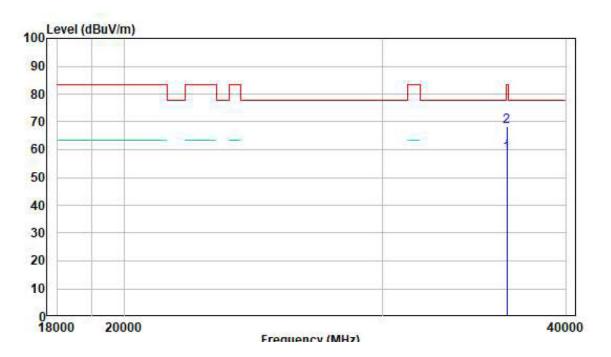
When the test result of peak was less than the limit of average, just peak value were recorded.


1 GHz - 18 GHz: (Pre-Scan plots)

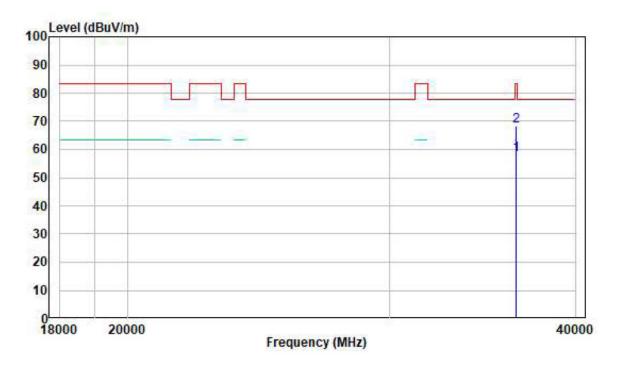
802.11 a, 5200MHz

Horizontal

Vertical



Version 10: 2021-11-09 Page 29 of 66 FCC-5G Wi-Fi


18-40GHz: (Pre-Scan plots)

802.11 a, 5200MHz

Horizontal

Vertical

Version 10: 2021-11-09 Page 30 of 66 FCC-5G Wi-Fi

FCC §15.407(a),(e) – 26 dB & 6dB EMISSION BANDWIDTH

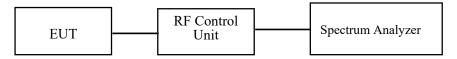
Applicable Standard

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Report No.: SZNS220527-23262E-RF-00D

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure


1. Emission Bandwidth (EBW)

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.725-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Version 10: 2021-11-09 Page 31 of 66 FCC-5G Wi-Fi

Test Data

Environmental Conditions

Temperature:	22 ℃		
Relative Humidity:	37 %		
ATM Pressure:	101.0 kPa		

Report No.: SZNS220527-23262E-RF-00D

The testing was performed by Roger on 2022-06-24.

EUT operation mode: Transmitting

Test Result: Pass

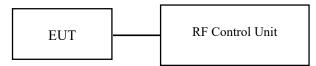
Please refer to the Appendix.

FCC §15.407(a) – CONDUCTED TRANSMITTER OUTPUT POWER

Applicable Standard

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: SZNS220527-23262E-RF-00D


For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

- c. Place the EUT on a bench and set it in transmitting mode.
- d. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- e. Add a correction factor to the display.

Note: the RF Control Unit has a built-in power sensor.

Test Data

Environmental Conditions

Temperature:	22 ℃		
Relative Humidity:	37 %		
ATM Pressure:	101.0 kPa		

Report No.: SZNS220527-23262E-RF-00D

The testing was performed by Roger on 2022-06-24.

EUT operation mode: Transmitting

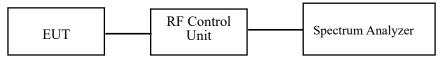
Test Result: Pass

Please refer to the Appendix.

FCC §15.407(a) - POWER SPECTRAL DENSITY

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: SZNS220527-23262E-RF-00D


For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:
a) Set RBW ≥ 1/T, where T is defined in section II.B.l.a).
b) Set VBW ≥ 3 RBW.

- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Version 10: 2021-11-09 Page 35 of 66 FCC-5G Wi-Fi

Test Data

Environmental Conditions

Temperature:	22 ℃		
Relative Humidity:	37 %		
ATM Pressure:	101.0 kPa		

Report No.: SZNS220527-23262E-RF-00D

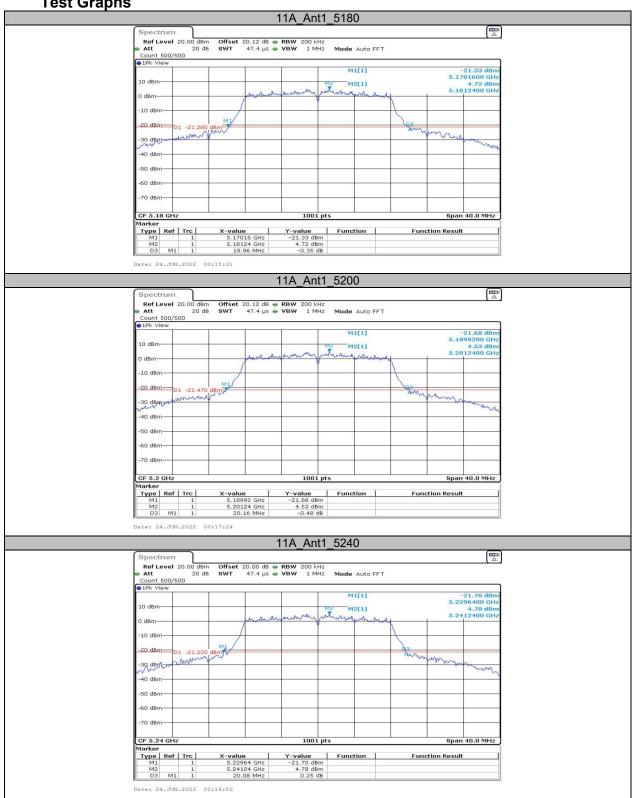
The testing was performed by Roger on 2022-06-24.

EUT operation mode: Transmitting

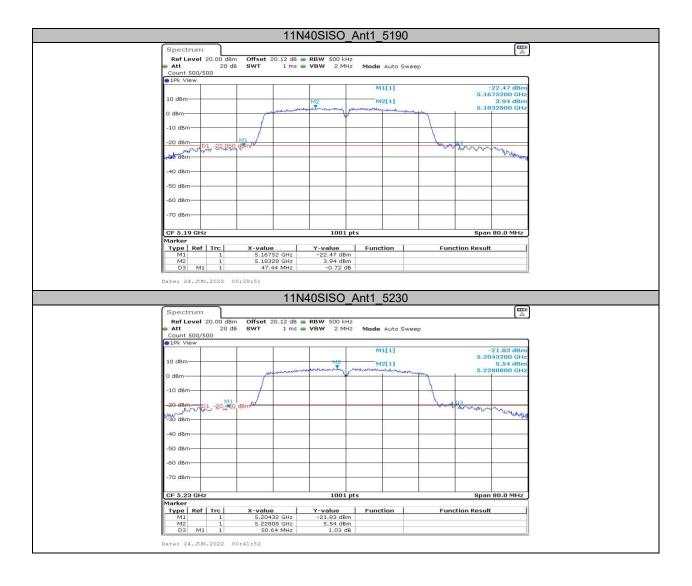
Test Result: Pass

Please refer to the Appendix.

APPENDIX

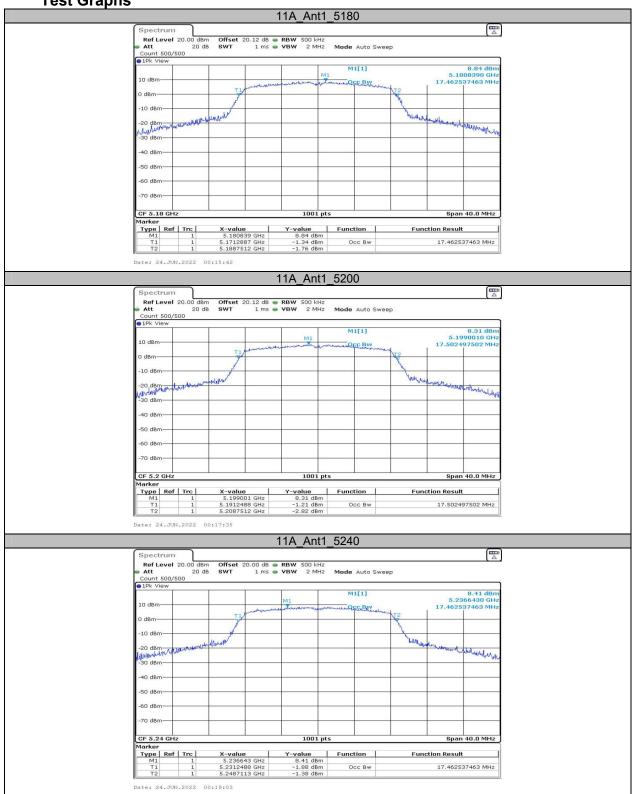

AppendixA1: Emission Bandwidth

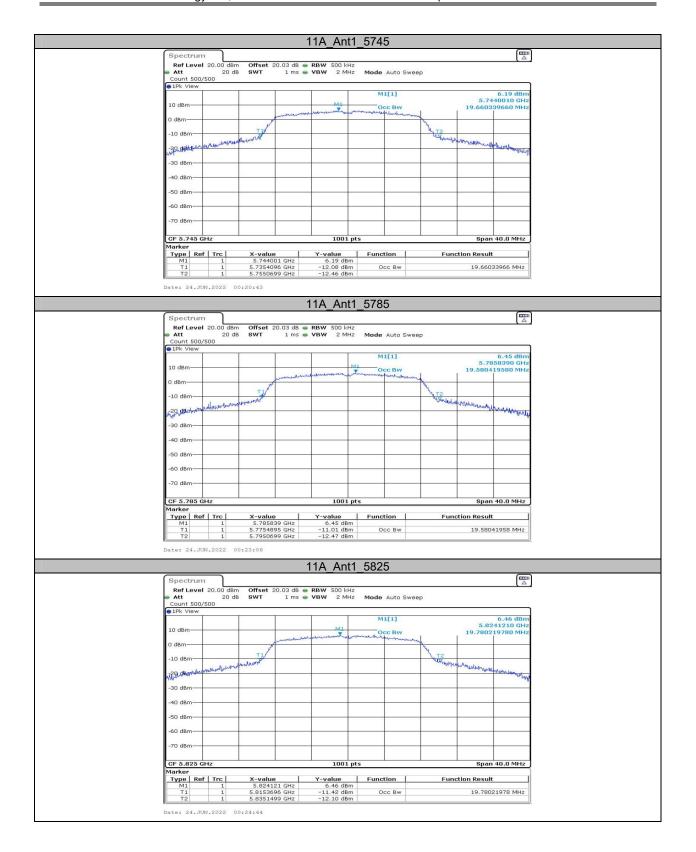
Test Result


Test Mode	Antenna	Channel	26db EBW [MHz]	Limit[MHz]	Verdict
11A	Ant1	5180	19.96		
		5200	20.16		
		5240	20.08		
	Ant1	5180	20.44		
11N20SISO		5200	20.72		
		5240	19.88		
11N40SISO	Ant1	5190	47.44		
		5230	50.64		

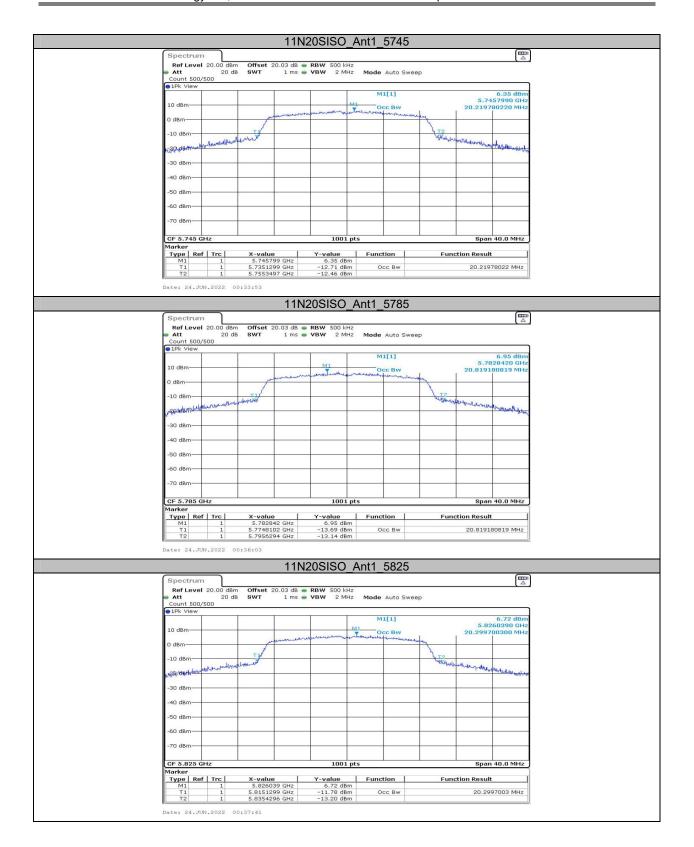
Report No.: SZNS220527-23262E-RF-00D

Version 10: 2021-11-09 Page 37 of 66 FCC-5G Wi-Fi


AppendixA2: Occupied channel bandwidth Test Result

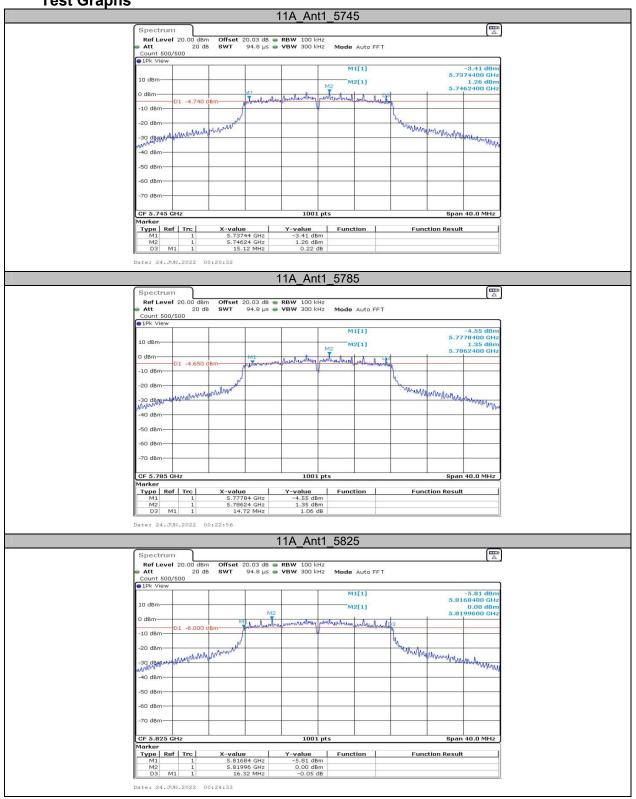

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
	Ant1	5180	17.463		
		5200	17.502		
11A		5240	17.463		
HA		5745	19.66		
		5785	19.58		
		5825	19.78		
	Ant1	5180	18.222		
		5200	18.222		
11N20SISO		5240	18.182		
1111203130		5745	20.22		
		5785	20.819		
		5825	20.3		
	Ant1	5190	36.843		
11N40SISO		5230	36.763		
		5755	40.679		
		5795	40.679		

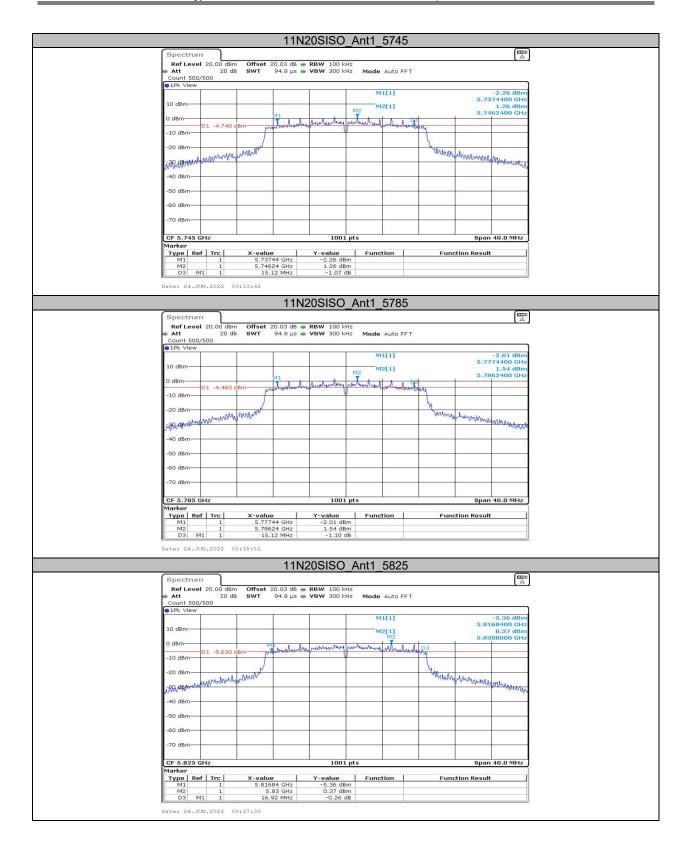
Report No.: SZNS220527-23262E-RF-00D

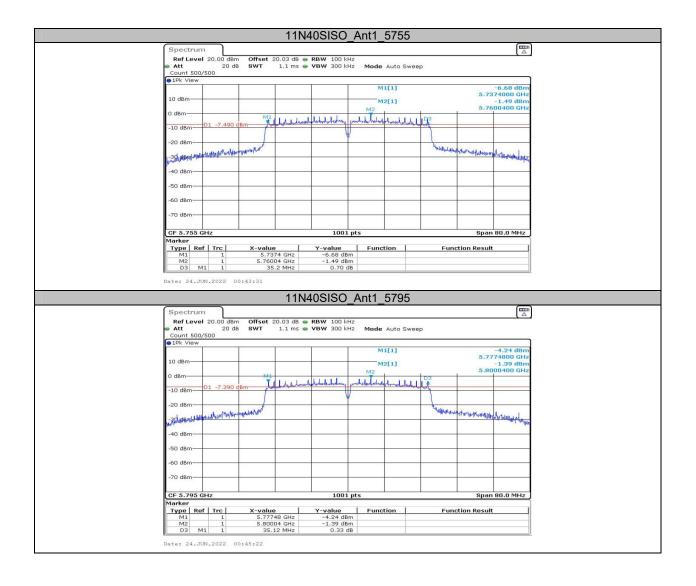

Note: EUT not operate with any part of OBW fall within 5250-5350MHz and 5470-5725MHz range.

Version 10: 2021-11-09 Page 41 of 66 FCC-5G Wi-Fi






AppendixA3: Min emission bandwidth Test Result

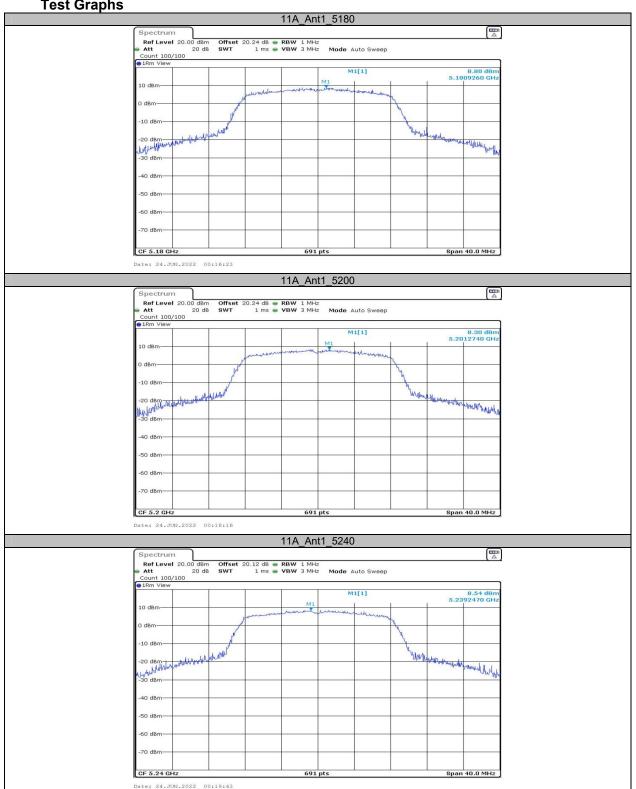

Test Mode	Antenna	Channel	6db EBW [MHz]	Limit[MHz]	Verdict
11A	Ant1	5745	15.12	0.5	PASS
		5785	14.72	0.5	PASS
		5825	16.32	0.5	PASS
11N20SISO	Ant1	5745	15.12	0.5	PASS
		5785	15.12	0.5	PASS
		5825	16.92	0.5	PASS
11N40SISO	Ant1	5755	35.20	0.5	PASS
		5795	35.12	0.5	PASS

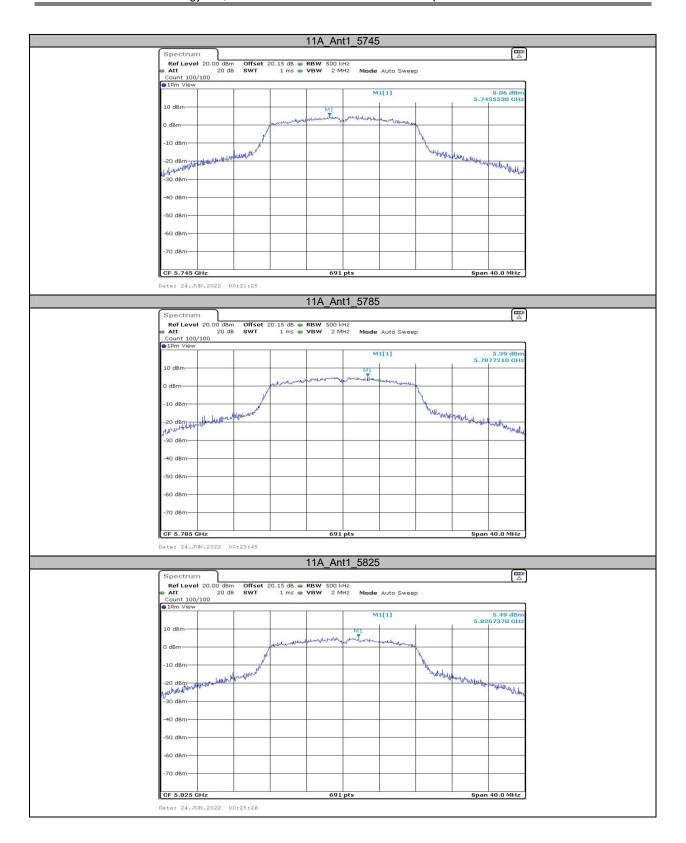
Report No.: SZNS220527-23262E-RF-00D

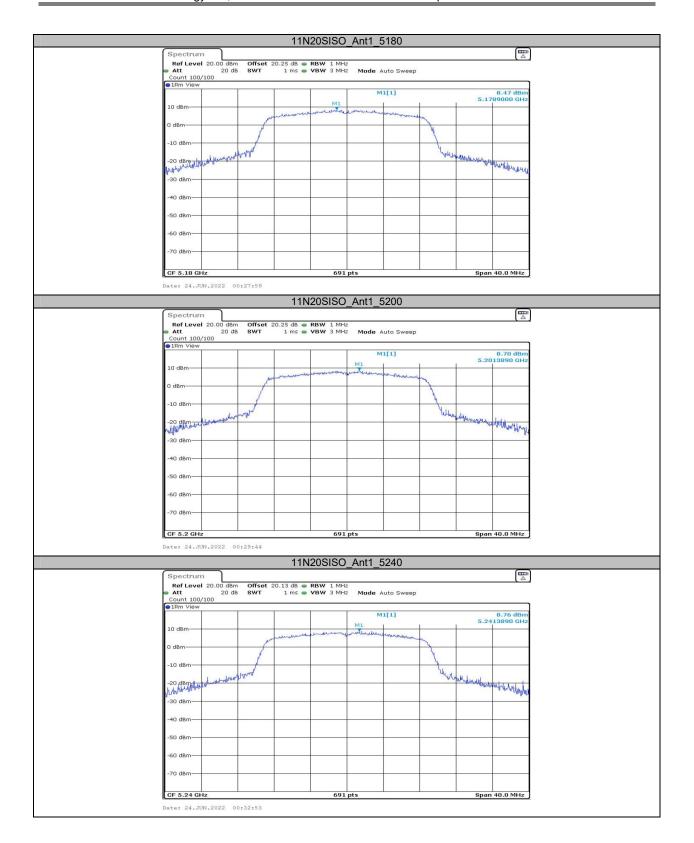
Version 10: 2021-11-09 Page 48 of 66 FCC-5G Wi-Fi

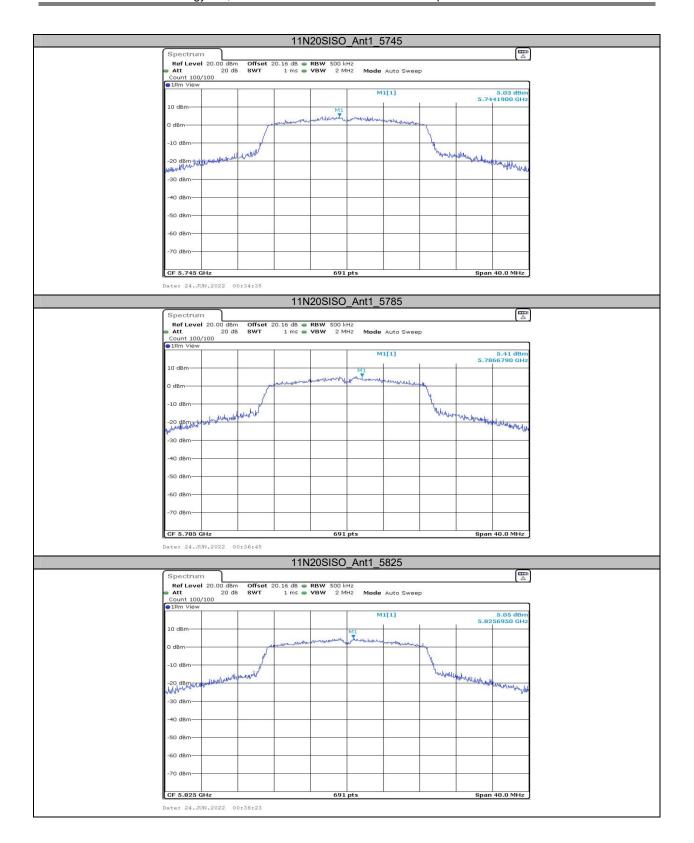
Appendix B: Maximum conducted output power Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	Ant1	5180	14.98	≤23.98	PASS
		5200	15.04	≤23.98	PASS
11A		5240	15.04	≤23.98	PASS
IIA		5745	13.45	≤30.00	PASS
		5785	13.55	≤30.00	PASS
		5825	13.30	≤30.00	PASS
	Ant1	5180	15.09	≤23.98	PASS
		5200	15.23	≤23.98	PASS
44N1000100		5240	15.23	≤23.98	PASS
11N20SISO		5745	13.46	≤30.00	PASS
		5785	13.57	≤30.00	PASS
		5825	13.31	≤30.00	PASS
	Ant1	5190	14.42	≤23.98	PASS
11N40SISO		5230	15.44	≤23.98	PASS
		5755	13.84	≤30.00	PASS
		5795	13.75	≤30.00	PASS

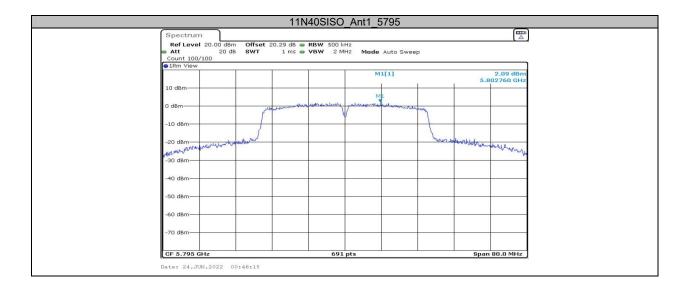

1631163	uit				
Test Mode	Antenna	Channel	Result [dBm/MHz]	Limit[dBm/MHz]	Verdict
		5180	8.8	≤11.00	PASS
		5200	8.3	≤11.00	PASS
11A	Ant1	5240	8.54	≤11.00	PASS
HA	Anti	5745	5.06	≤30.00	PASS
		5785	5.39	≤30.00	PASS
		5825	5.49	≤30.00	PASS
	014	5180	8.47	≤11.00	PASS
		5200	8.7	≤11.00	PASS
11N20SISO		5240	8.76	≤11.00	PASS
1111/205150	Ant1	5745	5.03	≤30.00	PASS
		5785	5.41	≤30.00	PASS
		5825	5.05	≤30.00	PASS
		5190	4.82	≤11.00	PASS
11N40SISO	Ant1	5230	6.23	≤11.00	PASS
	Anti	5755	2.65	≤30.00	PASS
		5795	2.09	≤30.00	PASS

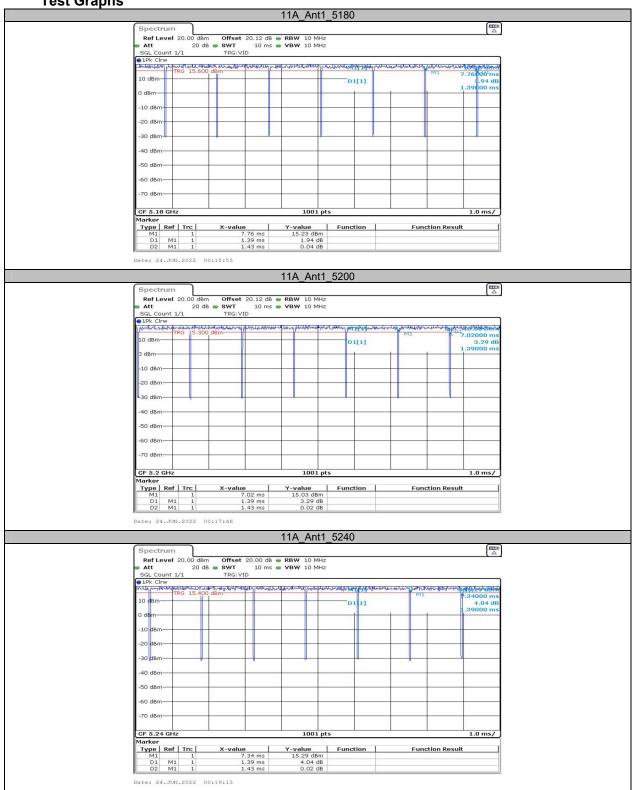

Report No.: SZNS220527-23262E-RF-00D

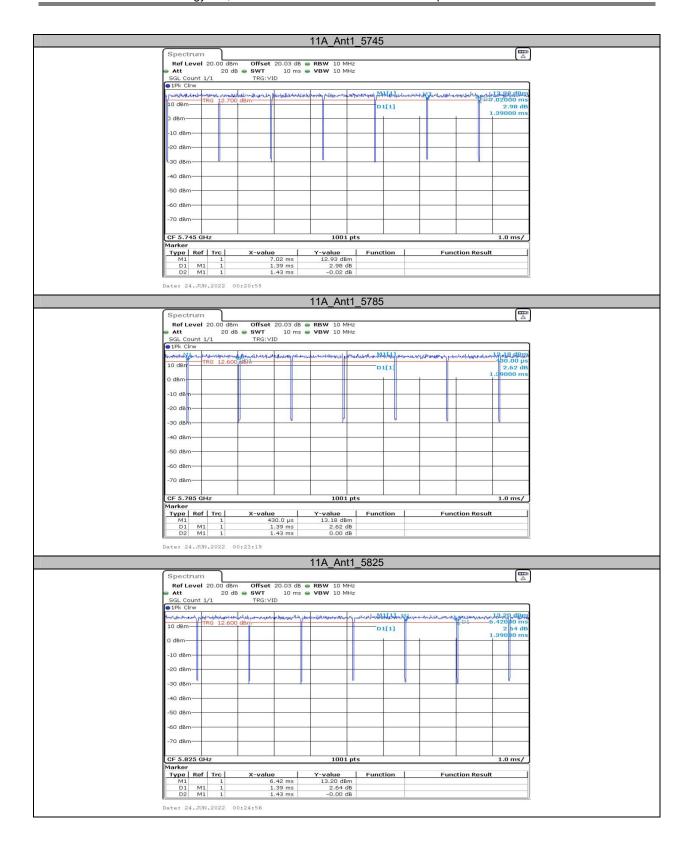

Note: 1.The Result and Limit Unit is dBm/500 kHz in the band 5.725-5.85 GHz.

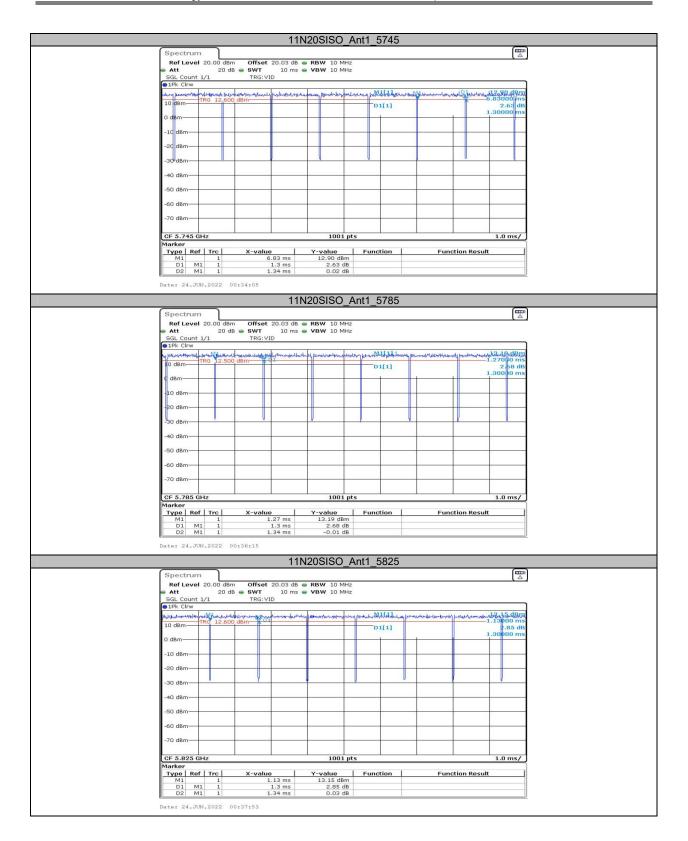

2. The Duty Cycle Factor is compensated in the graph.

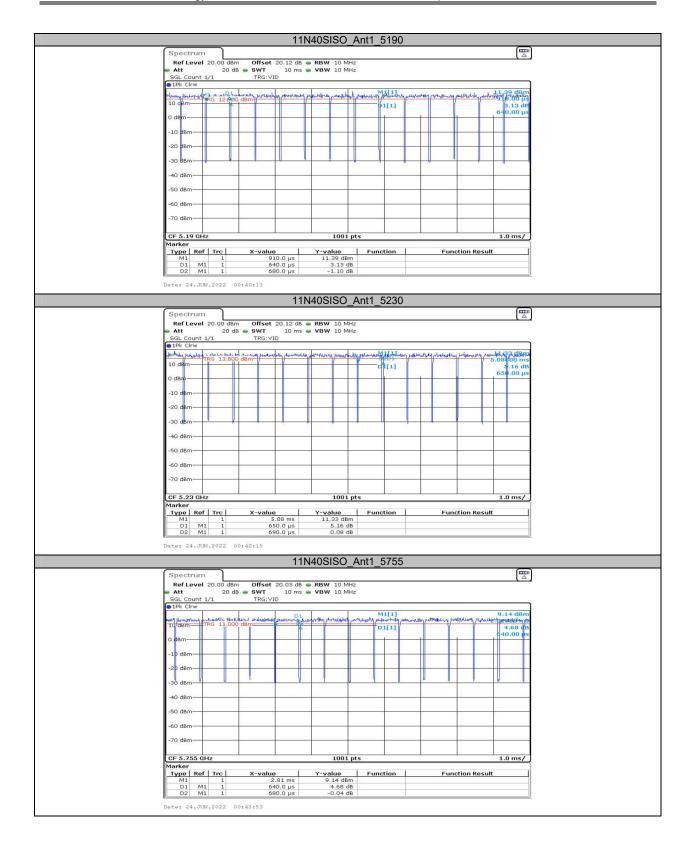
Version 10: 2021-11-09 Page 53 of 66 FCC-5G Wi-Fi

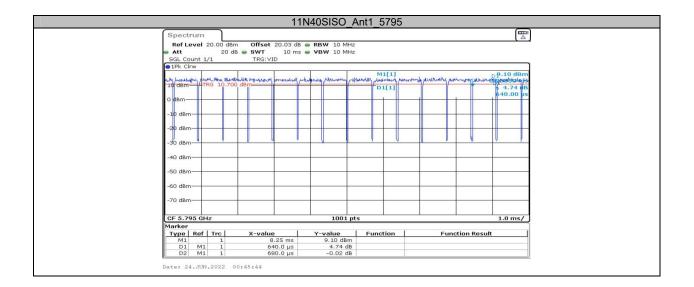







Appendix D: Duty Cycle Test Result


Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
		5180	1.39	1.43	97.20
		5200	1.39	1.43	97.20
111	A = ±4	5240	1.39	1.43	97.20
11A	Ant1	5745	1.39	1.43	97.20
	-	5785	1.39	1.43	97.20
		5825	1.39	1.43	97.20
	Ant1	5180	1.30	1.34	97.01
		5200	1.30	1.34	97.01
11N20SISO		5240	1.30	1.34	97.01
1111/205150		5745	1.30	1.34	97.01
		5785	1.30	1.34	97.01
		5825	1.30	1.34	97.01
11N40SISO	Ant1	5190	0.64	0.68	94.12
		5230	0.65	0.69	94.20
		5755	0.64	0.68	94.12
		5795	0.64	0.68	94.12



***** END OF REPORT *****