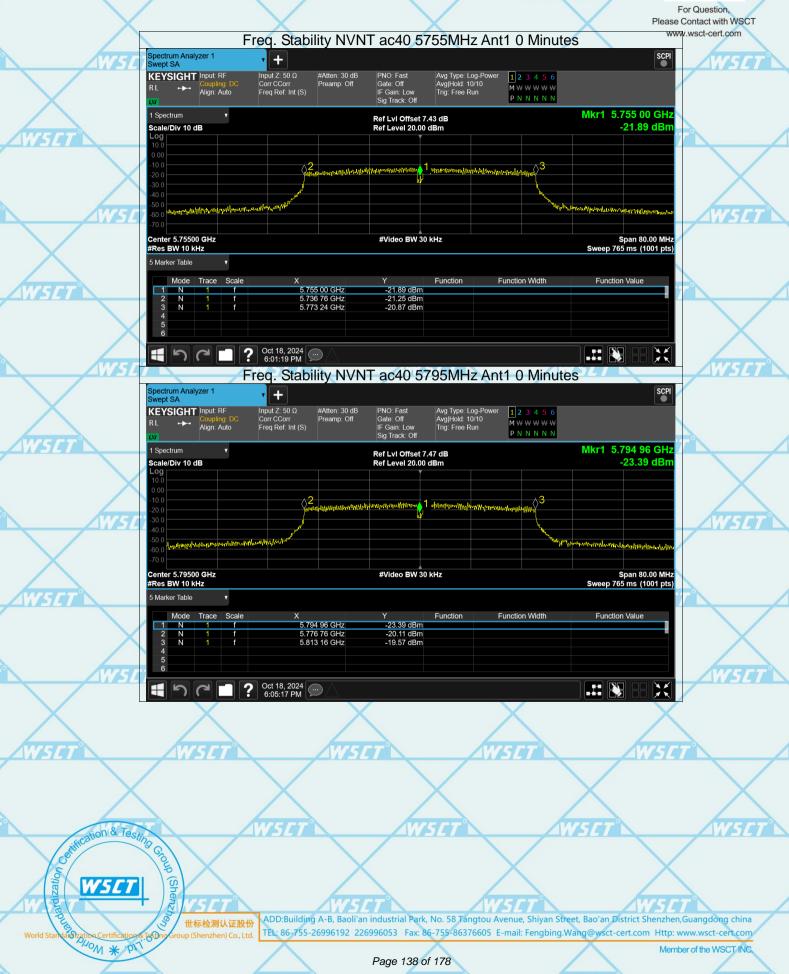
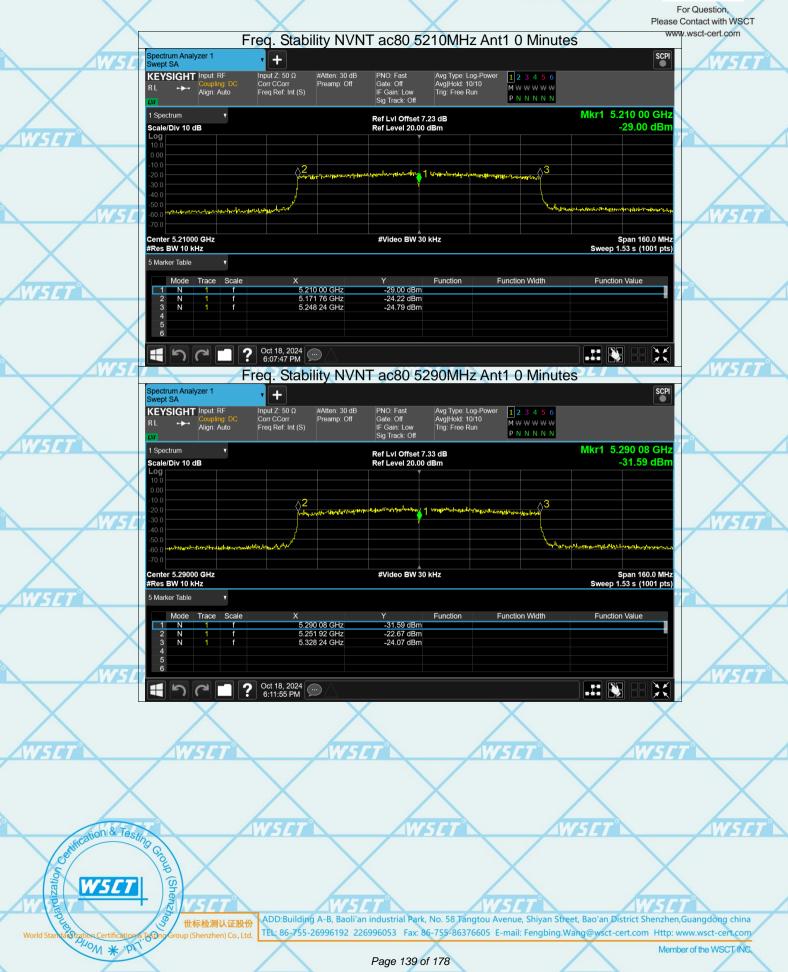


WSFT

WSFT



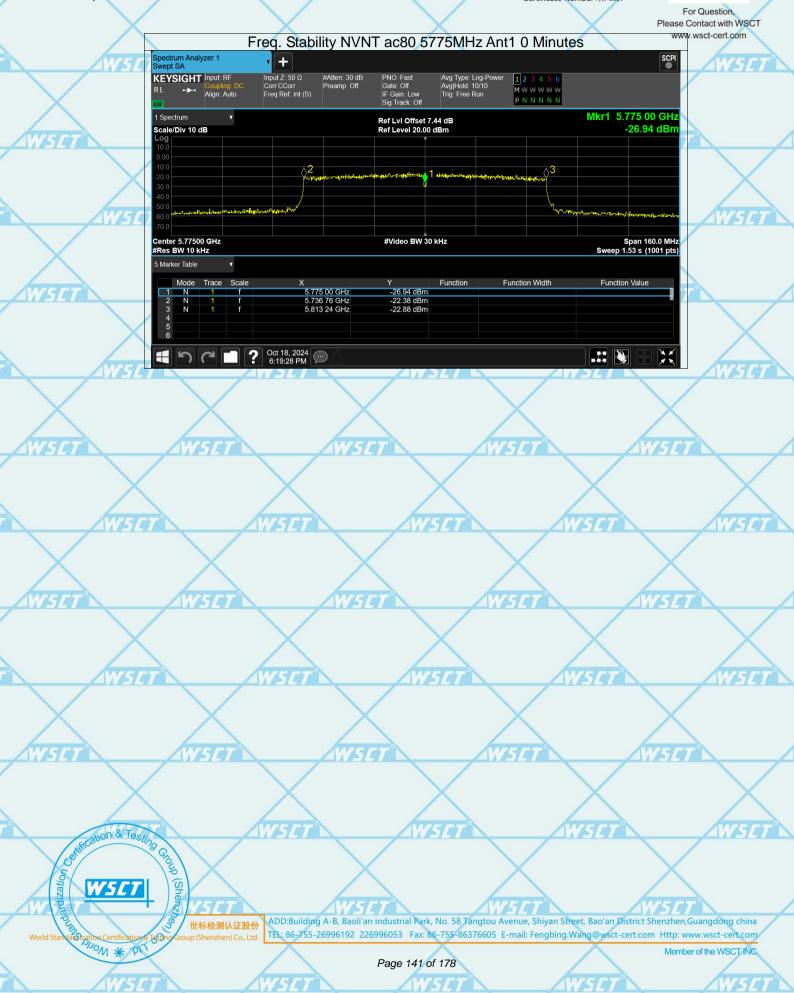
WSFT



WSFT

WSFT

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2


Page 140 of 178

WSET

織

For Question, Please Contact with WSCT

www.wsct-cert.com

Certificate Number : AT-3951

7.9 BAND EDGE EMISSIONS

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

7.9.1 TEST EQUIPMENT

Please refer to Section 4 this report.

7.9.2 TEST PROCEDURE

Band Edge Emissions Measurement: Test Method: a.)The EUT was tested according to ANSI C63.10. b)The EUT, peripherals were put on the turntable was a series of the turntable of turntable of the turntable of turnta

- b) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 1.5 m. All set up is according to ANSI C63.10.
 c) The frequency spectrum from <u>9</u> kHz to 40 GHz was investigated. All readings from <u>9</u> kHz to <u>150</u> kHz are quasi-peak values with a resolution bandwidth of <u>200</u> Hz. All readings from <u>150</u> kHz to <u>30</u> MHz are quasi-peak values with a resolution bandwidth of 9 KHz. All
 - readings from <u>30</u> MHz to <u>1</u> GHz are quasi-peak values with a resolution bandwidth of <u>120</u> KHz. All readings are above <u>1</u> GHz, peak values with a resolution bandwidth of <u>1</u> MHz. Measurements were made at 3 meters.
- d) The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. The Receiving antenna high is varied from <u>1</u> m to <u>4</u> m high to find the maximum emission for each frequency. Emissions below 30MHz were measured with a loop antenna while emission above 30MHz were measured using a broadband E-field antenna.
- e) Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "QP" in the data table.
- f)Each emission was to be maximized by changing the polarization of receiving antenna both
- horizontal and vertical. In order to find out the max. emission, the relative positions of this transmitter(EUT) was rotated through three orthogonal axes according to the requirements in
- Section 8 and 13 of ANSI C63.10.

Band Edge Emissions Measurement:

Test Equipment Setting: a)Attenuation: Auto b)Span Frequency: 100 MHz c)RBW/VBW (Emission in restricted band): 1MHz / 3MHz for Peak, 1MHz / 1/T for Average

d)RBW/VBW(Emission in non-restricted band) 1MHz / 3MHz for peak

7.9.3 TEST SETUP

Same as section 3.4 of this report

7.9.4 CONFIGURATION OF THE EUT

Same as section 3.4 of this report

7.9.5 EUT OPERATING CONDITION

Same as section 3.4 of this report.

tion & Testin

NSC1

M * PI

2 登 世际检测认证股份 ADD:Building A-B, Baoli'an industrial Park, No. 58 Tangtou Avenue, Shiyan Street, Bao'an District Shenzhen, Guangdong china TEL: 86-755-26996192 226996053 Fax: 86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http: www.wsct-cert.com

Page 142 of 178

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

7.9.6 LIMIT

Spurious Radiated Emission & Band Edge Emissions Measurement: Limit: For transmitters operating in the 5.15-5.35 GHz band: all e

For transmitters operating in the 5.15-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.470-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In any 100 KHz bandwidth outside the operating frequency band, the radio frequency power that is produced by modulation products of the spreading sequence, the information sequence and the carrier frequency shall be either at least 20 dB below that in any 100 KHz bandwidth within the band that contains the highest level of the desired power or shall not exceed the general levels specified in section 15.209(a), which lesser attenuation.

All other emissions inside restricted bands specified in section 15.205(a) shall not exceed the general radiated emission limits specified in section 15.209(a)

Note:

Applies to harmonics/spurious emissions that fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209. 47 CFR § 15.237(c): The emission limits as specified above are based on measurement instrument employing an average detector. The provisions in section 15.35 for limiting peak emissions apply.

7.9.7 TEST RESULT

tion & Testin

VSET

M * PI

S

Band Edge and	Fundamental Emissions			
Product:	EUT-Sample	Test Mode:	20MHzIEEE 802.11a/n/ac	
Test Item:	Band Edge and Fundamental Emissions	Temperature:	25 °C	
Test / SLT	DC 3.87V	Humidity:	56%RH	
Voltage:				
Test Result:	PASS	S	X	X

Page 143 of 178

WSET

WSET

Ŗ

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 145 of 178

WSLT

Ŗ

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 146 of 178

WSLT

節

For Question

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 147 of 178

WSET

100攘

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 148 of 178

WSET

Ě

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 149 of 178

WSET

Certificate Number : AT-3951

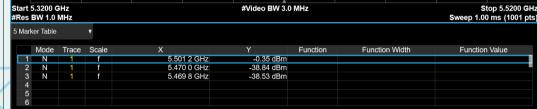
2 and popular

1 2 3 4 5 6 M ₩ ₩ ₩ ₩ ₩

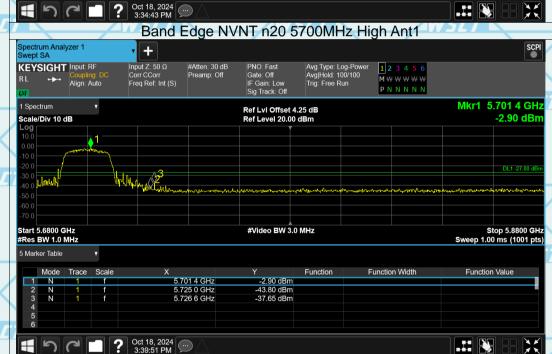
PNNNN

Please Contact with WSCT www.wsct-cert.com

SCPI


Mkr1 5.501 2 GHz

1


-0.35 dBm

(III)

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2 Band Edge NVNT n20 5500MHz Low Ant1 Spectrum Analyzer 1 + 15 Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) PNO: Fast Gate: Off IF Gain: Low Sig Track: Off Avg Type: Log-Power Avg|Hold: 100/100 Trig: Free Run KEYSIGHT Input: RF #Atten: 30 dB Preamp: Off Align: Auto 1 Spectrum Ref Lvi Offset 4.16 dB Ref Level 20.00 dBm Scale/Div 10 dB

Oct 18, 2024 ょう ?

2 Oct 18, 2024 ?

ち

Group

69

(Sher

fication & Testino

WSCT

MOM * PT

e

Zatio

ADD:Building A-B, Baoli'an industrial Park, No. 58 Tangtou Avenue, Shiyan Street, Bao'an District Shenzhen, Guangdong china 世标检测认证股份 TEL: 86-755-26996192 226996053 Fax: 86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http: www.wsct-cert.com

Page 150 of 178

WSLT

For Question

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 151 of 178

WSET

攐

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 152 of 178

WSET

蜜

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 153 of 178

WSET

節用

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 154 of 178

WSET

節用

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 155 of 178

WSLT

5 S J R

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 156 of 178

WSLT

For Question

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 157 of 178

WSLT

For Question

5 S J

Ě

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 158 of 178

WSLT

100R

For Question

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 159 of 178

WSET

攐

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 160 of 178

WSLT

攐

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 161 of 178

WSLT

攐

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 162 of 178

WSLT

攐

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 163 of 178

WSET

攐

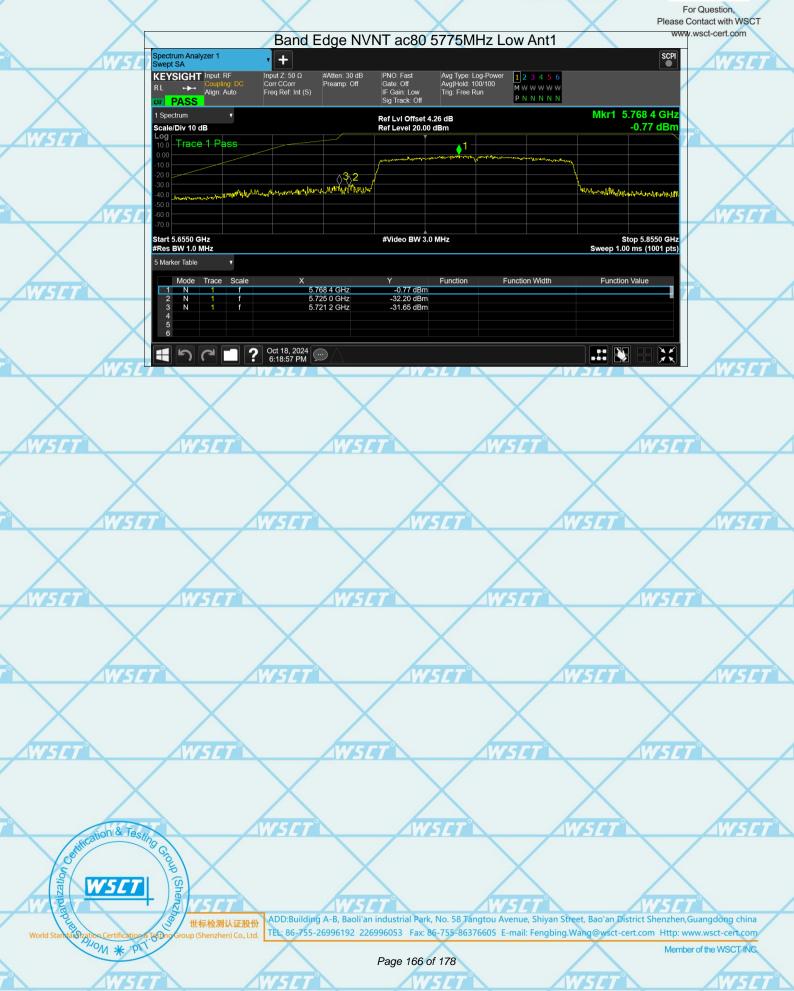
Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Page 164 of 178

WSCT[®]

攐

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2



Page 165 of 178

WSET

ion & Testi

WSC1

M * PI

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

7.10 DYNAMIC FREQUENCY SELECTION (DFS) 7.10.1 DFS OVERVIEW

For Question, Please Contact with WSCT www.wsct-cert.com

A U-NII network will employ a DFS function to detect signals from radar systems and to avoid co-channel operation with these systems. This applies to the 5250-5350 MHz and/or 5470-5725 MHz bands. Within the context of the operation of the DFS function, a U-NII device will operate in either *Master Mode* or *Client Mode*. U-NII devices operating in *Client Mode* can only operate in a network controlled by a U-NII device operating in *Master Mode*.

Tables 1 and 2 shown below summarize the information contained in sections 5.1.1 and 5.1.2

Requirement	Operational Mode				
	Master	Client Without Radar Detection	Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational	Operational Mode				
	Master Device or Client with Radar Detection	Client Without Radar Detection				
DFS Detection Threshold	Yes	Not required				
Channel Closing Transmission Time	Yes	Yes				
Channel Move Time	Yes	Yes				
U-NII Detection Bandwidth	Yes	Not required				

Additional requirements for devices with	Master Device or Client with	Client Without Radar				
multiple bandwidth modes	Radar Detection	Detection				
U-NII Detection Bandwidth and Statistical	All BW modes must be tested	Not required				
Performance Check						
Channel Move Time and Channel Closing	Test using widest BW mode	Test using the widest				
Transmission Time	available	BW mode available for				
		the link				
All other tests	Any single BW mode	Not required				
Note: Frequencies selected for statistical perfe	Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several					
frequencies within the radar detection bandwidth and frequencies near the edge of the radar						
detection bandwidth. For 802.11 device	ces it is suggested to select freque	ncies in each of the				
bonded 20 MHz channels and the chan						

Page 167 of 178

1517

Report No :: WSCT-ANAB-R&E241100057A-Wi-Fi2

DFS Detection Thresholds

Table 3 below provides the DFS Detection Thresholds for Master Devices as well as Client Devices incorporating In-Service Monitoring.

Table 3: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value				
	(See Notes 1, 2, and 3)				
$EIRP \ge 200 milliwatt$	-64 dBm				
EIRP < 200 milliwatt and	-62 dBm				
power spectral density < 10 dBm/MHz					
EIRP < 200 milliwatt that do not meet the power spectral density	-64 dBm				
requirement					
Note 1: This is the level at the input of the receiver assuming a 0 dE	i receive antenna.				
Note 2: Throughout these test procedures an additional 1 dB has be					
test transmission waveforms to account for variations in measurement equipment. This will ensure that					
the test signal is at or above the detection threshold level to trigger a DFS response.					
Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication					
662911 D01.					

Response Requirements

on & Test

NSC1

M * PI

Table 4 provides the response requirements for Master and Client Devices incorporating DFS.

Table 4: DFS Response Requirement Values

4WYJLI

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an
	aggregate of 60
	milliseconds over remaining
	10 second period.
	See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the U-
	NII 99% transmission
	power bandwidth. See Note

Note 1: *Channel Move Time* and the *Channel Closing Transmission Time* should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. **Note 2:** The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. **Note 3:** During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

世际检测认证股份 Group (Shenzhen) Co., Ltd. ADD:Building A-B, Baoli'an industrial Park, No. 58 Tangtou Avenue, Shiyan Street, Bao'an District Shenzhen, Guangdong china TEL: 86-755-26996192 226996053 Fax: 86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http: www.wsct-cert.com

Page 168 of 178

For Question, Please Contact with WSCT

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

RADAR TEST WAVEFORMS

This section provides the parameters for required test waveforms, minimum percentage of successful^{form} detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

		Table 5 Chart D 1	Deles Test West 6		
D 1	D 1 77 14		se Radar Test Waveform		
Radar	Pulse Width	PRI	Number of Pulses	Minimum	Minimum
Туре	(µsec)	(µsec)		Percentage of	Number of
				Successful	Trials
				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected	$\frac{\text{Roundup}}{\left\{ \begin{pmatrix} \frac{1}{360} \end{pmatrix}}, \\ \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu \text{sec}}} \right) \right\}}$	60%	30
2	1-5	in Test A 150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (I	Radar Types 1-	4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 µsec is selected, the number of pulses would be

 $\operatorname{Roundup}\left\{\left(\frac{1}{360}\right), \left(\frac{19}{30}\right)\right\}$

on & Test

NSC1

OM * PI

= Round up $\{17.2\} = 18$.

世际检测认证股份 ADD:Building A-B, Baoli'an industrial Park, No. 58 Tangtou Avenue, Shiyan Street, Bao'an District Shenzhen, Guangdong china CongGroup (Shenzhen) Co., Ltd. TEL: 86-755-26996192 226996053 Fax: 86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http: www.wsct-cert.com

W5E

Zatio

ation & Testino

W5[7

MOM * PT

5

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

	Table 5a	 Pulse Repetition Intervals Valu 	es for Test A
	Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
	1	1930.5	518
	2	1858.7	538
	3	1792.1	558
	4	1730.1	578
	5	1672.2	598
	6	1618.1	618
	7	1567.4	638
	8	1519.8	658
	9	1474.9	678
	10	1432.7	698
	11	1392.8	718
/	12	1355	738
W	13	1319.3	758
	14	1285.3	778
	15	1253.1	798
	16	1222.5	818
	17	1193.3	838
	18	1165.6	858
	19	1139	878
6	20	1113.6	898
	21	1089.3	918
	22	1066.1	938
	23	326.2	3066

For Question, t with WSCT cert.com

The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections.

	Radar Type	Number of Trials	Number of Successful Detections	Minimum Percentage of Successful Detection
	1	35	29	82.9%
	2	30	18	60%
1	3	30	27	90%
	4	50	44	88%
	A correcte ($82.0\% \pm 60$	$0.000 \pm 0.000 \pm 0.0000 = 0.0000$	70/	

Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2%

世标检测认证股份 ADD:Building A-B, Baoli'an industrial Park, No. 58 Tangtou Avenue, Shiyan Street, Bao'an District Shenzhen, Guangdong china TEL: 86-755-26996192 226996053 Fax: 86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http: www.wsct-cert.com

Page 170 of 178

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Long Pulse Radar Test Waveform

	Table 6 – Long Pulse Radar Test Waveform									
	Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum		
1	Type	Width	Width	(µsec)	of Pulses	of Bursts	Percentage of	Number of		
		(µsec)	(MHz)		per Burst		Successful	Trials		
		N 7			-		Detection			
-72	5	50-100	5-20	1000-	1-3	8-20	80%	30		
				2000						

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Each waveform is defined as follows:

1) The transmission period for the Long Pulse Radar test signal is 12 seconds.

2) There are a total of 8 to 20 *Bursts* in the 12 second period, with the number of *Bursts* being randomly chosen. This number is *Burst Count*.

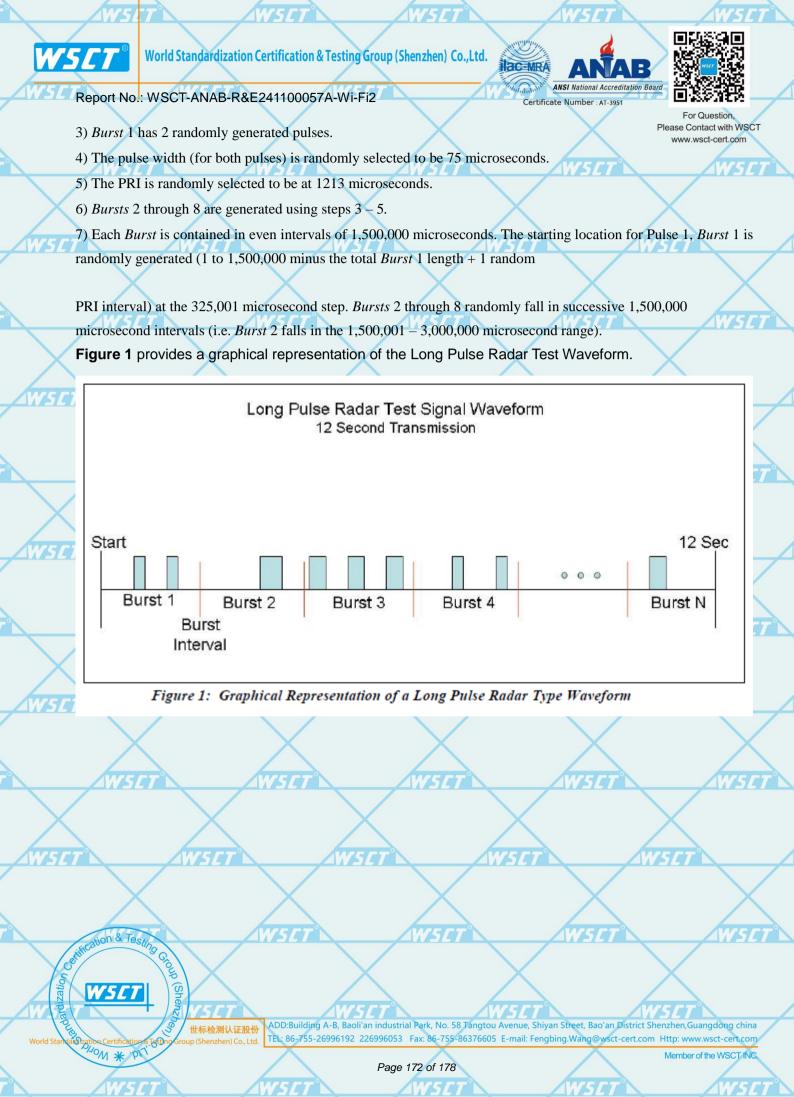
3) Each *Burst* consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each *Burst* within the 12 second sequence may have a different number of pulses.

4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a *Burst* will have the same pulse width. Pulses in different *Bursts* may have different pulse widths.

5) Each pulse has a linear frequency modulated chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a *transmission period* will have the same chirp width. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.

6) If more than one pulse is present in a *Burst*, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a *Burst*, the random time interval between the first and second pulses is chosen independently of the random time interval between the second and third pulses.

7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to *Burst Count*. Each interval is of length (12,000,000 / *Burst Count*) microseconds. Each interval contains one *Burst*. The start time for the *Burst*, relative to the beginning of the interval, is between 1 and [(12,000,000 / *Burst Count*) – (Total *Burst* Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each *Burst* is chosen randomly.


A representative example of a Long Pulse Radar Type waveform:

1) The total test waveform length is 12 seconds.

HOM * P

2) Eight (8) Bursts are randomly generated for the Burst Count.

ADD:Building A-B, Baoli'an industrial Park, No. 58 Tangtou Avenue, Shiyan Street, Bao'an District Shenzhen, Guangdong china TEL: 86-755-26996192 226996053 Fax: 86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http: www.wsct-cert.com

For Question, Please Contact with WSCT www.wsct-cert.com

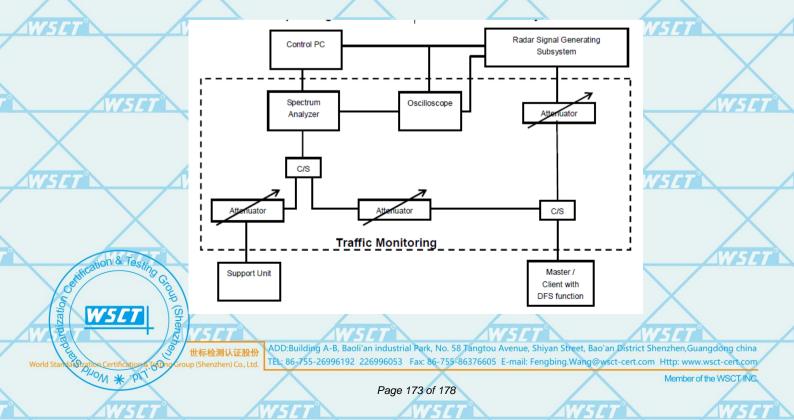
Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2

Frequency Hopping Radar Test Waveform

	Table 7 – Frequency Hopping Radar Test Waveform 💋 🦉							
\setminus $/$	Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
\mathbf{X}	Type	Width	(µsec)	per	Rate	Sequence	Percentage of	Number of
$\langle \rangle$		(µsec)		Нор	(kHz)	Length	Successful	Trials
WSET						(msec)	Detection	
	6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm: ⁴

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.


7.10.2 TEST PROCEDURE

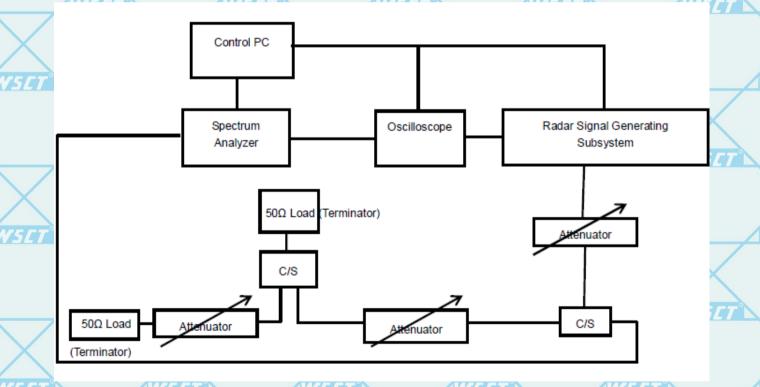
DFS MEASUREMENT SYSTEM

A complete DFS Measurement System consists of two subsystems:

- (1) The Radar Signal Generating Subsystem and
- (2) The Traffic Monitoring Subsystem.

The control PC is necessary for generating the Radar waveforms in Table 10, 11 and 12. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

Report No.: WSCT-ANAB-R&E241100057A-Wi-Fi2


The test transmission will always be from the Master Device to the Client Device. While the Client device is set up to associate with the Master device and play the MPEG file (6 y Magic Hours) from Master device, the designated MPEG test file and instructions are located at: http://ntiacsd.ntia.doc.gov/dfs/.

CALIBRATION OF DFS DETECTION THRESHOLD LEVEL

The measured channel is 5260MHz. The radar signal was the same as transmitted channels, and injected into the antenna port of Client Device with Radar Detection, measured the channel closing transmission time and channel move time.

SLAVE WITHOUT RADAR DETECTION MODE

The antenna gain is -4dBi and required detection threshold is -65dBm (= -62 +1 - 4)dBm. The calibrated conducted detection threshold level is set to -65dBm.

DEVIATION FROM TEST STANDARD

No deviation.

WSC1

OM * PI

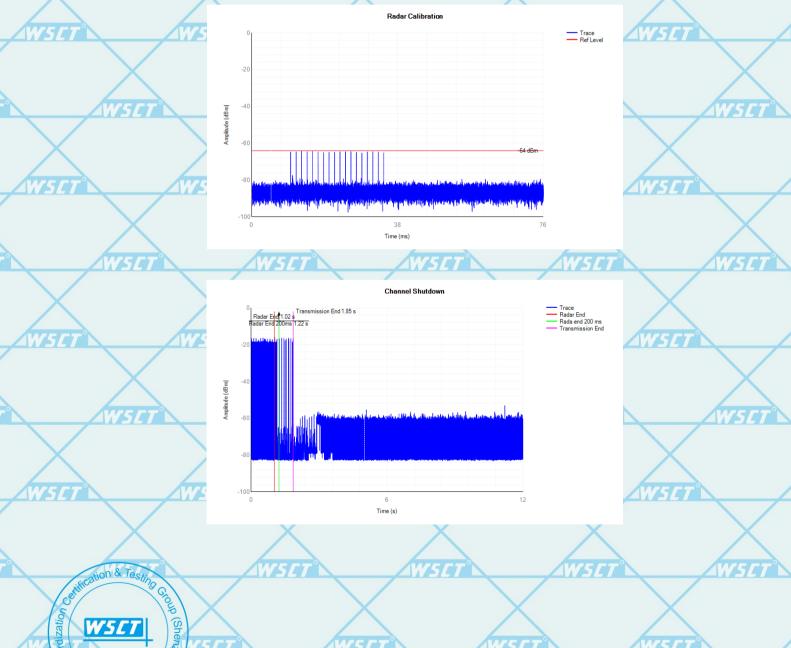
世际检测认证股份 ADD:Building A-B, Baoli'an industrial Park, No. 58 Tangtou Avenue, Shiyan Street, Bao'an District Shenzhen, Guangdong china Gong Group (Shenzhen) Co., Ltd. TEL: 86-755-26996192 226996053 Fax: 86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http: www.wsct-cert.com

Page 174 of 178

WSET

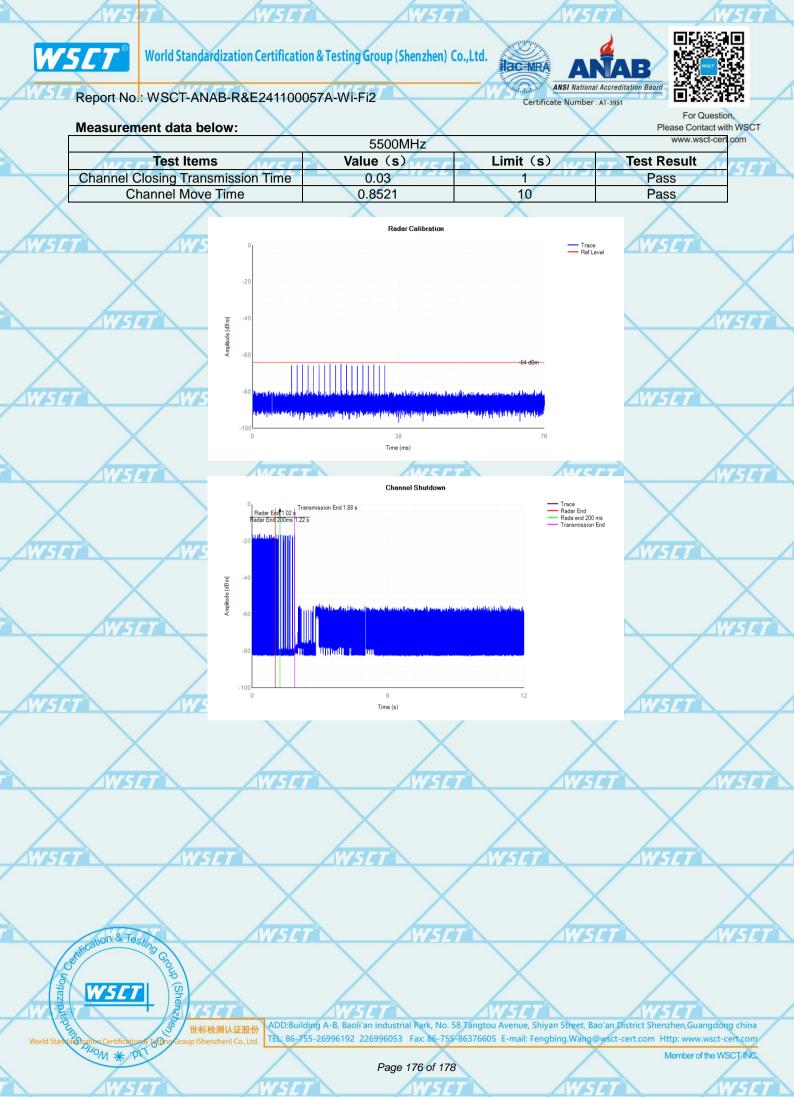
Report No :: WSCT-ANAB-R&E241100057A-Wi-Fi2

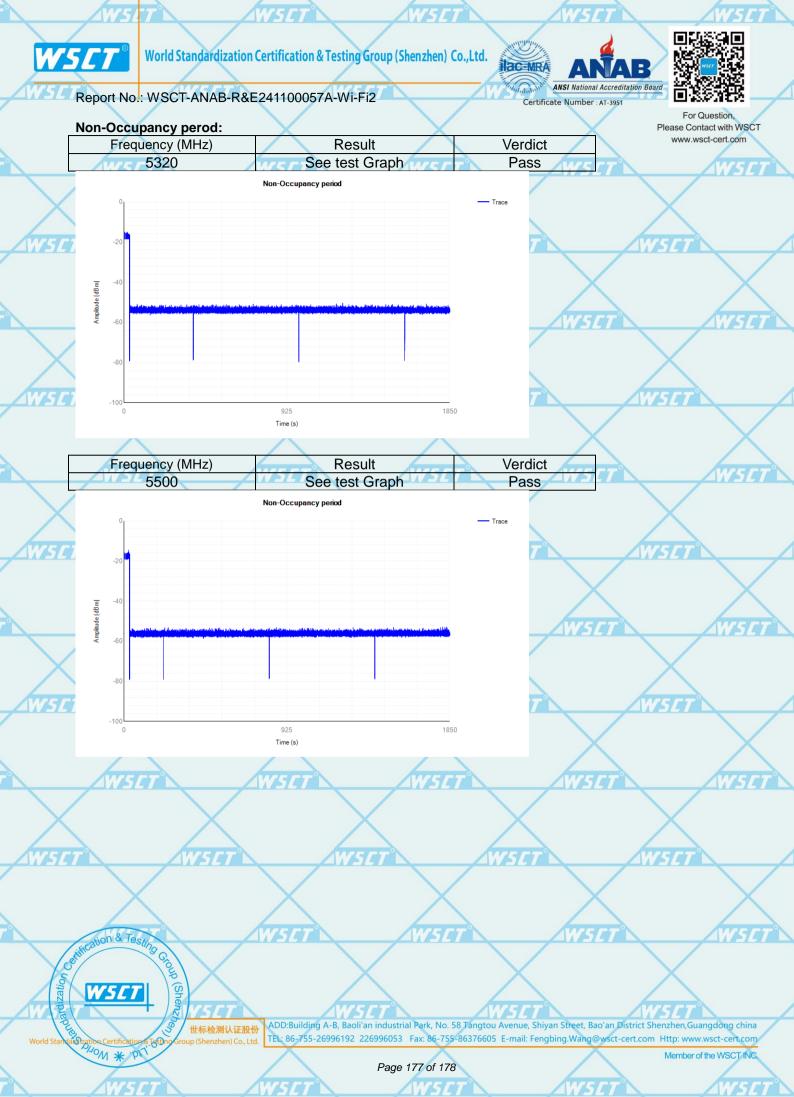
For Question Please Contact with WSCT www.wsct-cert.com


7.10.3 TEST RESULT

W5CT Test Items W5CT	Remark	Result	A
Channel Closing Transmission Time	Applicable	PASS	
Channel Move Time	Applicable	PASS	

Note: This phone can only be used as a slave without radar detection function, and no signal was recovered in 30 minutes for Non-Occupancy period.


Measurement Record (the wost case)


Measurement data below:		X		
	5320MHz	5320MHz		
Test Items	Value (s)	Limit (s)	Test Result	7777
 Channel Closing Transmission Time	0.0236		Pass	367 6
Channel Move Time	0.8293	10	Pass	
				-

ADD:Building A-B, Baoli'an industrial Park, No. 58 Tangtou Avenue, Shiyan Street, Bao'an District Shenzhen, Guangdong china 世标检测认证股份 TEL: 86-755-26996192 226996053 Fax: 86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http: www.wsct-cert.com MOM * PI

Page 175 of 178

cation & Testino

WSCT

ce

Zatio

Group

(She

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

WSFT

For Question Please Contact with WSCT www.wsct-cert.com

Test Setup Photographs 8

Please refer to Annex "Set Up Photos-15E" for test setup photos

*****END OF REPORT*****

ADD:Building A-B, Baoli'an industrial Park, No. 58 Tangtou Avenue, Shiyan Street, Bao'an District Shenzhen, Guangdong china 世标检测认证股份 TEL: 86-755-26996192 226996053 Fax: 86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http: www.wsct-cert.com M * PI

Page 178 of 178