FCC RADIO TEST REPORT FCC ID: 2ACB3-R3

Certificate #4298 01

NTEK 北测

Product: Motorcycle Bluetooth Headset

Trade Mark: N/A Model No.: R3 Family Model: R5, R3 PRO Report No.: S23011200506003 Issue Date: Feb 16, 2023

Prepared for

ShenZhen FreedConn(FDC) Electronics Co., Ltd East Area 4th floor, E building,Hua Chuang Da industry park, No.176 HangCheng Road, Xixiang, Baoan, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1 T	EST RESULT CERTIFICATION	3
2 S	UMMARY OF TEST RESULTS	4
3 FA	ACILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5 5
4 G	ENERAL DESCRIPTION OF EUT	6
	ESCRIPTION OF TEST MODES	
6 SI	ETUP OF EQUIPMENT UNDER TEST	10
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	11
7 T	EST REQUIREMENTS	14
7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION	
8 T	EST RESULTS	
8.1 8.2 8.3 8.4 8.5 8.6 8.7	DUTY CYCLE MAXIMUM CONDUCTED OUTPUT POWER -6DB BANDWIDTH Occupied Channel Bandwidth Maximum Power Spectral Density Level Band Edge Conducted RF Spurious Emission	45 46 53 60 67

1 TEST RESULT CERTIFICATION

NTEK 北测

Applicant's name:	ShenZhen FreedConn(FDC) Electronics Co., Ltd		
Address:	East Area 4th floor, E building,Hua Chuang Da industry park, No.176 HangCheng Road, Xixiang, Baoan, Shenzhen, China		
Manufacturer's Name	ShenZhen FreedConn(FDC) Electronics Co., Ltd		
Address:	East Area 4th floor, E building,Hua Chuang Da industry park, No.176 HangCheng Road, Xixiang, Baoan, Shenzhen, China		
Product description			
Product name:	Motorcycle Bluetooth Headset		
Model and/or type reference:	R3		
Family Model	R5, R3 PRO		
Sample number	S230112005007		

ACCREDITED

Certificate #4298.01

ac-ME

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURETEST RESULTFCC 47 CFR Part 2, Subpart JFCC 47 CFR Part 15, Subpart CANSI C63.10-2013CompliedKDB 558074 D01 15.247 Meas Guidance v05r02Complexe

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	Jan 14, 2023 ~ Feb 15, 2023
Testing Engineer	:	12 Men Lin
		(Allen Liu)
Authorized Signatory	:	Alex
		(Alex Li)

FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Rema						
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)	Maximum Output Power	PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d)	Spurious RF Conducted Emission	PASS				
15.203	Antenna Requirement	PASS				

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

2. All test items were verified and recorded according to the standards and without any deviation during the test.

 This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District
	Shenzhen, Guangdong, China

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	All emissions, radiated(9KHz~30MHz)	±6dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification						
Equipment Motorcycle Bluetooth Headset						
Trade Mark N/A						
FCC ID 2ACB3-R3						
Model No.	R3					
Family Model	R5, R3 PRO					
Model Difference	All models are the same circuit and RF module, except the model name.					
Operating Frequency 2412-2462MHz for 802.11b/g/11n(HT20); 2422-2452MHz for 802.11n(HT40);						
Modulation DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;						
Number of Channels11 channels for 802.11b/g/11n(HT20); 7 channels for 802.11n(HT40);						
Antenna Type FPC Antenna						
Antenna Gain	2dBi					
Adapter	N/A					
Battery	DC 3.7V, 2000mAh					
Power supply	DC 3.7V from battery or DC 5V from USB Port.					
Hardware version: DK-QCC3024-VFBGA90-A-0						
Firmware version:	DK-TRBI200-CE684-1					
Software version:	R3 V2.0					

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History					
Report No.	Version	Description	Issued Date		
S23011200506003	Rev.01	Initial issue of report	Feb 16, 2023		

5 DESCRIPTION OF TEST MODES

NTEK 北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

ACCREDITED

Certificate #4298.01

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

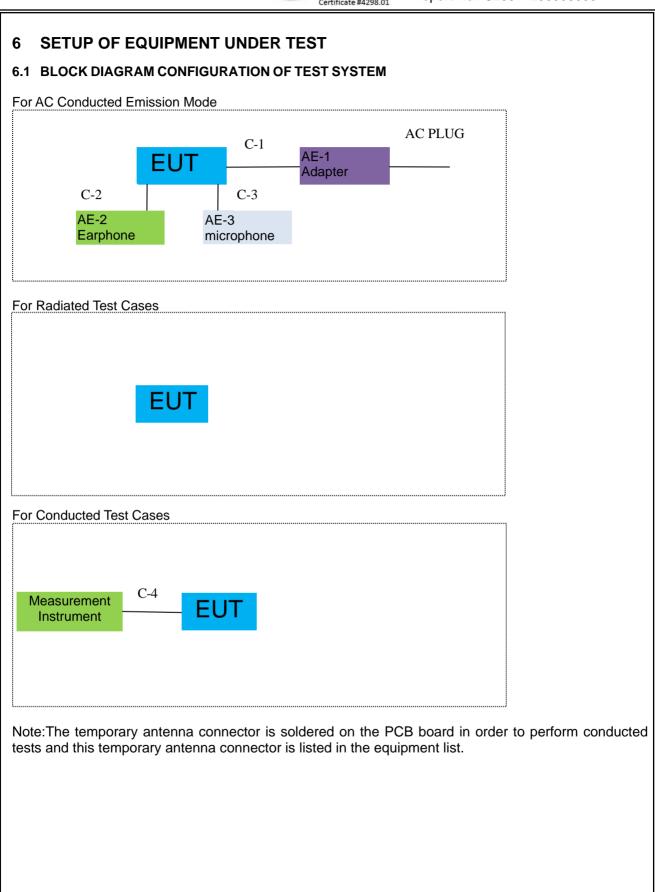
The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

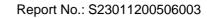
Frequency and Channel list for 802.11b/g/n (HT20/HT40):

Channel	Frequency(MHz)
1	2412
2	2417
5	2432
6	2437
10	2457
11	2462

Note: fc=2412MHz+(k-1)×5MHz k=1 to 11

EUT built-in battery-powered, the battery is fully-charged.





Test Items	Mode	Data Rate	Channel	Ant
AC Power Line Conducted Emissions	Normal Link	-	-	-
	11b/CCK	1 Mbps	1/6/11	1
Maximum Conducted Output	11g/BPSK	6 Mbps	1/6/11	1
Power	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
	11b/CCK	1 Mbps	1/6/11	1
Power Spectral Density	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
	11b/CCK	1 Mbps	1/6/11	1
6dB Spectrum Bandwidth	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
Radiated Emissions Below 1GHz	Normal Link	-	-	-
	11b/CCK	1 Mbps	1/6/11	1
Radiated Emissions Above		-		
1GHz	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
				1
Rand Edge Emissions	11b/CCK	1 Mbps	1/6/11	1
Band Edge Emissions	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1

NTEK 北测[®]

6.2 SUPPORT EQUIPMENT

NTEK北测

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ACCREDITED

Certificate #4298.01

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals
AE-3	microphone	N/A	N/A	Peripherals

AC-MR

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	NO	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	Audio Cable	NO	NO	1.2m
C-4	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测[®]

Report No.: S23011200506003

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

adiana		oot oquipmont					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2022.04.06	2023.04.05	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.04.06	2023.04.05	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.04.06	2023.04.05	1 year
4	Test Receiver	R&S	ESPI7	101318	2022.04.06	2023.04.05	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2022.03.30	2023.03.29	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2022.03.31	2023.03.30	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.08	2023.11.07	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.08	2023.11.07	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.11.08	2023.11.07	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2022.11.08	2023.11.07	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Cc	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2022.04.06	2023.04.05	1 year
2	LISN	R&S	ENV216	101313	2022.04.06	2023.04.05	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2022.04.06	2023.04.05	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEK 北测[®]

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

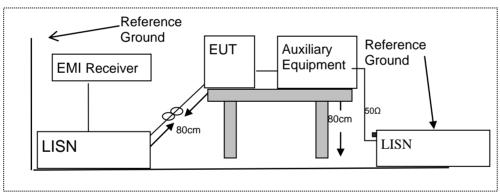
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

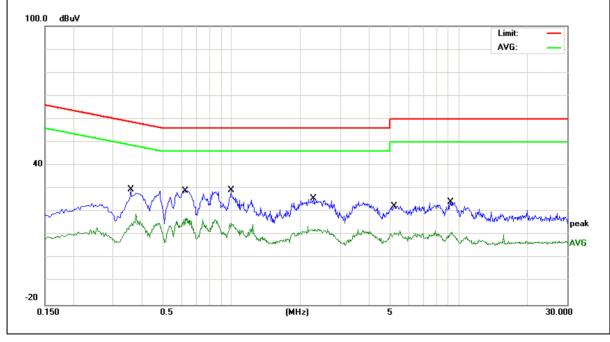
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

NTEK 北测[®]

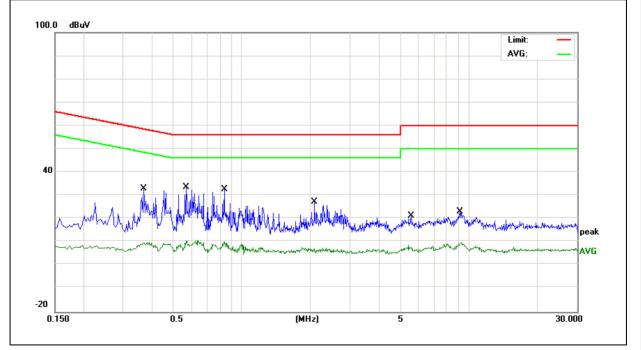

7.1.6 Test Results

EUT:	Motorcycle Bluetooth Headset	Model Name :	R3
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demeric
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3580	19.92	9.64	29.56	58.77	-29.21	QP
0.3580	4.81	9.64	14.45	48.77	-34.32	AVG
0.6260	19.33	9.67	29.00	56.00	-27.00	QP
0.6260	5.43	9.67	15.10	46.00	-30.90	AVG
0.9900	19.79	9.68	29.47	56.00	-26.53	QP
0.9900	5.60	9.68	15.28	46.00	-30.72	AVG
2.2940	15.96	9.70	25.66	56.00	-30.34	QP
2.2940	2.19	9.70	11.89	46.00	-34.11	AVG
5.2180	12.82	9.78	22.60	60.00	-37.40	QP
5.2180	1.16	9.78	10.94	50.00	-39.06	AVG
9.2260	14.26	9.91	24.17	60.00	-35.83	QP
9.2260	1.00	9.91	10.91	50.00	-39.09	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.


EUT:	Motorcycle Bluetooth Headset	Model Name :	R3
Temperature:	22 °C	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3700	23.34	9.66	33.00	58.50	-25.50	QP
0.3700	0.29	9.66	9.95	48.50	-38.55	AVG
0.5700	23.75	9.67	33.42	56.00	-22.58	QP
0.5700	0.77	9.67	10.44	46.00	-35.56	AVG
0.8380	22.84	9.68	32.52	56.00	-23.48	QP
0.8380	0.56	9.68	10.24	46.00	-35.76	AVG
2.0980	17.46	9.67	27.13	56.00	-28.87	QP
2.0980	-2.44	9.67	7.23	46.00	-38.77	AVG
5.5860	11.54	9.78	21.32	60.00	-38.68	QP
5.5860	-2.16	9.78	7.62	50.00	-42.38	AVG
9.1140	13.03	9.88	22.91	60.00	-37.09	QP
9.1140	-0.56	9.88	9.32	50.00	-40.68	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to FOC Fait 13.200, Restricted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

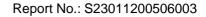
Frequency(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHZ)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

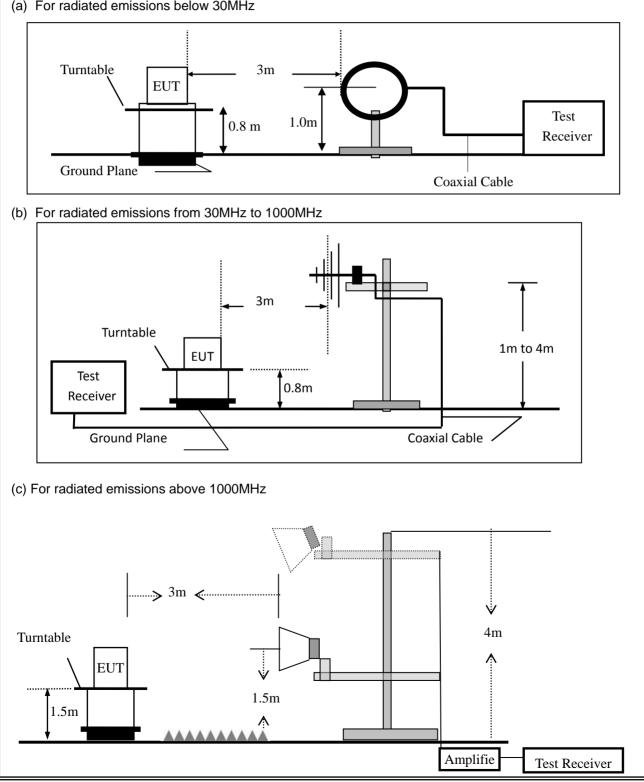
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);


Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 **Measuring Instruments**

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 **Test Configuration**

(a) For radiated emissions below 30MHz

ACCREDITED

7.2.5 Test Procedure

NTEK 北测

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

ACCREDITED

Certificate #4298 01

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

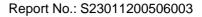
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz and frequencies above 1GHz,
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations: For peak measurement:


Set RBW=120 kHz for f < 1 GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f≥1 GHz

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

ACCREDITED

Certificate #4298.01

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Motorcycle Bluetooth Headset	Model No.:	R3
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n(HT20, HT40)	Test By:	Allen Liu

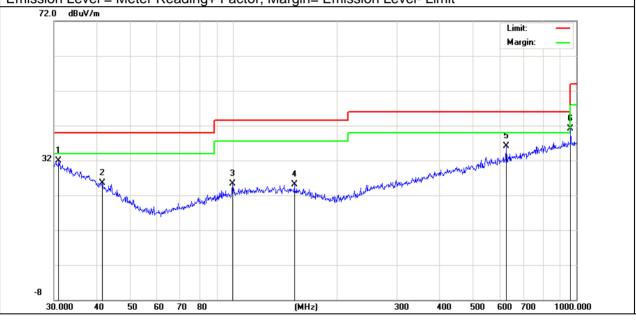
Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

■ Spurious Emission below 1GHz (30MHz to 1GHz)

All the modulation modes have been tested, and the worst result was report as below:

EUT:	Motorcycle Bluetooth Headset	Model Name :	R3
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	802.11b CH01
Test Voltage :	DC 3.7V		


ACCREDITED

Certificate #4298.01

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.9619	6.12	25.79	31.91	40.00	-8.09	QP
V	41.4215	5.97	19.59	25.56	40.00	-14.44	QP
V	99.5281	7.71	17.65	25.36	43.50	-18.14	QP
V	150.5378	6.55	18.62	25.17	43.50	-18.33	QP
V	625.0780	9.73	26.46	36.19	46.00	-9.81	QP
V	962.1623	10.14	30.97	41.11	54.00	-12.89	QP

Remark:

Emission Level = Meter Reading+ Factor, Margin= Emission Level- Limit

Polar	Freque	ency		Mete eadi		Factor		ission evel	Li	mits		Ма	rgin	Remark
(H/V)	(MH	z)	(dBu\	V)	(dB)	(dB	uV/m)	(dB	uV/m	ו)	(0	IB)	
Н	36.25	541		9.50)	22.66	3	2.16	4	0.00		-7	.84	QP
Н	96.77	749		5.50)	17.34	2	2.84	4	3.50		-20	0.66	QP
Н	166.0	680		9.52)	17.47	2	5.99	4	3.50		-16	6.51	QP
Н	361.7	139		7.29)	21.94	2	9.23	4	6.00		-16	6.77	QP
Н	530.1	014		6.33	5	25.04	3	1.37	4	6.00		-14	1.63	QP
Н	912.8	620		11.0	5	30.33	4	1.38	4	6.00		-4	.62	QP
72.0	dBu∀/m												nit: argin:	-
32		Allow and the real	Menterlander	hunn	2	ener and the state of the set	3 X dur ^A leijajar	I I History Abrida Mallyord In	A X		5	ر براید ا	and an	6 X
-8	00 40	50	60 70) 80		(MI	Hz)		300	400	500	600	700	1000.000

UT:		Motorcyc	le Blueto	oth Heads	set N	lodel No.:		R3	
emperature	e:	20 °C			R	elative Hun	nidity:	48%	
est Mode:		802.11b/	g/n(HT20	, HT40)	Т	est By:		Allen Liu	
I the modu	lation mo	des have	been teste	ed, and th	e worst i	esult was re	eport as	below:	
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
			Low Ch	annel (2412	2 MHz)(802	.11b)Above 1	G		
4824.265	63.26	5.21	35.59	44.30	59.76	74.00	-14.24	Pk	Vertical
4824.265	40.27	5.21	35.59	44.30	36.77	54.00	-17.23	AV	Vertical
7236.296	60.21	6.48	36.27	44.60	58.36	74.00	-15.64	Pk	Vertical
7236.296	43.77	6.48	36.27	44.60	41.92	54.00	-12.08	AV	Vertical
4824.414	61.25	5.21	35.55	44.30	57.71	74.00	-16.29	Pk	Horizontal
4824.414	42.86	5.21	35.55	44.30	39.32	54.00	-14.68	AV	Horizontal
7236.428	62.74	6.48	36.27	44.52	60.97	74.00	-13.03	Pk	Horizontal
7236.428	46.72	6.48	36.27	44.52	44.95	54.00	-9.05	AV	Horizontal
		1	Mid Ch	annel (2437	MHz)(802	11b)Above 1	G		1
4874.312	62.48	5.21	35.66	44.20	59.15	74.00	-14.85	Pk	Vertical
4874.312	42.75	5.21	35.66	44.20	39.42	54.00	-14.58	AV	Vertical
7311.227	60.27	7.10	36.50	44.43	59.44	74.00	-14.56	Pk	Vertical
7311.227	46.67	7.10	36.50	44.43	45.84	54.00	-8.16	AV	Vertical
4874.529	60.71	5.21	35.66	44.20	57.38	74.00	-16.62	Pk	Horizontal
4874.529	47.94	5.21	35.66	44.20	44.61	54.00	-9.39	AV	Horizontal
7311.313	59.66	7.10	36.50	44.43	58.83	74.00	-15.17	Pk	Horizontal
7311.313	41.50	7.10	36.50	44.43	40.67	54.00	-13.33	AV	Horizontal
	[1	High Ch	annel (2462	2 MHz)(802	.11b)Above ´	IG	-	1
4924.102	66.21	5.21	35.52	44.21	62.73	74.00	-11.27	Pk	Vertical
4924.102	42.23	5.21	35.52	44.21	38.75	54.00	-15.25	AV	Vertical
7386.425	60.77	7.10	36.53	44.60	59.80	74.00	-14.20	Pk	Vertical
7386.425	44.81	7.10	36.53	44.60	43.84	54.00	-10.16	AV	Vertical
4924.066	67.01	5.21	35.52	44.21	63.53	74.00	-10.47	Pk	Horizontal
4924.066	47.15	5.21	35.52	44.21	43.67	54.00	-10.33	AV	Horizontal
7386.198	61.05	7.10	36.53	44.60	60.08	74.00	-13.92	Pk	Horizontal
7386.198	44.58	7.10	36.53	44.60	43.61	54.00	-10.39	AV	Horizontal

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2) Other emissions are attenuated more than 20dB below the permissible limits, so it does not recorded in the report.

(3)"802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

■ Spurious Emission in Restricted Band 2310MHz -18000MHz All the modulation modes have been tested, and the worst result was report as below:

ACCREDITED

Certificate #4298.01

Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
				802.	11b				
2310.00	58.27	2.97	27.80	43.80	45.24	74	-28.76	Pk	Horizontal
2310.00	43.68	2.97	27.80	43.80	30.65	54	-23.35	AV	Horizontal
2310.00	58.97	2.97	27.80	43.80	45.94	74	-28.06	Pk	Vertical
2310.00	42.41	2.97	27.80	43.80	29.38	54	-24.62	AV	Vertical
2390.00	57.32	3.14	27.21	43.80	43.87	74	-30.13	Pk	Vertical
2390.00	42.34	3.14	27.21	43.80	28.89	54	-25.11	AV	Vertical
2390.00	57.00	3.14	27.21	43.80	43.55	74	-30.45	Pk	Horizontal
2390.00	42.13	3.14	27.21	43.80	28.68	54	-25.32	AV	Horizontal
2483.50	57.85	3.58	27.70	44.00	45.13	74	-28.87	Pk	Vertical
2483.50	43.33	3.58	27.70	44.00	30.61	54	-23.39	AV	Vertical
2483.50	58.99	3.58	27.70	44.00	46.27	74	-27.73	Pk	Horizontal
2483.50	41.35	3.58	27.70	44.00	28.63	54	-25.37	AV	Horizontal
		-	-	802.	11g				-
2310.00	58.40	2.97	27.80	43.80	45.37	74	-28.63	Pk	Horizontal
2310.00	44.49	2.97	27.80	43.80	31.46	54	-22.54	AV	Horizontal
2310.00	56.37	2.97	27.80	43.80	43.34	74	-30.66	Pk	Vertical
2310.00	43.02	2.97	27.80	43.80	29.99	54	-24.01	AV	Vertical
2390.00	58.02	3.14	27.21	43.80	44.57	74	-29.43	Pk	Vertical
2390.00	42.45	3.14	27.21	43.80	29.00	54	-25.00	AV	Vertical
2390.00	58.49	3.14	27.21	43.80	45.04	74	-28.96	Pk	Horizontal
2390.00	43.78	3.14	27.21	43.80	30.33	54	-23.67	AV	Horizontal
2483.50	58.56	3.58	27.70	44.00	45.84	74	-28.16	Pk	Vertical
2483.50	44.47	3.58	27.70	44.00	31.75	54	-22.25	AV	Vertical
2483.50	58.48	3.58	27.70	44.00	45.76	74	-28.24	Pk	Horizontal
2483.50	42.01	3.58	27.70	44.00	29.29	54	-24.71	AV	Horizontal
				802.1	1n20				
2310.00	57.77	2.97	27.80	43.80	44.74	74	-29.26	Pk	Horizontal
2310.00	43.93	2.97	27.80	43.80	30.90	54	-23.10	AV	Horizontal
2310.00	58.43	2.97	27.80	43.80	45.40	74	-28.60	Pk	Vertical
2310.00	41.81	2.97	27.80	43.80	28.78	54	-25.22	AV	Vertical
2390.00	58.12	3.14	27.21	43.80	44.67	74	-29.33	Pk	Vertical
2390.00	41.69	3.14	27.21	43.80	28.24	54	-25.76	AV	Vertical
2390.00	57.03	3.14	27.21	43.80	43.58	74	-30.42	Pk	Horizontal
2390.00	42.06	3.14	27.21	43.80	28.61	54	-25.39	AV	Horizontal
2483.50	58.11	3.58	27.70	44.00	45.39	74	-28.61	Pk	Vertical
2483.50	42.21	3.58	27.70	44.00	29.49	54	-24.51	AV	Vertical
2483.50	58.42	3.58	27.70	44.00	45.70	74	-28.30	Pk	Horizontal
2483.50	41.77	3.58	27.70	44.00	29.05	54	-24.95	AV	Horizontal

				802.1	1n40				
2310.00	58.86	2.97	27.80	43.80	45.83	74	-28.17	Pk	Horizontal
2310.00	44.17	2.97	27.80	43.80	31.14	54	-22.86	AV	Horizontal
2310.00	57.03	2.97	27.80	43.80	44.00	74	-30.00	Pk	Vertical
2310.00	43.04	2.97	27.80	43.80	30.01	54	-23.99	AV	Vertical
2390.00	58.20	3.14	27.21	43.80	44.75	74	-29.25	Pk	Vertical
2390.00	42.36	3.14	27.21	43.80	28.91	54	-25.09	AV	Vertical
2390.00	58.59	3.14	27.21	43.80	45.14	74	-28.86	Pk	Horizonta
2390.00	43.97	3.14	27.21	43.80	30.52	54	-23.48	AV	Horizonta
2483.50	58.74	3.58	27.70	44.00	46.02	74	-27.98	Pk	Vertical
2483.50	44.59	3.58	27.70	44.00	31.87	54	-22.13	AV	Vertical
2483.50	58.25	3.58	27.70	44.00	45.53	74	-28.47	Pk	Horizonta
2483.50	42.46	3.58	27.70	44.00	29.74	54	-24.26	AV	Horizonta

NTEK北测 ACCREDITED Certificate #4298.01

Spurious Emission in Restricted Bands 3260MHz- 18000MHz

All the modulation modes have been tested, the worst result was report as below:

ac-MR

Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	60.98	4.04	29.57	44.70	49.89	74	-24.11	Pk	Vertical
3260	56.42	4.04	29.57	44.70	45.33	54	-8.67	AV	Vertical
3260	62.10	4.04	29.57	44.70	51.01	74	-22.99	Pk	Horizontal
3260	56.46	4.04	29.57	44.70	45.37	54	-8.63	AV	Horizontal
3332	64.72	4.26	29.87	44.40	54.45	74	-19.55	Pk	Vertical
3332	54.24	4.26	29.87	44.40	43.97	54	-10.03	AV	Vertical
3332	63.02	4.26	29.87	44.40	52.75	74	-21.25	Pk	Horizontal
3332	53.02	4.26	29.87	44.40	42.75	54	-11.25	AV	Horizontal
17797	43.40	10.99	43.95	43.50	54.84	74	-19.16	Pk	Vertical
17797	33.04	10.99	43.95	43.50	44.48	54	-9.52	AV	Vertical
17788	43.91	11.81	43.69	44.60	54.81	74	-19.19	Pk	Horizontal
17788	31.50	11.81	43.69	44.60	42.40	54	-11.60	AV	Horizontal

"802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

Other emissions are attenuated more than 20dB below the permissible limits, so it does not recorded in the report.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 100KHz VBW \ge 3*RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Motorcycle Bluetooth Headset	Model No.:	R3
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02 Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

a) A diode detector and an oscilloscope that together have a sufficiently short response time to permit accurate measurements of the ON and OFF times of the transmitted signal.

b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

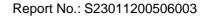
1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.

3) Set VBW \geq RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if T \leq 16.7 us.)

Measure T_{total} and T_{on}


Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Motorcycle Bluetooth Headset	Model No.:	R3
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

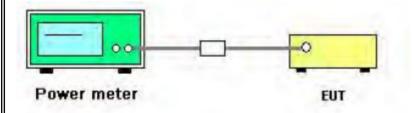
Test data reference attachment.

7.5 MAXIMUM OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.2.3.

7.5.2 Conformance Limit


The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The following table is the setting of the power meter.

Power meter parameter	Setting
Detector	РК

7.5.4 Test Setup

7.5.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.9.1.3 of ANSI C63.10

7.5.6 EUT operation during Test

The EUT was programmed to be in continuously transmitting mode.

7.5.7 Test Results

EUT:	Motorcycle Bluetooth Headset	Model No.:	R3
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

d) Set the VBW \geq 3 *RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Motorcycle Bluetooth Headset	Model No.:	R3
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

NTEK 北测

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Motorcycle Bluetooth Headset	Model No.:	R3
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached FPC Antenna (Gain: 2dBi). It comply with the standard requirement.

8 TEST RESULTS

8.1 DUTY CYCLE

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)
NVNT	b	2412	Ant1	100
NVNT	b	2437	Ant1	100
NVNT	b	2462	Ant1	100
NVNT	g	2412	Ant1	100
NVNT	g	2437	Ant1	100
NVNT	g	2462	Ant1	100
NVNT	n20	2412	Ant1	100
NVNT	n20	2437	Ant1	100
NVNT	n20	2462	Ant1	100
NVNT	n40	2422	Ant1	100
NVNT	n40	2437	Ant1	100
NVNT	n40	2452	Ant1	100

			apns	h	
	Duty Cy		o 2412MHz A	ANTI	Ē
Spectrum Ref Level 30.00 di	m Officiat 7.00 do	🖷 RBW 10 MHz			
		• • VBW 10 MHz			
SGL 1Pk Clrw					
			M1[1]		17.80 dBm
20 dBm				+ +	18,1, 4200 ms ▼
10 dBm					
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm		_			
-60 dBm				<u> </u>	
CF 2.412 GHz Aarker		10001	pts		20.0 ms/
Type Ref Trc	X-value	Y-value	Function	Function	Result
					Result
	181.42 ms	17.80 dBm	Re	ady (11111	
M1 1 Spectrum	181.42 ms Duty Cy	17.80 dBm		ady (11111	
M1 1 Spectrum Ref Level 30.00 di Att 40	181.42 ms Duty Cy	17.80 dBm	Re	ady (11111	() ()(()
M1 1 Spectrum Ref Level 30.00 df Att 40 SGL	181.42 ms Duty Cy 3m Offset 7.23 dB	17.80 dBm	Re	ady (11111	() ()(()
M1 1 Spectrum Ref Level 30.00 df Att 40 SGL 1Pk Clrw	181.42 ms Duty Cy 3m Offset 7.23 dB	17.80 dBm	Re	ady (11111	() ()(()
M1 1 Spectrum Ref Level 30.00 di Att 40 SGL 1Pk Clrw 20 dBm	181.42 ms Duty Cy 3m Offset 7.23 dB dB • SWT 200 ms	17.80 dBm	o 2437MHz A	ady (11111	18.08 dBm
M1 1 Spectrum Ref Level 30.00 df Att 40 SGL J1Pk Clrw 20 dBm 10 dBm	181.42 ms Duty Cy 3m Offset 7.23 dB dB • SWT 200 ms	17.80 dBm	o 2437MHz A	ady (11111	18.08 dBm
M1 1 Spectrum Ref Level 30.00 d8 Att 40 SGL 10 dBm 0 dBm 0 dBm	181.42 ms Duty Cy 3m Offset 7.23 dB dB • SWT 200 ms	17.80 dBm	o 2437MHz A	ady (11111	18.08 dBm
M1 1 Spectrum Ref Level 30.00 di Att 40 SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm	181.42 ms Duty Cy 3m Offset 7.23 dB dB • SWT 200 ms	17.80 dBm	o 2437MHz A	ady (11111	18.08 dBm
M1 1 Spectrum Ref Level 30.00 df Att 40 SGL 10 dBm -10 dBm -20 dBm	181.42 ms Duty Cy 3m Offset 7.23 dB dB • SWT 200 ms	17.80 dBm	o 2437MHz A	ady (11111	18.08 dBm
M1 1 Spectrum Ref Level 30.00 di Att 40 SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	181.42 ms Duty Cy 3m Offset 7.23 dB dB • SWT 200 ms	17.80 dBm	o 2437MHz A	ady (11111	18.08 dBm
M1 1 Spectrum Ref Level 30.00 di Att 40 SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	181.42 ms Duty Cy 3m Offset 7.23 dB dB • SWT 200 ms	17.80 dBm	o 2437MHz A	ady (11111	18.08 dBm
M1 1 Spectrum Ref Level 30.00 d8 Att 40 SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm	181.42 ms Duty Cy 3m Offset 7.23 dB dB • SWT 200 ms	17.80 dBm	o 2437MHz A	ady (11111	18.08 dBm
M1 1 Spectrum Ref Level 30.00 df Att 40 SGL 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	181.42 ms Duty Cy 3m Offset 7.23 dB dB • SWT 200 ms	17.80 dBm	D 2437MHz A	ady (11111	18.08 dBm 70.1400 ms
M1 1 Spectrum Ref Level 30.00 di Att 40 SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -60 dBm	181.42 ms Duty Cy 3m Offset 7.23 dB dB • SWT 200 ms	17.80 dBm	D 2437MHz A	ady (11111	18.08 dBm
M1 1 Spectrum Ref Level 30.00 df Att 40 SGL 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	181.42 ms Duty Cy 3m Offset 7.23 dB dB • SWT 200 ms	17.80 dBm	D 2437MHz A	ady (11111	18.08 dBm 70.1400 ms

Spectrum		7 40 5					
RefLevel 30.0 Att	10 dBm Offset 40 dB 曼 SWT		• RBW 10 MHz				
SGL							
●1Pk Clrw				M1[1]		1	7.87 dBm
20 d8m							.4800 ms
10 dBm							
0 dBm							
-10 dBm							
-10 UBIII							
-20 dBm							
-30 dBm							
-40 dBm							
- to ubili							
-50 dBm			+				———————————————————————————————————————
-60 dBm		-					
CF 2.462 GHz			10001	ots		2	20.0 ms/
Marker Type Ref Tr	c X-valu	e	Y-value	Function	Fund	tion Result	
M1	1	7.48 ms	17.87 dBm	2412MH	Ready (
Spectrum	1	7.48 ms	17.87 dBm	2412MH	Ready (
Spectrum Ref Level 30.0	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	g 2412MH	Ready () 498	
Spectrum Ref Level 30.0	1 D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	9 2412MH	Ready (
Spectrum Ref Level 30.0 Att SGL	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm		Ready z Ant1		
Spectrum Ref Level 30.0 Att SGL JIPk Clrw	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	Ready (2.43 dBm
Spectrum Ref Level 30.0	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm		z Ant1		
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	z Ant1		2.43 dBm
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw 10 dBm	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	z Ant1		2.43 dBm
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw 201400000000000000000000000000000000000	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	z Ant1		2.43 dBm
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	z Ant1		2.43 dBm
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw 201400000000000000000000000000000000000	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	z Ant1		2.43 dBm
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw 10 dBm 0 dBm -10 dBm	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	z Ant1		2.43 dBm
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	z Ant1		2.43 dBm
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw 10 dBm 0 dBm -10 dBm -20 dBm	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	z Ant1		2.43 dBm
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw 20 http://distance.org/line 10 dBm -10 dBm -20 dBm -30 dBm	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	z Ant1		2.43 dBm
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	z Ant1		2.43 dBm
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw 201d0010000000000000000000000000000000	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	z Ant1		2.43 dBm
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	D D D D D D D D D D D D D D D D D D D	7.48 ms uty Cyc 7.08 dB	17.87 dBm	M1[1]	z Ant1		2.43 dBm
Spectrum Ref Level 30.0 Att SGL 1Pk Clrw 10 dBm 10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	1 D D O dBm Offset 40 dB SWT	7.48 ms	17.87 dBm	M1[1]	z Ant1		2,43 dBm 45000 ms 1975-977

Spectrum	• an				
Ref Level 30.00 (Att 40		3 dB 👄 RBW 10 M D ms 👄 VBW 10 M			
SGL 1Pk Clrw					
JIPK CIrw			M1[1]	M1	22.09 dBm
30440 complete dela magnessi	where the sector of the statility of the sector of the		il di sul con contra la contra de		80.16000 ms
10 dBm	in the second product in the second	time (g, d), and days from provided the first operation of set		ed a bener an start procession of procession of	
10 dBm					
0 dBm					
-10 dBm					
-20 dBm					
20 40					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
CF 2.437 GHz	· · ·	1000)1 pts	1	10.0 ms/
1arker Type Ref Trc	X-value	Y-value	Function	Functio	n Result
M1 1	80.16	ms 22.09 d	_{вт}	eady Ant1	
M1 1 Spectrum Ref Level 30.00	Bm Offset 7.1	ms 22.09 d	Г <u>g 2462MHz</u> _{Нz}	Ant1	₩
M1 1 Spectrum Ref Level 30.00 Att 40 SGL	Bm Offset 7.1	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г <u>g 2462MHz</u> _{Нz}	Ant1	₩
M1 1 Spectrum Ref Level 30.00 Att 40 SGL 1Pk Clrw	Bm Offset 7.1	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г <u>g 2462MHz</u> _{Нz}	Ant1	21.31 dBm
M1 1 Spectrum Ref Level 30.00 0 Att 40 SGL 1Pk Clrw M1	Bm Offset 7.1	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г g 2462MHz ^{Hz}	Ant1	
M1 1 Spectrum Ref Level 30.00 (Att 40 SGL 1Pk Clrw M1 20 db01 rizhed are	Bm Offset 7.1	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г g 2462MHz ^{Hz}	Ant1	21.31 dBm
M1 1 Spectrum Ref Level 30.00 (Att 40 SGL 1Pk Clrw M1 20 dRM: other, 1 are 10 dBm	Bm Offset 7.1	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г g 2462MHz ^{Hz}	Ant1	21.31 dBm
M1 1 Spectrum Ref Level 30.00 (Att 40 SGL 1Pk Clrw M1 20 dBr0, cither 1 arc 10 dBm	Bm Offset 7.1	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г g 2462MHz ^{Hz}	Ant1	21.31 dBm
M1 1 Spectrum 1 Ref Level 30.00 (c) 40 Att 40 SGL 10 IPk Clrw 10 dBm 0 dBm 0	Bm Offset 7.1	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г g 2462MHz ^{Hz}	Ant1	21.31 dBm
M1 1 Spectrum Ref Level 30.00 (Att 40 SGL 1Pk Cirw M1 20 dBrd. civilizion are 10 dBm	Bm Offset 7.1	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г g 2462MHz ^{Hz}	Ant1	21.31 dBm
M1 1 Spectrum Ref Level 30.00 0 Att 40 SGL 1Pk Clrw M1 20 dBm 0 dBm -10 dBm	Bm Offset 7.1	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г g 2462MHz ^{Hz}	Ant1	21.31 dBm
M1 1 Spectrum Ref Level 30.00 Att 40 SGL PPk Clrw M1 R0 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Bm Offset 7.1	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г g 2462MHz ^{Hz}	Ant1	21.31 dBm
M1 1 Spectrum Ref Level 30.00 0 Att 40 SGL IPk Clrw M1 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Bm Offset 7.1	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г g 2462MHz ^{Hz}	Ant1	21.31 dBm
M1 1 Spectrum Ref Level 30.00 Att 40 SGL 1Pk Clrw M1 20.dBth-oidheid m 10 dBm -10 dBm -20 dBm	Bm Offset 7.11	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г g 2462MHz ^{Hz}	Ant1	21.31 dBm
M1 1 Spectrum Ref Level 30.00 Att 40 SGL IPk Clrw M1 R0.dB01-rotational are 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Bm Offset 7.11	ms 22.09 d Cycle NVN 8 dB • RBW 10 M	Г g 2462MHz ^{Hz}	Ant1	21.31 dBm
M1 1 Spectrum Ref Level 30.00 At 40 SGL ID dBm ID d	Bm Offset 7.11	ms 22.09 d	F g 2462MHz Hz Hz Hz	Ant1	21.31 dBm 6.11000 ms m catterio dallo confidence in catterio dallo confide
M1 1 Spectrum Ref Level 30.00 6 Att 40 SGL 1Pk Clrw M1 20 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -60 dBm -60 dBm	Bm Offset 7.11	ms 22.09 d	Г g 2462MHz ^{Hz}	Ant1	21.31 dBm
M1 1 Spectrum Ref Level 30.00 (Att 40 SGL 1Pk Clrw M1 20.dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Bm Offset 7.11	ms 22.09 d	Function		21.31 dBm 6.11000 ms m catterio dallo confidence in catterio dallo confide

Spectrum									
Ref Level Att		Offset SWT		RBW 10 MH VBW 10 MH					
SGL									
				M	M1[21.06 dBm
20.dBm	and the part of th	a kon ha katala ata	a successive designed and the	A London Martin Balance	angelour and index	التشاور التعريب	وأعلى ومعالية الأقرار ومعري الأو	4	9.18000 ms
10 dBm	u, a da tele terteta da de	(nin dies) bezi ⁿ le anfan din sin and			- Telefore and a second second	a fergande als skiller	et, inime jinité et a distri-	den dig Barris di Arris - Arris - A	
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
CF 2.412 GH Marker	Iz			1000	1 pts				10.0 ms/
M1	1	49	0.18 ms	21.06 dB	201				
MI						nee MHz A	Ant1		0
					n20 2437	Rear MHz A	Ant1		(E)
Spectrum Ref Level	30.00 dBm	Dut	y Cycle 7.23 dB •	RBW 10 MH	n20 2437	MHz A	Ant1		
Spectrum	30.00 dBm	Dut	y Cycle 7.23 dB •	e NVNT i	n20 2437	'MHz A	Ant1		, , , , , , , , , , , , , , , , , , ,
Spectrum Ref Level Att	30.00 dBm	Dut	y Cycle 7.23 dB •	RBW 10 MH	n20 2437		Ant1		
Spectrum Ref Level Att SGL 1Pk Clrw	30.00 dBm 40 dB	Dut offset • SWT	7.23 dB • 100 ms •	RBW 10 MH VBW 10 MH	n20 2437	[1]		4	21.06 dBm 2.64000 ms
Spectrum Ref Level Att SGL 1Pk Clrw 20 dBm	30.00 dBm 40 dB	Dut offset • SWT	7.23 dB • 100 ms •	RBW 10 MH VBW 10 MH	n20 2437	[1]		4 4	21.06 dBm 2.64000 ms
Spectrum Ref Level Att SGL 1Pk Clrw	30.00 dBm 40 dB	Dut offset • SWT	7.23 dB • 100 ms •	RBW 10 MH VBW 10 MH	n20 2437	[1]		4	21.06 dBm 2.64000 ms
Spectrum Ref Level Att SGL 1Pk Clrw 20 dBm	30.00 dBm 40 dB	Dut offset • SWT	7.23 dB • 100 ms •	RBW 10 MH VBW 10 MH	n20 2437	[1]		4	21.06 dBm 2.64000 ms
Spectrum Ref Level Att SGL 1Pk Clrw 20 dBm 10 dBm	30.00 dBm 40 dB	Dut offset • SWT	7.23 dB • 100 ms •	RBW 10 MH VBW 10 MH	n20 2437	[1]		4	21.06 dBm 2.64000 ms
Spectrum Ref Level Att SGL 1Pk Cirw 20 dBm 10 dBm 0 dBm	30.00 dBm 40 dB	Dut offset • SWT	7.23 dB • 100 ms •	RBW 10 MH VBW 10 MH	n20 2437	[1]			21.06 dBm 2.64000 ms
Spectrum Ref Level Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm	30.00 dBm 40 dB	Dut offset • SWT	7.23 dB • 100 ms •	RBW 10 MH VBW 10 MH	n20 2437	[1]		4	21.06 dBm 2.64000 ms
Spectrum Ref Level Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm	30.00 dBm 40 dB	Dut offset • SWT	7.23 dB • 100 ms •	RBW 10 MH VBW 10 MH	n20 2437	[1]			21.06 dBm 2.64000 ms
Spectrum Ref Level Att SGL 1Pk Cirw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	30.00 dBm 40 dB	Dut offset • SWT	7.23 dB • 100 ms •	RBW 10 MH VBW 10 MH	n20 2437	[1]			21.06 dBm 2.64000 ms
Spectrum Ref Level Att SGL 1Pk Clrw 20 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30.00 dBm 40 dB	Dut offset • SWT	7.23 dB • 100 ms •	RBW 10 MH VBW 10 MH	n20 2437	[1]			21.06 dBm 2.64000 ms
Spectrum Ref Level Att SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	30.00 dBm 40 dB	Dut offset • SWT	7.23 dB • 100 ms •	NVNT I RBW 10 MH VBW 10 MH M1 M1	12 12 12 12 12	[1]			21.06 dBm 2.64000 ms
Spectrum Ref Level Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm CF 2.437 GH Marker	30.00 dBm 40 dB	Dut	y Cycle	NVNT I RBW 10 MH VBW 10 MH M1 M1	12 1 pts				21.06 dBm 2.64000 ms
Spectrum Ref Level Att SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm CF 2.437 GH	30.00 dBm 40 dB	Dut	y Cycle	NVNT I RBW 10 MH VBW 10 MH M1 M1	1 pts			4	21.06 dBm 2.64000 ms

Ref Level 3	0.00 dBm	Offset	7.18 dB 🧉	• RBW 10 MH	Hz				
SGL	40 dB	SWT	100 ms 🧉	• VBW 10 MH	Ηz				
●1Pk Clrw									
	М1				M1	[1]		1	20.53 dBm 9.14000 ms
20 dBm top ad	deployed	htepatrolithecoles	and A could open	na (Unite Internet)	والموالا ومعاده ومدارياته	All and a standard	Supplied Supplied		
10 dBm	New York Street Street	a barran and an Jackson.	a prime in the set of the first part		and the descention of	an and a set of a second			an a
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
CF 2.462 GHz Marker	!			1000	1 pts				10.0 ms/
Type Ref M1	Trc	X-value 19	9.14 ms	Y-value 20.53 dB	Functi			ction Resul	
M1		19	0.14 ms		3m	Read	× O		a ////
M1 Spectrum Ref Level 3 Att SGL	1	19 Dut	7.12 dB	20.53 dE	n40 2422	Read	× O		
Spectrum Ref Level 3 Att SGL	1	19 Dut	7.12 dB	20.53 de e NVNT 1 RBW 10 MH	n40 2422	Poor 2MHz A	× O		a ////
M1 Spectrum Ref Level 3 Att SGL 1Pk Clrw	1	Dut Offset • swT	7.12 dB 100 ms	20.53 de e NVNT I RBW 10 MH VBW 10 MH	12 142 142 142 142	2MHz <i>A</i>	Ant1		19.33 dBm 4.68000 ms
M1 Spectrum Ref Level 3 Att SGL 1Pk Clrw 20 dsm 20 dsm	1	Dut Offset • swT	7.12 dB 100 ms	20.53 de e NVNT 1 RBW 10 MH	12 142 142 142 142	2MHz <i>A</i>	Ant1		((((((((((((((
M1 Spectrum Ref Level 3 Att SGL 1Pk Clrw 20 dsm 20 dsm	1	Dut Offset • swT	7.12 dB 100 ms	20.53 de e NVNT I RBW 10 MH VBW 10 MH	12 142 142 142 142	2MHz <i>A</i>	Ant1		19.33 dBm 4.68000 ms
M1 Spectrum Ref Level 3 Att SGL 1Pk Clrw 20 dgm 20 dgm 10 dBm	1	Dut Offset • swT	7.12 dB 100 ms	20.53 de e NVNT I RBW 10 MH VBW 10 MH	12 142 142 142 142	2MHz <i>A</i>	Ant1		19.33 dBm 4.68000 ms
M1 Spectrum Ref Level 3 Att SGL 1Pk Clrw 20 dgm 20 dgm 10 dBm	1	Dut Offset • swT	7.12 dB 100 ms	20.53 de e NVNT I RBW 10 MH VBW 10 MH	12 142 142 142 142	2MHz <i>A</i>	Ant1		19.33 dBm 4.68000 ms
M1 Spectrum Ref Level 3 Att SGL 1Pk Clrw M1 20 dm 10 dBm 0 dBm	1	Dut Offset • swT	7.12 dB 100 ms	20.53 de e NVNT I RBW 10 MH VBW 10 MH	12 142 142 142 142	2MHz <i>A</i>	Ant1		19.33 dBm 4.68000 ms
M1 Spectrum Ref Level 3 Att SGL 1Pk Clrw M1 20 dem 10 dBm -10 dBm	1	Dut Offset • swT	7.12 dB 100 ms	20.53 de e NVNT I RBW 10 MH VBW 10 MH	12 142 142 142 142	2MHz <i>A</i>	Ant1		19.33 dBm 4.68000 ms
M1 Spectrum Ref Level 3 Att SGL 1Pk Clrw 20 dBm -10 dBm -20 dBm	1	Dut Offset • swT	7.12 dB 100 ms	20.53 de e NVNT I RBW 10 MH VBW 10 MH	12 142 142 142 142	2MHz <i>A</i>	Ant1		19.33 dBm 4.68000 ms
M1 Spectrum Ref Level 3 Att SGL TPk Clrw M1 Codem doffer d	1	Dut Offset • swT	7.12 dB 100 ms	20.53 de e NVNT I RBW 10 MH VBW 10 MH	12 142 142 142 142	2MHz <i>A</i>	Ant1		19.33 dBm 4.68000 ms
M1 Spectrum Ref Level 3 Att SGL IPk Clrw M1 O dBm O dBm -10 dBm -20 dBm -30 dBm -40 dBm	1	Dut Offset • swT	7.12 dB 100 ms	20.53 de e NVNT I RBW 10 MH VBW 10 MH	12 142 142 142 142	2MHz <i>A</i>	Ant1		19.33 dBm 4.68000 ms
M1 Spectrum Ref Level 3 Att SGL 1Pk Clrw M1 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	1	Dut Offset • swT	7.12 dB 100 ms	20.53 de	12 142 142 142 142	2MHz <i>A</i>	Ant1		19.33 dBm 4.68000 ms
M1 Spectrum Ref Level 3 Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	1 0.00 dBm 40 dB	Dut Offset • swT	7.12 dB 7.12 dB 100 ms	20.53 de	am	Elevel 2MHz / [1]	Ant1		19.33 dBm ↓.68000 ms dbm.es. deten dbm.es. deten 10.0 ms/

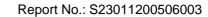
Spectru	m								
	el 30.00 dB	m Offset B = SWT		RBW 10 MH VBW 10 MH					
SGL	4U C	18 🛑 SW1	100 ms 🖷	VBW 10 MH	12				
●1Pk Clrw									
					M1	[1]		4	17.49 dBm 6.84000 ms
20 dBm			and the second second	M1					0.04000 ms
10 dBm									
20 0.0.00									
0 dBm									
-10 dBm—									
00 40									
-20 dBm—									
-30 dBm—		+							┼──┨│
-40 dBm—									
-50 dBm—									
-60 dBm—									├───│ │
CF 2.437	GHz			1000	1 pts				10.0 ms/
Marker Type R	ef Trc	X-value	, 1	Y-value	Funct	ion	Eup	ction Resul	t I
			.84 ms	17.49 dB					·
M1						Read	v (1)) 4	0
M1				e NVNT r		2MHz A	Ant1		<u>س</u>
M1 Spectru		Dut	y Cycle		n40 245	Read 2MHz A	Ant1		
M1 Spectru Ref Leve Att	m	Dut	y Cycle	e NVNT r	140 245	Rood 2MHz A	Ant1		, , , , , , , , , , , , , , , , , , ,
M1 Spectrum Ref Leve Att SGL	m	Dut m Offset	y Cycle	e NVNT r	140 245	2MHz A	Ant1		
M1 Spectru Ref Leve Att	m	Dut m Offset	y Cycle	e NVNT r	140 245	2MHz <i>A</i>	Ant1		17.53 dBm
M1 Spectrum Ref Leve Att SGL	m	Dut m Offset	y Cycle	e NVNT r	140 245		Ant1	2:	
M1 Spectrum Ref Leve Att SGL 1Pk Cirw 20 dBm 20 dBm	m	Dut m Offset B • SWT	y Cycle	e NVNT r	140 245		Ant1	2:	17.53 dBm
M1 Spectrum Ref Leve Att SGL • 1Pk Clrw	m	Dut m Offset B • SWT	y Cycle	ENVNT r	140 245		Ant1	2: 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	17.53 dBm
M1 Spectrum Ref Leve Att SGL 1Pk Cirw 20 dBm 20 dBm	m	Dut m Offset B • SWT	y Cycle	ENVNT r	140 245		Ant1	2:	17.53 dBm
M1 Spectrum Ref Levo Att SGL 1Pk Clrw 20 dBm- 10 dBm- 0 dBm-	m	Dut m Offset B • SWT	y Cycle	ENVNT r	140 245		Ant1	2:	17.53 dBm
M1 Spectrum Ref Leve Att SGL 1Pk Cirw 20 dBm 10 dBm 0 dBm -10 dBm	m	Dut m Offset B • SWT	y Cycle	ENVNT r	140 245		Ant1	2:	17.53 dBm
M1 Spectrum Ref Leve Att SGL 1Pk Clrw 20 dBm 10 dBm 0 dBm	m	Dut m Offset B • SWT	y Cycle	ENVNT r	40 245		Ant1	2: 	17.53 dBm
M1 Spectrum Ref Leve Att SGL 1Pk Cirw 20 dBm 10 dBm 0 dBm -10 dBm	m	Dut m Offset B • SWT	y Cycle	ENVNT r	40 245		Ant1		17.53 dBm
M1 Spectrui Ref Levi Att SGL 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	m	Dut m Offset B • SWT	y Cycle	ENVNT r	40 245		Ant1		17.53 dBm
M1 Spectrui Ref Levi Att SGL 1Pk Clrw 20 dBm -10 dBm -20 dBm	m	Dut m Offset B • SWT	y Cycle	ENVNT r	40 245		Ant1	2:	17.53 dBm
M1 Spectrui Ref Levi Att SGL 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	m	Dut m Offset B • SWT	y Cycle	ENVNT r	40 245		Ant1		17.53 dBm
M1 Spectrum Ref Leve Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	m	Dut m Offset B • SWT	y Cycle	ENVNT r	40 245		Ant1		17.53 dBm
M1 Spectrum Ref Leve Att SGL 1Pk Cirw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	m	Dut m Offset B • SWT	y Cycle	ENVNT r	40 245		Ant1		17.53 dBm
M1 Spectrum Ref Leve Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	m	Dut m Offset B • SWT	y Cycle	ENVNT r	140 245				17.53 dBm
M1 Spectrum Ref Leve Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm CF 2.452 Marker	m el 30.00 dB 40 c	Dut	y Cycle 7.21 dB 100 ms	E NVNT r	1 pts	[1]			17.53 dBm 2.12000 ms
M1 Spectrum Ref Leve Att SGL 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm CF 2.452	m el 30.00 dB 40 c	Dut	y Cycle 7.21 dB 100 ms	E NVNT r RBW 10 MH VBW 10 MH	1 pts	[1]		2: The second s	17.53 dBm 2.12000 ms

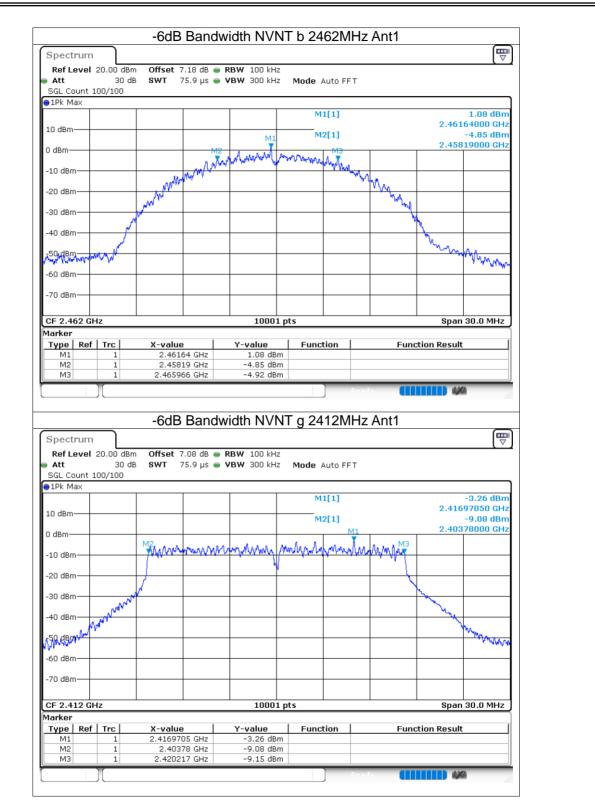
8.2 MAXIMUM CONDUCTED OUTPUT POWER

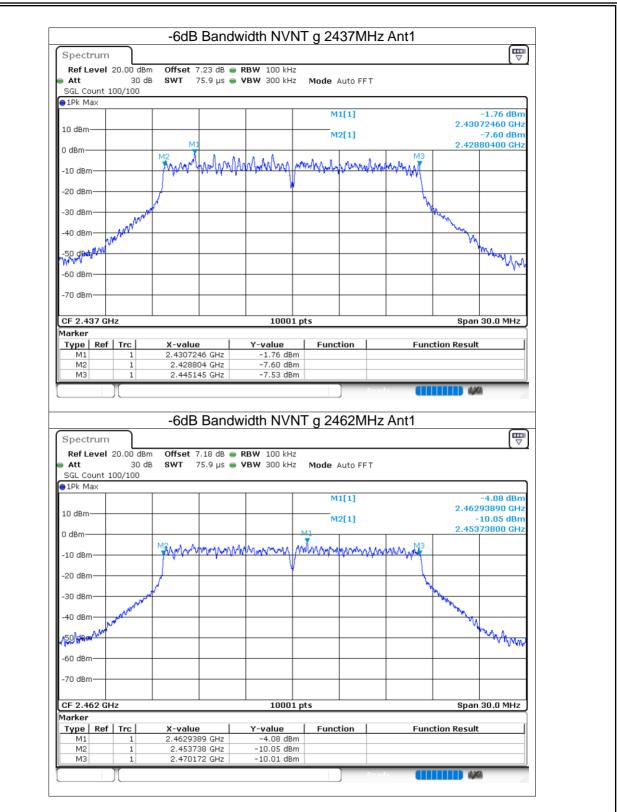
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	7.81	30	Pass
NVNT	b	2437	Ant1	8.59	30	Pass
NVNT	b	2462	Ant1	8.27	30	Pass
NVNT	g	2412	Ant1	8.75	30	Pass
NVNT	g	2437	Ant1	8.83	30	Pass
NVNT	g	2462	Ant1	8.52	30	Pass
NVNT	n20	2412	Ant1	8.71	30	Pass
NVNT	n20	2437	Ant1	8.76	30	Pass
NVNT	n20	2462	Ant1	9.08	30	Pass
NVNT	n40	2422	Ant1	9.05	30	Pass
NVNT	n40	2437	Ant1	9.06	30	Pass
NVNT	n40	2452	Ant1	8.12	30	Pass

NTEK 北测[®]

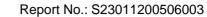
8.3 -6DB BANDWIDTH

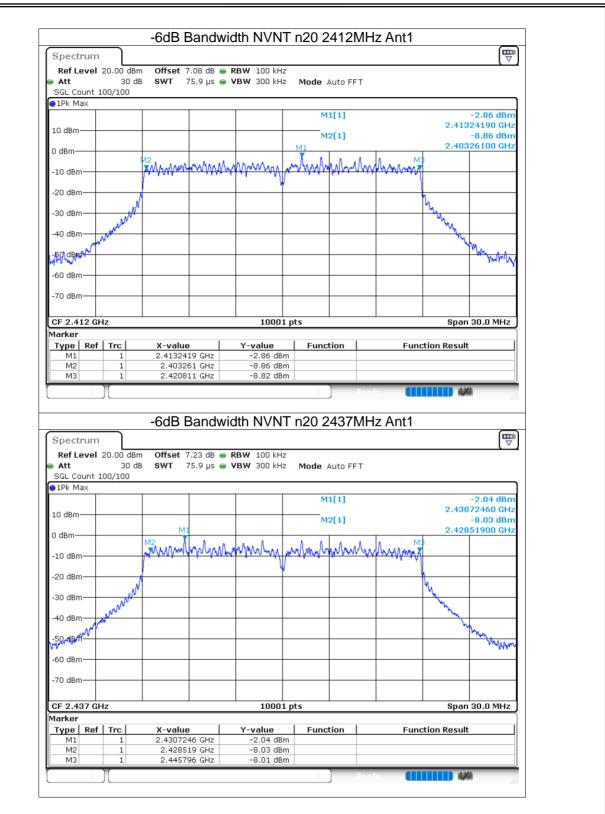

8.3 -U D		BANDWIDTH										
Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict						
		(MHz)		(MHz)	Bandwidth (MHz)							
NVNT	b	2412	Ant1	7.59	0.5	Pass						
NVNT	b	2437	Ant1	7.77	0.5	Pass						
NVNT	b	2462	Ant1	7.776	0.5	Pass						
NVNT	g	2412	Ant1	16.437	0.5	Pass						
NVNT	g	2437	Ant1	16.341	0.5	Pass						
NVNT	g	2462	Ant1	16.434	0.5	Pass						
NVNT	n20	2412	Ant1	17.55	0.5	Pass						
NVNT	n20	2437	Ant1	17.277	0.5	Pass						
NVNT	n20	2462	Ant1	17.64	0.5	Pass						
NVNT	n40	2422	Ant1	36.03	0.5	Pass						
NVNT	n40	2437	Ant1	35.994	0.5	Pass						
NVNT	n40	2452	Ant1	35.748	0.5	Pass						

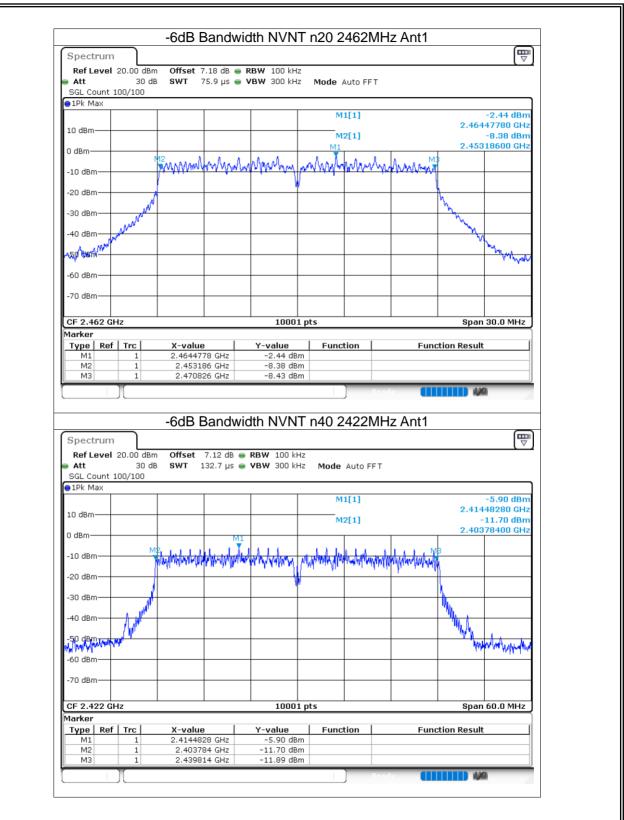




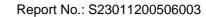
ACCREDITED

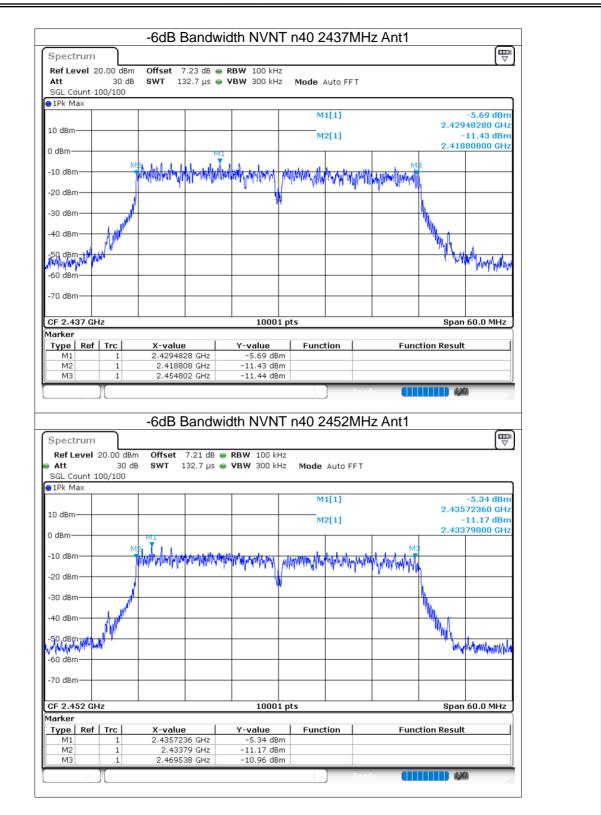

Certificate #4298.01





ACCREDITED

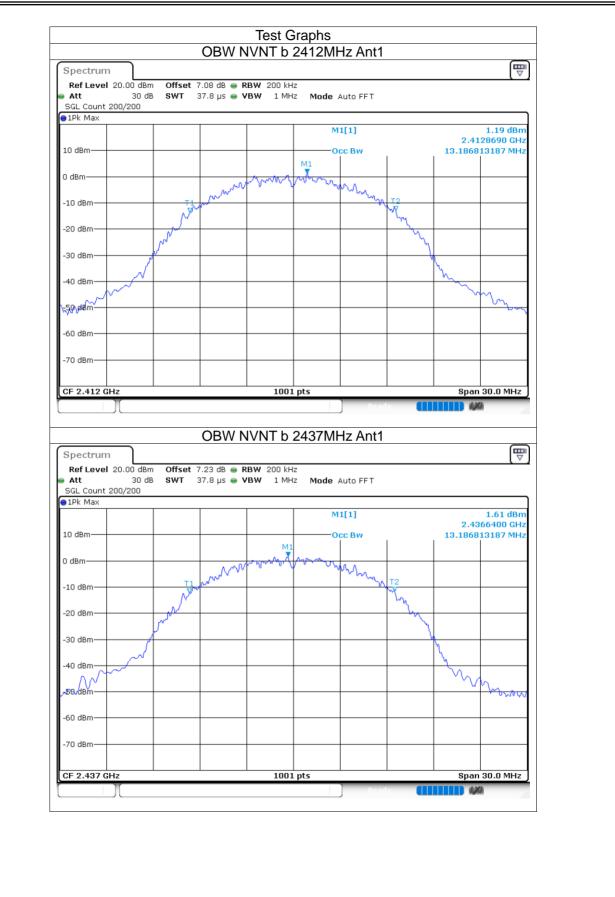

Certificate #4298.01



ACCREDITED

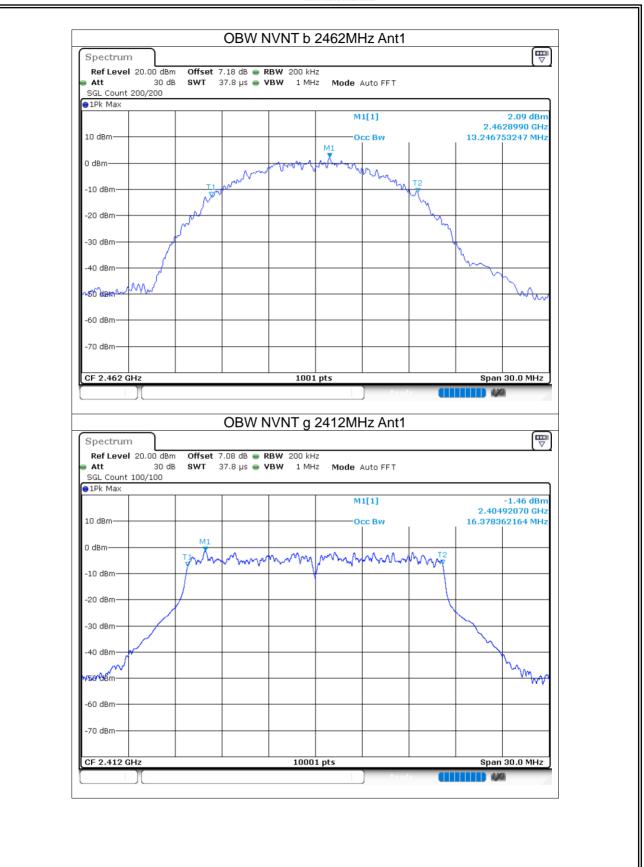
Certificate #4298.01

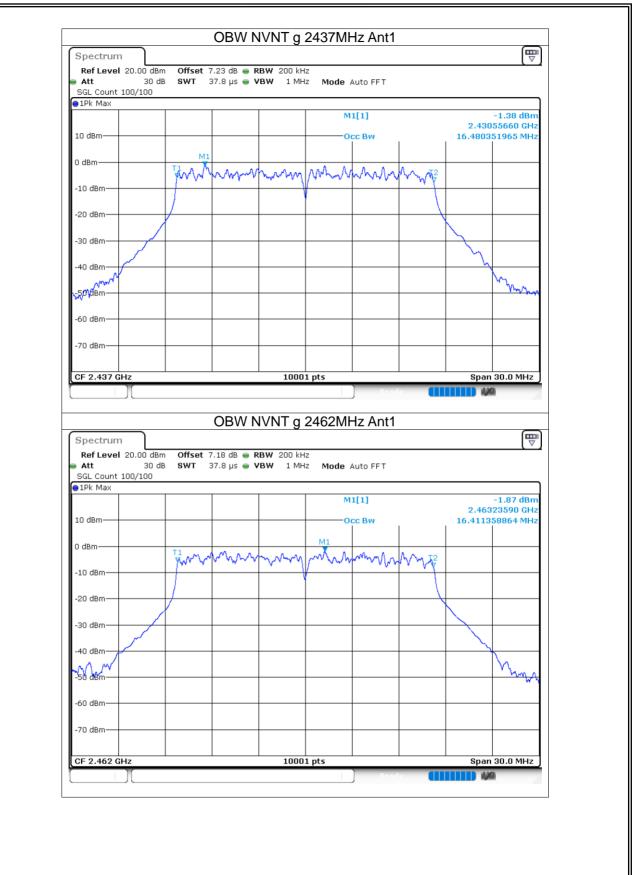
NTEK 北测[®]

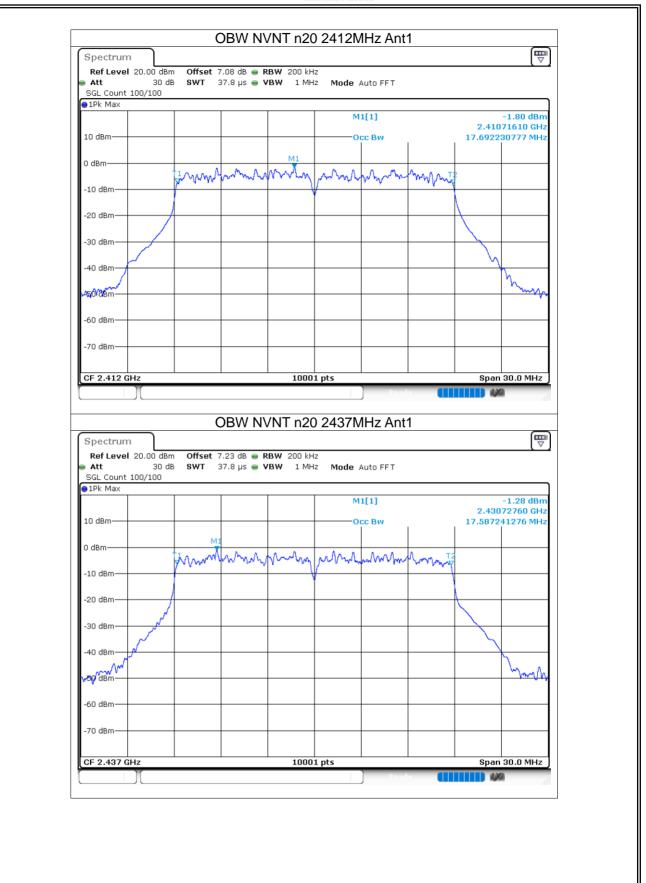


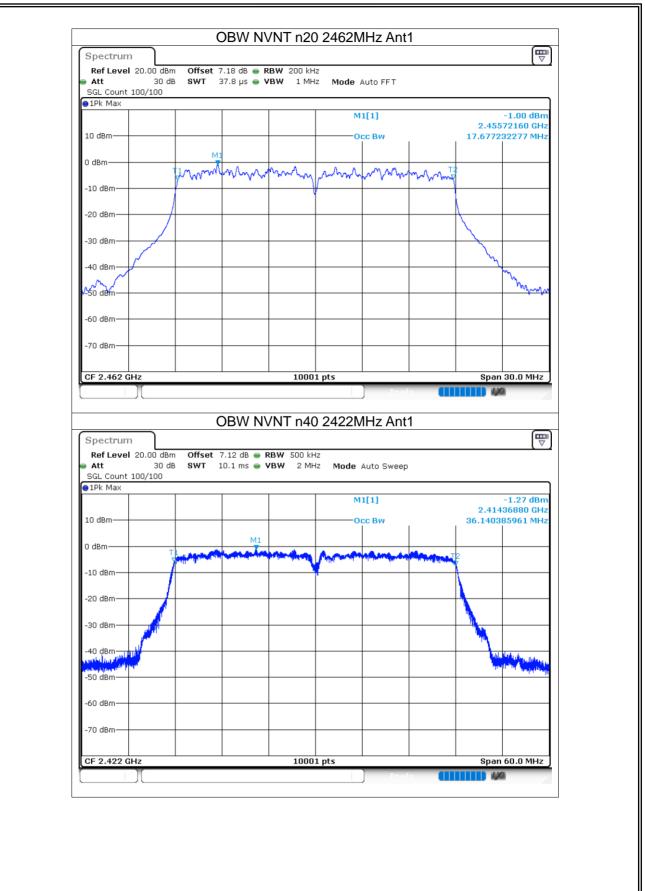
8.4 OCCUPIED CHANNEL BANDWIDTH

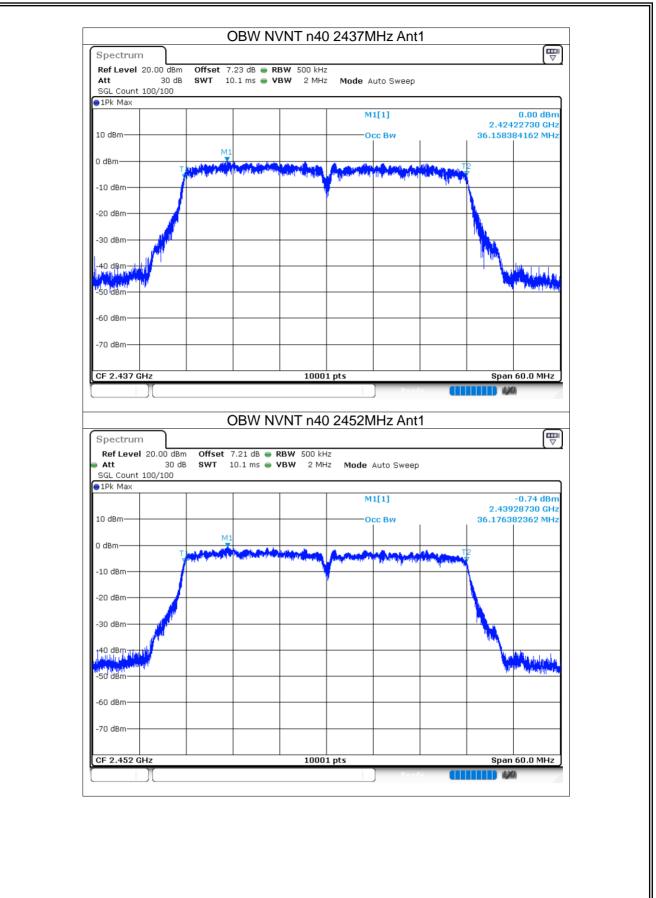
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	b	2412	Ant1	13.187
NVNT	b	2437	Ant1	13.187
NVNT	b	2462	Ant1	13.247
NVNT	g	2412	Ant1	16.378
NVNT	g	2437	Ant1	16.48
NVNT	g	2462	Ant1	16.411
NVNT	n20	2412	Ant1	17.692
NVNT	n20	2437	Ant1	17.587
NVNT	n20	2462	Ant1	17.677
NVNT	n40	2422	Ant1	36.14
NVNT	n40	2437	Ant1	36.158
NVNT	n40	2452	Ant1	36.176

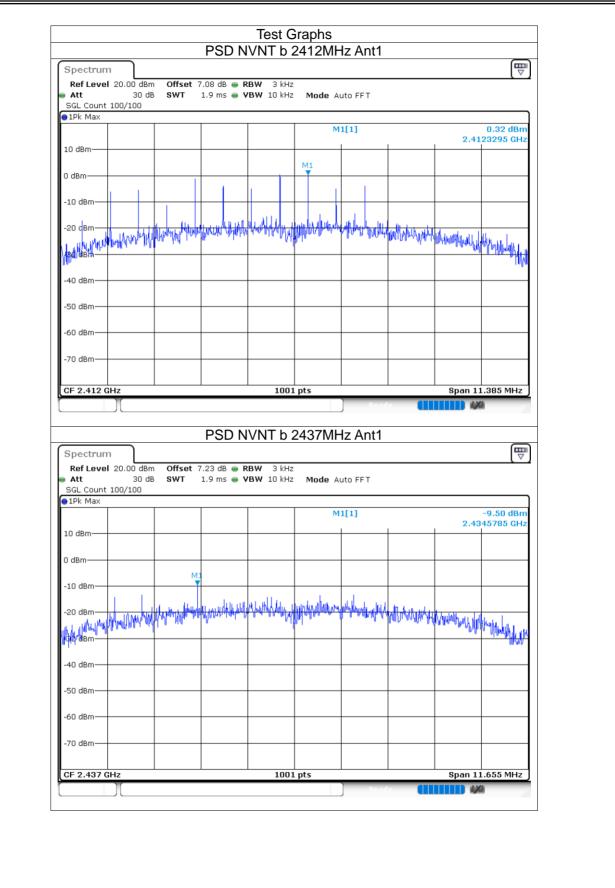












8.5 MAXIMUM POWER SPECTRAL DENSITY LEVEL

					•	
Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	0.32	8	Pass
NVNT	b	2437	Ant1	-9.5	8	Pass
NVNT	b	2462	Ant1	0.97	8	Pass
NVNT	g	2412	Ant1	-18.45	8	Pass
NVNT	g	2437	Ant1	-18.31	8	Pass
NVNT	g	2462	Ant1	-18.81	8	Pass
NVNT	n20	2412	Ant1	-18.15	8	Pass
NVNT	n20	2437	Ant1	-17.37	8	Pass
NVNT	n20	2462	Ant1	-17.4	8	Pass
NVNT	n40	2422	Ant1	-21.01	8	Pass
NVNT	n40	2437	Ant1	-20.93	8	Pass
NVNT	n40	2452	Ant1	-20.77	8	Pass

