FCC Measurement/Technical Report on ## WLAN and Bluetooth module JODY-W163-13A FCC ID: XPYJODYW164 IC: 8595A-JODYW164 Test Report Reference: MDE_UBLOX_1828_FCCc ## **Test Laboratory:** 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany #### Note: The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory. 7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company www.7layers.com ## Table of Contents | 1 | Applied Standards and Test Summary | 3 | |-----|---|----| | 1.1 | Applied Standards | 3 | | 1.2 | FCC-IC Correlation Table | 4 | | 1.3 | Measurement Summary / Signatures | 5 | | 2 | Administrative Data | 8 | | 2.1 | Testing Laboratory | 8 | | 2.2 | Project Data | 8 | | 2.3 | Applicant Data | 8 | | 2.4 | Manufacturer Data | 8 | | 3 | Test object Data | 9 | | 3.1 | General EUT Description | 9 | | 3.2 | EUT Main components | 10 | | 3.3 | Ancillary Equipment | 10 | | 3.4 | Auxiliary Equipment | 10 | | 3.5 | EUT Setups | 11 | | 3.6 | Operating Modes | 12 | | 3.7 | Product labelling | 12 | | 4 | Test Results | 13 | | 4.1 | Peak Power Output | 13 | | 4.2 | Transmitter Spurious Radiated Emissions | 15 | | 4.3 | Band Edge Compliance Radiated | 20 | | 5 | Test Equipment | 23 | | 6 | Antenna Factors, Cable Loss and Sample Calculations | 25 | | 6.1 | LISN R&S ESH3-Z5 (150 kHz - 30 MHz) | 25 | | 6.2 | Antenna R&S HFH2-Z2 (9 kHz – 30 MHz) | 26 | | 6.3 | Antenna R&S HL562 (30 MHz – 1 GHz) | 27 | | 6.4 | Antenna R&S HF907 (1 GHz – 18 GHz) | 28 | | 6.5 | Antenna EMCO 3160-09 (18 GHz - 26.5 GHz) | 29 | | 6.6 | Antenna EMCO 3160-10 (26.5 GHz – 40 GHz) | 30 | | 7 | Setup Drawings | 31 | | 8 | Measurement Uncertainties | 32 | | 9 | Photo Report | 32 | #### 1 APPLIED STANDARDS AND TEST SUMMARY #### 1.1 APPLIED STANDARDS #### **Type of Authorization** Certification for an Intentional Radiator. #### **Applicable FCC Rules** Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-15 Edition). The following subparts are applicable to the results in this test report. Part 2, Subpart J - Equipment Authorization Procedures, Certification Part 15, Subpart C – Intentional Radiators § 15.201 Equipment authorization requirement § 15.207 Conducted limits § 15.209 Radiated emission limits; general requirements § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz #### Note 1: (DTS Equipment) The tests were selected and performed with reference to the FCC Public Notice "Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247, 558074 D01 15.247 Meas Guidance v05, 2018-08-24". ANSI C63.10-2013 is applied. TEST REPORT REFERENCE: MDE_UBLOX_1828_FCCc #### **Summary Test Results:** The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures. #### 1.2 FCC-IC CORRELATION TABLE # Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC #### **DTS** equipment | Measurement | FCC reference | IC reference | |---|-------------------------------|--| | Conducted emissions on AC
Mains | § 15.207 | RSS-Gen Issue 4: 8.8 | | Occupied bandwidth | § 15.247 (a) (2) | RSS-247 Issue 2: 5.2 (a) | | Peak conducted output power | § 15.247 (b) (3), (4) | RSS-247 Issue 2: 5.4 (d) | | Transmitter spurious RF conducted emissions | § 15.247 (d) | RSS-Gen Issue 4: 6.13 /
8.9/8.10;
RSS-247 Issue 2: 5.5 | | Transmitter spurious radiated emissions | § 15.247 (d);
§ 15.209 (a) | RSS-Gen Issue 4: 6.13 /
8.9/8.10;
RSS-247 Issue 2: 5.5 | | Band edge compliance | § 15.247 (d) | RSS-247 Issue 2: 5.5 | | Power density | § 15.247 (e) | RSS-247 Issue 2: 5.2 (b) | | Antenna requirement | § 15.203 / 15.204 | RSS-Gen Issue 4: 8.3 | | Receiver spurious emissions | _ | _ | ## 1.3 MEASUREMENT SUMMARY / SIGNATURES | 47 CFR CHAPTER I FCC PART 15 Subpart C
§15.247 | § 15.207 | | | |---|---------------------|------------------------------|-----------| | Conducted Emissions at AC Mains The measurement was performed according to ANSI C6 | 3.10 | Final Ro | esult | | OP-Mode | Setup | FCC | IC | | Operating mode
- | - | N/P | N/P | | 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 | § 15.247 (a) | (2) | | | Occupied Bandwidth (6 dB) The measurement was performed according to ANSI C6 | 3.10 | Final Ro | esult | | OP-Mode Radio Technology, Operating Frequency | Setup | FCC | IC | | - | - | N/P | N/P | | 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 | IC RSS-Gen
Ch. 8 | & IC TRC; | Ch. 6.6 & | | Occupied Bandwidth (99%) The measurement was performed according to ANSI C6 | 3.10 | Final Ro | esult | | OP-Mode Radio Technology, Operating Frequency | Setup | FCC | IC | | - | - | N/P | N/P | | 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 | § 15.247 (b) | (3) | | | Peak Power Output The measurement was performed according to ANSI C6 | 3.10 | Final Re | esult | | OP-Mode Radio Technology, Operating Frequency, Measurement method | Setup | FCC | IC | | WLAN b, high, conducted | S01_AA01 | Passed | Passed | | WLAN b, low, conducted | S01_AA01 | Passed | Passed | | WLAN b, mid, conducted | S01_AA01 | Passed | Passed | | 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 | § 15.247 (d) |) | | | Spurious RF Conducted Emissions and Conducted Emiss
The measurement was performed according to ANSI C6 | | ed Bands
Final R e | esult | | OP-Mode Radio Technology, Operating Frequency, Measurement method | Setup | FCC | IC | | - | - | N/P | N/P | 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247 Transmitter Spurious Radiated Emissions The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC ${\it Radio\ Technology,\ Operating\ Frequency,\ Measurement\ range}$ WLAN b, high, 1 GHz - 26 GHz S02_AA01 Passed Passed 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247 Band Edge Compliance Conducted The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Radio Technology, Operating Frequency, Band Edge - N/P N/P 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (d) §15.247 Band Edge Compliance Radiated Radio Technology, Operating Frequency The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC Radio Technology, Operating Frequency, Band Edge WLAN b, high, high S02_AA01 Passed Passed 47 CFR CHAPTER I FCC PART 15 Subpart C § 15.247 (e) §15.247 **Power Density** The measurement was performed according to ANSI C63.10 Final Result OP-Mode Setup FCC IC - N/P N/P N/A: Not applicable N/P: Not performed According to the applicants information the tested variant JODY-W163-13A of the JODY-W1 family is identical to the already tested variant JODY-W164-03A except for the filter in the WLAN 2.4 GHz antenna path, that has however already been tested in that configuration for variant JODY-W164-07A. Due to this only spot checks for WLAN 2.4 GHz were performed for a class 2 permissive change. Reference to reports of the other variants: MDE_UBLOX_1701_FCCa (W164-03A) MDE_UBLOX_1701_FCCd (W164-07A) (responsible for accreditation scope) Dipl.-Ing. Marco Kullik (responsible for testing and report) Dipl.-Ing. Daniel Gall layers 7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0 #### 2 ADMINISTRATIVE DATA #### 2.1 TESTING LABORATORY Company Name: 7layers GmbH Address: Borsigstr. 11 40880 Ratingen Germany This facility has been fully described in a report submitted to the ISED and accepted under the registration number: Site# 3699A-1. The test facility is also accredited by the following accreditation organisation: Laboratory accreditation no: DAkkS D-PL-12140-01-00 FCC Designation Number: DE0015 FCC Test Firm Registration: 929146 Responsible for accreditation scope: Dipl.-Ing. Marco Kullik Report Template Version: 2017-07-14 2.2 PROJECT DATA Responsible for testing and report: Dipl.-Ing. Daniel Gall Employees who performed the tests: documented internally at 7Layers Date of Report: 2019-01-11 Testing Period: 2018-10-30 to 2018-11-08 2.3 APPLICANT DATA Company Name: u-blox AG Address: Zürcherstrasse 68 8800 Thalwil Switzerland Contact Person: Mr. Filip Kruzela 2.4 MANUFACTURER DATA Company Name: Please see applicant data TEST REPORT REFERENCE: MDE_UBLOX_1828_FCCc Page 8 of 32 ## 3 TEST OBJECT DATA ## 3.1 GENERAL EUT DESCRIPTION | Kind of Device product description | The EUT is a module supporting WLAN in the 2.4 GHz and 5 GHz bands as well as Bluetooth (BT) 4.2 including Bluetooth Low Energy (BT LE) | | | |---|--|--|--| | Product name | JODY-W163-13A | | | | Туре | JODY-W163-13A | | | | Declared EUT data by | the supplier | | | | Voltage Type | DC | | | | Voltage Level | 3.3 V | | | | Tested
Modulation
Types and Data Rates | BT: GFSK Modulation, DHx packets (Bluetooth and Bluetooth Low Energy), 1 Mbps n/4 DQPSK Modulation, 2-DHx packets, 2 Mbps 8-DPSK Modulation, 3-DHx packets, 3 Mbps WLAN: Mode b: DSSS Modulation, 1Mbps Mode g/n: OFDM Modulation, 6Mbps / MCS 0 (20 MHz only) | | | | Specific product description for the EUT | The JODY-W1 is a compact automotive grade module that provides Wi-Fi, Bluetooth, and Bluetooth low energy communication. The JODY-W163-13A module can be operated in the following modes: Wi-Fi 2x2 MIMO 802.11n/ac in the 5 GHz band Wi-Fi 1x1 802.11ac in 2.4 / 5 GHz real simultaneous dual band Dual-mode Bluetooth v4.2, can be operated fully simultaneous with both the Wi-Fi modes It is equipped with two antenna pins connected to two SMA antenna connectors on the evaluation board. Maximum supported band width in 2.4 GHz WLAN mode: 20 MHz, 5 GHz WLAN mode: 80 MHz | | | | The EUT provides the following ports: | DC Power Supply Antenna ports Signal ports | | | | Special software used for testing | The test modes were set using scripts that were run on a board computer with linux operating system provided by the applicant. | | | The main components of the EUT are listed and described in chapter 3.2 EUT Main components. , #### 3.2 EUT MAIN COMPONENTS | Sample Name | Sample Code | Description | | |------------------|---|-------------|--| | EUT A | DE1015102aa01 Module on evaluation bo | | | | Sample Parameter | Valu | ıe | | | Integral Antenna | None, two external 50 Ohm connectors on evaluation board. Antenna gain used for evaluation of test results: 2dBi | | | | Serial No. | D70D4CA6ED205200100 | | | | HW Version | 00 | | | | SW Version | P8.1 | | | | Comment | | | | NOTE: The short description is used to simplify the identification of the EUT in this test report. #### 3.3 ANCILLARY EQUIPMENT For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results. | Device | vice Details Description (Manufacturer, Type Model, OUT Code) | | | | |------------------|---|---|--|--| | Evaluation Board | UBLOX, REV. B, - , - | Board the EUT is
mounted to, providing
ports to the EUT (DC,
Antennas, wired
communication) | | | #### 3.4 AUXILIARY EQUIPMENT For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results. | Device | Details
(Manufacturer, HW, SW, S/N) | Description | |----------------|--|--| | Board Computer | Toradex, Ixora, - , -, - | Computer used for setting the test modes | TEST REPORT REFERENCE: MDE_UBLOX_1828_FCCc #### 3.5 EUT SETUPS This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards. | Setup | Combination of EUTs | Description and Rationale | | | |----------|---|--------------------------------------|--|--| | S01_AA01 | EUT A, Evaluation Board, Board Computer | Representative setup conducted tests | | | | S02_AA01 | EUT A, Evaluation Board | Representative setup radiated tests | | | #### 3.6 OPERATING MODES This chapter describes the operating modes of the EUTs used for testing. #### 3.6.1 TEST CHANNELS WLAN 20 MHz Test Channels: Channel: Frequency [MHz] | 2.4 GHz ISM
2400 - 2483.5 MHz | | | | | | | | |----------------------------------|------|------|--|--|--|--|--| | Low Mid High | | | | | | | | | 1 | 6 | 11 | | | | | | | 2412 | 2437 | 2462 | | | | | | Output power per channel and mode to be set in EUT WLAN script acc. to customer declaration: | Channel No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |------------------------|------|------|------|------|------|------|------|------|------|------|------| | Channel freq.
[MHz] | 2412 | 2417 | 2422 | 2427 | 2432 | 2437 | 2442 | 2447 | 2452 | 2457 | 2462 | | WLAN mode b | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | | WLAN mode g | 13 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 13 | | WLAN mode n | 13 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 13 | #### 3.7 PRODUCT LABELLING #### 3.7.1 FCC ID LABEL Please refer to the documentation of the applicant. #### 3.7.2 LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant. #### 4 TEST RESULTS #### 4.1 PEAK POWER OUTPUT Standard FCC Part 15 Subpart C #### The test was performed according to: ANSI C63.10 #### 4.1.1 TEST DESCRIPTION The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT. #### Conducted power: The EUT was connected to a power meter via a short coax cable with a known loss. #### 4.1.2 TEST REQUIREMENTS / LIMITS #### **DTS devices:** FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt. ==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used). #### **Frequency Hopping Systems:** FCC Part 15, Subpart C, §15.247 (b) (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. FCC Part 15, Subpart C, §15.247 (b) (2) For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section. Used conversion factor: Limit (dBm) = $10 \log (\text{Limit (W)/1mW})$ TEST REPORT REFERENCE: MDE_UBLOX_1828_FCCc #### 4.1.3 TEST PROTOCOL $\begin{array}{lll} \mbox{Ambient temperature:} & 24 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1010 \ \mbox{hPa} \\ \mbox{Humidity:} & 40 \ \% \end{array}$ WLAN b-Mode; 20 MHz; 1 Mbit/s | Band | Channel
No. | | RMS Power [dBm] | Limit
[dBm] | Margin to Limit [dB] | E.I.R.P
[dBm] | |-------------|----------------|------|-----------------|----------------|----------------------|------------------| | 2.4 GHz ISM | 1 | 2412 | 17.5 | 30.0 | 12.5 | 19.5 | | | 6 | 2437 | 16.7 | 30.0 | 13.3 | 18.7 | | | 11 | 2462 | 17.3 | 30.0 | 12.7 | 19.3 | Remark: None. ## 4.1.4 TEST EQUIPMENT USED - R&S TS8997 #### 4.2 TRANSMITTER SPURIOUS RADIATED EMISSIONS Standard FCC Part 15 Subpart C #### The test was performed according to: ANSI C63.10 #### 4.2.1 TEST DESCRIPTION The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated. The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source. #### 1. Measurement up to 30 MHz The Loop antenna HFH2-Z2 is used. #### **Step 1:** pre measurement - Anechoic chamber - Antenna distance: 3 m - Detector: Peak-Maxhold - Frequency range: 0.009 0.15 MHz and 0.15 30 MHz - Frequency steps: 0.05 kHz and 2.25 kHz - IF-Bandwidth: 0.2 kHz and 9 kHz - Measuring time / Frequency step: 100 ms (FFT-based) Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### **Step 2:** final measurement For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level. - Open area test side - Antenna distance: according to the Standard - Detector: Ouasi-Peak - Frequency range: 0.009 30 MHz - Frequency steps: measurement at frequencies detected in step 1 - IF-Bandwidth: 0.2 10 kHz - Measuring time / Frequency step: 1 s #### 2. Measurement above 30 MHz and up to 1 GHz **Step 1:** Preliminary scan This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1: - Antenna distance: 3 m TEST REPORT REFERENCE: MDE_UBLOX_1828_FCCc Page 15 of 32 - Detector: Peak-Maxhold / Quasipeak (FFT-based) - Frequency range: 30 - 1000 MHz Frequency steps: 30 kHzIF-Bandwidth: 120 kHz Measuring time / Frequency step: 100 ms Turntable angle range: -180° to 90° -
Turntable step size: 90° Height variation range: 1 – 3 m Height variation step size: 2 m Polarisation: Horizontal + Vertical Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified. #### **Step 2:** Adjustment measurement In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency. For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted. - Detector: Peak - Maxhold - Measured frequencies: in step 1 determined frequencies IF – Bandwidth: 120 kHzMeasuring time: 100 ms - Turntable angle range: ± 45 ° around the determined value - Height variation range: ± 100 cm around the determined value - Antenna Polarisation: max. value determined in step 1 #### **Step 3:** Final measurement with OP detector With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4: - Detector: Quasi-Peak (< 1 GHz) - Measured frequencies: in step 1 determined frequencies IF - Bandwidth: 120 kHzMeasuring time: 1 s After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement. #### 3. Measurement above 1 GHz The following modifications apply to the measurement procedure for the frequency range above 1 GHz: #### Step 1: The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber. All steps were performed with one height (1.5 m) of the receiving antenna only. The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °. The turn table step size (azimuth angle) for the preliminary measurement is 45 °. #### Step 2: Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed. The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by $\pm 45^{\circ}$ EMI receiver settings (for all steps): Detector: Peak, AverageIF Bandwidth = 1 MHz #### Step 3: Spectrum analyser settings for step 3: - Detector: Peak / Average - Measured frequencies: in step 1 determined frequencies - IF - Bandwidth: 1 MHz - Measuring time: 1 s ### 4.2.2 TEST REQUIREMENTS / LIMITS FCC Part 15, Subpart C, §15.247 (d) ... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)). FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (µV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 - 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 - 23.0)@30m | | 1.705 - 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|--------------|--------------------------|-----------------| | 30 - 88 | 100@3m | 3 | 40.0@3m | | 88 - 216 | 150@3m | 3 | 43.5@3m | | 216 - 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). §15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$ TEST REPORT REFERENCE: MDE_UBLOX_1828_FCCc ## 4.2.3 TEST PROTOCOL Ambient temperature: 26 °C Air Pressure: 1014 hPa Humidity: 37 % | WLAN b- | Mode; 20 M | IHz; 1 Mbit/s | 1 | | | | | | |-----------|---------------------------------|----------------------------|-------------------------------|---------------|--------------|-------------------|----------------------------|------------| | Applied o | luty cycle c | orrection (A | V): 0 dB | | | | | | | Ch. No. | Ch.
Center
Freq.
[MHz] | Spurious
Freq.
[MHz] | Spurious
Level
[dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit
[dB] | Limit Type | | 11 | 2462 | | | | | | | RB | Remark: Antenna port of EUT terminated with 50 Ohm. Please see next sub-clause for the measurement plot. ## 4.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN b, Operating Frequency = high, Measurement range = 1 GHz - 26 $$\rm GHz$$ (S02_AA01) Critical_Freqs | Frequency
(MHz) | MaxPeak
(dBµV/m) | Average
(dBµV/m) | Limit
(dBµV/m) | Margi
n
(dB) | Meas.
Time
(ms) | Bandwidt
h
(kHz) | Heigh
t
(cm) | Pol | Azimut
h
(deg) | Elevatio
n
(deg) | |--------------------|---------------------|---------------------|-------------------|--------------------|-----------------------|------------------------|--------------------|-----|----------------------|------------------------| | 2485.068 | 49.9 | | 74.00 | 24.06 | | | 150.0 | V | -100.0 | 15.0 | | 2485.068 | | 38.1 | 54.00 | 15.89 | - | - | 150.0 | Н | 92.0 | 15.0 | ## Final_Result | Frequency
(MHz) | MaxPeak
(dBµV/m) | CAverage
(dBµV/m) | Limit
(dBµV/m) | Margi
n
(dB) | Meas.
Time
(ms) | Bandwidt
h
(kHz) | Heigh
t
(cm) | Pol | Azimut
h
(deg) | Elevatio
n
(deg) | |--------------------|---------------------|----------------------|-------------------|--------------------|-----------------------|------------------------|--------------------|-----|----------------------|------------------------| | 2485.068 | | 35.6 | 54.00 | 18.42 | 1000.0 | 1000.000 | 150.0 | Н | 92.0 | 15.0 | | 2485.068 | 48.3 | | 74.00 | 25.72 | 1000.0 | 1000.000 | 150.0 | V | -100.0 | 15.0 | ## 4.2.5 TEST EQUIPMENT USED - Radiated Emissions #### 4.3 BAND EDGE COMPLIANCE RADIATED Standard FCC Part 15 Subpart C ## The test was performed according to: ANSI C63.10 #### 4.3.1 TEST DESCRIPTION Please see test description for the test case "Spurious Radiated Emissions" #### 4.3.2 TEST REQUIREMENTS / LIMITS For band edges connected to a restricted band, the limits are specified in Section 15.209(a) FCC Part 15, Subpart C, §15.209, Radiated Emission Limits | Frequency in MHz | Limit (µV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|------------------|--------------------------|--------------------| | 0.009 - 0.49 | 2400/F(kHz)@300m | 3 | (48.5 - 13.8)@300m | | 0.49 - 1.705 | 24000/F(kHz)@30m | 3 | (33.8 - 23.0)@30m | | 1.705 - 30 | 30@30m | 3 | 29.5@30m | The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2). | Frequency in MHz | Limit (μV/m) | Measurement distance (m) | Limits (dBµV/m) | |------------------|--------------|--------------------------|-----------------| | 30 - 88 | 100@3m | 3 | 40.0@3m | | 88 - 216 | 150@3m | 3 | 43.5@3m | | 216 - 960 | 200@3m | 3 | 46.0@3m | | 960 - 26000 | 500@3m | 3 | 54.0@3m | | 26000 - 40000 | 500@3m | 1 | 54.0@3m | The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade). §15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.... Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$ TEST REPORT REFERENCE: MDE_UBLOX_1828_FCCc Page 20 of 32 #### 4.3.3 TEST PROTOCOL Ambient temperature: 26 °C Air Pressure: 1014 hPa Humidity: 37 % WLAN b-Mode; 20 MHz; 1 Mbit/s Applied duty cycle correction (AV): 0 dB | Ch.
No. | Ch. Center
Freq.
[MHz] | Band Edge
Freq. [MHz] | Spurious Level [dBµV/m] | Detec-
tor | RBW
[kHz] | Limit
[dBµV/m] | Margin to
Limit [dB] | Limit
Type | |------------|------------------------------|--------------------------|-------------------------|---------------|--------------|-------------------|-------------------------|---------------| | 11 | 2462 | 2483.5 | 48.3 | PEAK | 1000 | 74.0 | 25.6 | BE | | 11 | 2462 | 2483.5 | 35.6 | AV | 1000 | 54.0 | 18.4 | BE | Remark: Antenna port of EUT terminated with 50 Ohm. Please see next sub-clause for the measurement plot. ## 4.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE") Radio Technology = WLAN b, Operating Frequency = high, Band Edge = high (S02_AA01) #### Critical_Freqs | Frequency
(MHz) | MaxPeak
(dBµV/m) | Average
(dBµV/m) | Limit
(dBµV/m) | Margi
n
(dB) | Meas.
Time
(ms) | Bandwidt
h
(kHz) | Heigh
t
(cm) | Pol | Azimut
h
(deg) | Elevatio
n
(deg) | |--------------------|---------------------|---------------------|-------------------|--------------------|-----------------------|------------------------|--------------------|-----|----------------------|------------------------| | 2485.068 | 49.9 |
| 74.00 | 24.06 | | | 150.0 | V | -100.0 | 15.0 | | 2485.068 | | 38.1 | 54.00 | 15.89 | | | 150.0 | Ξ | 92.0 | 15.0 | ## Final_Result | Frequency
(MHz) | MaxPeak
(dBµV/m) | CAverage
(dBµV/m) | Limit
(dBµV/m) | Margi
n
(dB) | Meas.
Time
(ms) | Bandwidt
h
(kHz) | Heigh
t
(cm) | Pol | Azimut
h
(deg) | Elevatio
n
(deg) | |--------------------|---------------------|----------------------|-------------------|--------------------|-----------------------|------------------------|--------------------|-----|----------------------|------------------------| | 2485.068 | | 35.6 | 54.00 | 18.42 | 1000.0 | 1000.000 | 150.0 | Н | 92.0 | 15.0 | | 2485.068 | 48.3 | | 74.00 | 25.72 | 1000.0 | 1000.000 | 150.0 | V | -100.0 | 15.0 | ## 4.3.5 TEST EQUIPMENT USED - Radiated Emissions ## 5 TEST EQUIPMENT 1 R&S TS8997 EN300328/301893 Test Lab | Ref.No. | Device Name | Description | Manufacturer | Serial Number | Last
Calibration | Calibration
Due | |---------|-------------------------|---|--------------------------------------|----------------|---------------------|--------------------| | 1.1 | SMB100A | Signal
Generator 9
kHz - 6 GHz | Rohde & Schwarz | 107695 | 2017-07 | 2020-07 | | 1.2 | MFS | Rubidium
Frequency
Standard | Datum-Beverly | 5489/001 | 2018-07 | 2019-07 | | 1.3 | 1515 / 93459 | | Weinschel
Associates | LN673 | | | | 1.4 | FSV30 | Signal
Analyzer 10 Hz
- 30 GHz | Rohde & Schwarz | 103005 | 2018-04 | 2020-04 | | 1.5 | Fluke 177 | Digital
Multimeter 03
(Multimeter) | Fluke Europe B.V. | 86670383 | 2018-04 | 2020-04 | | 1.6 | VT 4002 | Climatic
Chamber | Vötsch | 58566002150010 | 2018-04 | 2020-04 | | 1.7 | A8455-4 | 4 Way Power
Divider (SMA) | | - | | | | 1.8 | Opus10 THI
(8152.00) | | Lufft Mess- und
Regeltechnik GmbH | 7482 | 2017-03 | 2019-03 | | 1.9 | SMBV100A | Vector Signal
Generator 9
kHz - 6 GHz | Rohde & Schwarz | 259291 | 2016-10 | 2019-10 | | 1.10 | OSP120 | Switching Unit
with
integrated
power meter | Rohde & Schwarz | 101158 | 2018-05 | 2021-05 | ## 2 Radiated Emissions Lab to perform radiated emission tests | Ref.No. | Device | Description | Manufacturer | Serial Number | Last | Calibration | |---------|--------------------------|--|--------------------------------------|---------------|-------------|-------------| | | Name | _ | | | Calibration | Due | | 2.1 | NRV-Z1 | Sensor Head A | Rohde & Schwarz | 827753/005 | 2018-07 | 2019-07 | | 2.2 | | Rubidium
Frequency Normal
MFS | Datum GmbH | 002 | 2018-10 | 2020-10 | | 2.3 | | ThermoAirpressur
e Datalogger 13
(Environ) | Lufft Mess- und
Regeltechnik GmbH | 13936 | 2017-04 | 2019-04 | | I= | | 10.58 x 6.38 x
6.00 m ³ | Frankonia | none | 2016-05 | 2019-05 | | 2.5 | | Ultralog new
biconicals | Rohde & Schwarz | 830547/003 | 2018-07 | 2021-07 | | 2.6 | 5HC2700/12
750-1.5-KK | High Pass Filter | Trilithic | 9942012 | | | | 2.7 | ASP 1.2/1.8-
10 kg | Antenna Mast | Maturo GmbH | - | | | TEST REPORT REFERENCE: MDE_UBLOX_1828_FCCc Page 23 of 32 | Ref.No. | Device
Name | Description | Manufacturer | Serial Number | Last
Calibration | | |---------|-------------------------------------|---|--------------------------------------|--------------------------------|---------------------|---------| | 2.8 | | 8.80m x 4.60m x
4.05m (I x w x h) | Albatross Projects | P26971-647-001-
PRB | 2018-06 | 2021-06 | | 2.9 | | Digital Multimeter
03 (Multimeter) | Fluke Europe B.V. | 86670383 | 2018-04 | 2020-04 | | 2.10 | | Broadband
Amplifier 18 GHz
- 26 GHz | Miteq | 849785 | | | | 2.11 | FSW 43 | Spectrum
Analyzer | Rohde & Schwarz | 103779 | 2016-12 | 2018-12 | | 2.12 | 3160-09 | | EMCO Elektronic
GmbH | 00083069 | | | | 2.13 | WHKX
7.0/18G-8SS | High Pass Filter | Wainwright | 09 | | | | 2.14 | 4HC1600/12
750-1.5-KK | High Pass Filter | Trilithic | 9942011 | | | | 2.15 | Chroma 6404 | AC Power Source | Chroma ATE INC. | 64040001304 | | | | 2.16 | JS4- | Broadband
Amplifier 30 MHz
- 26 GHz | Miteq | 619368 | | | | 2.17 | TT 1.5 WI | Turn Table | Maturo GmbH | - | | | | 2.18 | HL 562
Ultralog | Logper. Antenna | | 100609 | 2016-04 | 2019-04 | | 2.19 | 3160-10 | Standard Gain /
Pyramidal Horn
Antenna 40 GHz | EMCO Elektronic
GmbH | 00086675 | | | | 2.20 | | High Pass Filter | Trilithic | 200035008 | | | | 2.21 | HFH2-Z2 | Loop Antenna | Rohde & Schwarz | 829324/006 | 2018-01 | 2021-01 | | 2.22 | Opus10 THI
(8152.00) | ThermoHygro
Datalogger 12
(Environ) | Lufft Mess- und
Regeltechnik GmbH | 12482 | 2017-03 | 2019-03 | | 2.23 | ESR 7 | | Rohde & Schwarz | 101424 | 2016-11 | 2018-11 | | 2.24 | | Broadband
Amplifier 30 MHz
- 18 GHz | Miteq | 896037 | | | | 2.25 | AS 620 P | Antenna mast | HD GmbH | 620/37 | | | | 2.26 | Tilt device
Maturo
(Rohacell) | Antrieb TD1.5-
10kg | Maturo GmbH | TD1.5-
10kg/024/37907
09 | | | | 2.27 | ESIB 26 | Spectrum
Analyzer | Rohde & Schwarz | 830482/004 | 2018-01 | 2020-01 | | 2.28 | | Antenna Mast | Maturo GmbH | - | | | | 2.29 | | Antenna mast | Maturo GmbH | AM4.0/180/1192
0513 | | | | 2.30 | | Double-ridged
horn | Rohde & Schwarz | 102444 | 2018-07 | 2021-07 | The calibration interval is the time interval between "Last Calibration" and "Calibration Due" TEST REPORT REFERENCE: MDE_UBLOX_1828_FCCc ## 6 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN. ## 6.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ) | Frequency | Corr. | | |-----------|-------|--| | MHz | dB | | | 0.15 | 10.1 | | | 5 | 10.3 | | | 7 | 10.5 | | | 10 | 10.5 | | | 12 | 10.7 | | | 14 | 10.7 | | | 16 | 10.8 | | | 18 | 10.9 | | | 20 | 10.9 | | | 22 | 11.1 | | | 24 | 11.1 | | | 26 | 11.2 | | | 28 | 11.2 | | | 30 | 11.3 | | | | cable | |-----------|-----------| | LISN | loss | | insertion | (incl. 10 | | loss | ` dB | | ESH3- | atten- | | Z5 | uator) | | dB | dB | | 0.1 | 10.0 | | 0.1 | 10.2 | | 0.2 | 10.3 | | 0.2 | 10.3 | | 0.3 | 10.4 | | 0.3 | 10.4 | | 0.4 | 10.4 | | 0.4 | 10.5 | | 0.4 | 10.5 | | 0.5 | 10.6 | | 0.5 | 10.6 | | 0.5 | 10.7 | | 0.5 | 10.7 | | 0.5 | 10.8 | #### Sample calculation U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB) U = Receiver reading LISN Insertion loss = Voltage Division Factor of LISN Corr. = sum of single correction factors of used LISN, cables, switch units (if used) Linear interpolation will be used for frequencies in between the values in the table. ## 6.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ) | | 1 | | |-----------|----------|-------| | | | | | | AF | | | Frequency | HFH-Z2) | Corr. | | MHz | dB (1/m) | dB | | 0.009 | 20.50 | -79.6 | | 0.01 | 20.45 | -79.6 | | 0.015 | 20.37 | -79.6 | | 0.02 | 20.36 | -79.6 | | 0.025 | 20.38 | -79.6 | | 0.03 | 20.32 | -79.6 | | 0.05 | 20.35 | -79.6 | | 0.08 | 20.30 | -79.6 | | 0.1 | 20.20 | -79.6 | | 0.2 | 20.17 | -79.6 | | 0.3 | 20.14 | -79.6 | | 0.49 | 20.12 | -79.6 | | 0.490001 | 20.12 | -39.6 | | 0.5 | 20.11 | -39.6 | | 0.8 | 20.10 | -39.6 | | 1 | 20.09 | -39.6 | | 2 | 20.08 | -39.6 | | 3 | 20.06 | -39.6 | | 4 | 20.05 | -39.5 | | 5 | 20.05 | -39.5 | | 6 | 20.02 | -39.5 | | 8 | 19.95 | -39.5 | | 10 | 19.83 | -39.4 | | 12 | 19.71 | -39.4 | | 14 | 19.54 | -39.4 | | 16 | 19.53 | -39.3 | | 18 | 19.50 | -39.3 | | 20 | 19.57 | -39.3 | | 22 | 19.61 | -39.3 | | 24 | 19.61 | -39.3 | | 26 | 19.54 | -39.3 | | 28 | 19.46 | -39.2 | | 30 | 19.73 | -39.1 | | ` | | <u> </u> | | | | | |----------|----------|----------|-----------|----------|-------------|------------| | cable | cable | cable | cable | distance | d_{Limit} | d_{used} | | loss 1 | loss 2 | loss 3 | loss 4 | corr. | (meas. | (meas. | | (inside | (outside | (switch | (to | (-40 dB/ | distance | distance | | chamber) | chamber) | unit) | receiver) | decade) | (limit) | (used) | | dB | dB | dB | dB | dB | m | m | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -80 | 300 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.1 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.1 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.2 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.2 | 0.1 | -40 | 30 | 3 | | 0.3 | 0.1 | 0.3 | 0.1 | -40 | 30 | 3 | | 0.4 | 0.1 | 0.3 | 0.1 | -40 | 30 | 3 | | | | | | | | | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit} / d_{used})$ Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values ## 6.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ) $(d_{Limit} = 3 m)$
| $d_{Limit} = 3 m)$ | | 1 | |--------------------|--------------------|-------| | Frequency | AF
R&S
HL562 | Corr. | | MHz | dB (1/m) | dB | | 30 | 18.6 | 0.6 | | 50 | 6.0 | 0.9 | | 100 | 9.7 | 1.2 | | 150 | 7.9 | 1.6 | | 200 | 7.6 | 1.9 | | 250 | 9.5 | 2.1 | | 300 | 11.0 | 2.3 | | 350 | 12.4 | 2.6 | | 400 | 13.6 | 2.9 | | 450 | 14.7 | 3.1 | | 500 | 15.6 | 3.2 | | 550 | 16.3 | 3.5 | | 600 | 17.2 | 3.5 | | 650 | 18.1 | 3.6 | | 700 | 18.5 | 3.6 | | 750 | 19.1 | 4.1 | | 800 | 19.6 | 4.1 | | 850 | 20.1 | 4.4 | | 900 | 20.8 | 4.7 | | 950 | 21.1 | 4.8 | | 1000 | 21.6 | 4.9 | | _ | | | | | | | |----------|----------|---------|-----------|----------|-------------|------------| | cable | cable | cable | cable | distance | d_{Limit} | d_{used} | | loss 1 | loss 2 | loss 3 | loss 4 | corr. | (meas. | (meas. | | (inside | (outside | (switch | (to | (-20 dB/ | distance | distance | | chamber) | chamber) | unit) | receiver) | decade) | (limit) | (used) | | dB | dB | dB | dB | dB | m | m | | 0.29 | 0.04 | 0.23 | 0.02 | 0.0 | 3 | 3 | | 0.39 | 0.09 | 0.32 | 0.08 | 0.0 | 3 | 3 | | 0.56 | 0.14 | 0.47 | 0.08 | 0.0 | 3 | 3 | | 0.73 | 0.20 | 0.59 | 0.12 | 0.0 | 3 | 3 | | 0.84 | 0.21 | 0.70 | 0.11 | 0.0 | 3 | 3 | | 0.98 | 0.24 | 0.80 | 0.13 | 0.0 | 3 | 3 | | 1.04 | 0.26 | 0.89 | 0.15 | 0.0 | 3 | 3 | | 1.18 | 0.31 | 0.96 | 0.13 | 0.0 | 3 | 3 | | 1.28 | 0.35 | 1.03 | 0.19 | 0.0 | 3 | 3 | | 1.39 | 0.38 | 1.11 | 0.22 | 0.0 | 3 | 3 | | 1.44 | 0.39 | 1.20 | 0.19 | 0.0 | 3 | 3 | | 1.55 | 0.46 | 1.24 | 0.23 | 0.0 | 3 | 3 | | 1.59 | 0.43 | 1.29 | 0.23 | 0.0 | 3 | | | 1.67 | 0.34 | 1.35 | 0.22 | 0.0 | 3 | 3 | | 1.67 | 0.42 | 1.41 | 0.15 | 0.0 | 3 | 3 | | 1.87 | 0.54 | 1.46 | 0.25 | 0.0 | 3 | 3 | | 1.90 | 0.46 | 1.51 | 0.25 | 0.0 | 3 | 3 | | 1.99 | 0.60 | 1.56 | 0.27 | 0.0 | 3 | 3 | | 2.14 | 0.60 | 1.63 | 0.29 | 0.0 | 3 | 3 | | 2.22 | 0.60 | 1.66 | 0.33 | 0.0 | 3 | 3 | | 2.23 | 0.61 | 1.71 | 0.30 | 0.0 | 3 | 3 | | | | | | | | | $(d_{Limit} = 10 m)$ | (GLIIIII - TO III | • / | | | | | | | | | |--------------------|------|------|------|------|------|------|-------|----|---| | 30 | 18.6 | -9.9 | 0.29 | 0.04 | 0.23 | 0.02 | -10.5 | 10 | 3 | | 50 | 6.0 | -9.6 | 0.39 | 0.09 | 0.32 | 0.08 | -10.5 | 10 | 3 | | 100 | 9.7 | -9.2 | 0.56 | 0.14 | 0.47 | 0.08 | -10.5 | 10 | 3 | | 150 | 7.9 | -8.8 | 0.73 | 0.20 | 0.59 | 0.12 | -10.5 | 10 | 3 | | 200 | 7.6 | -8.6 | 0.84 | 0.21 | 0.70 | 0.11 | -10.5 | 10 | 3 | | 250 | 9.5 | -8.3 | 0.98 | 0.24 | 0.80 | 0.13 | -10.5 | 10 | 3 | | 300 | 11.0 | -8.1 | 1.04 | 0.26 | 0.89 | 0.15 | -10.5 | 10 | 3 | | 350 | 12.4 | -7.9 | 1.18 | 0.31 | 0.96 | 0.13 | -10.5 | 10 | 3 | | 400 | 13.6 | -7.6 | 1.28 | 0.35 | 1.03 | 0.19 | -10.5 | 10 | 3 | | 450 | 14.7 | -7.4 | 1.39 | 0.38 | 1.11 | 0.22 | -10.5 | 10 | 3 | | 500 | 15.6 | -7.2 | 1.44 | 0.39 | 1.20 | 0.19 | -10.5 | 10 | 3 | | 550 | 16.3 | -7.0 | 1.55 | 0.46 | 1.24 | 0.23 | -10.5 | 10 | 3 | | 600 | 17.2 | -6.9 | 1.59 | 0.43 | 1.29 | 0.23 | -10.5 | 10 | 3 | | 650 | 18.1 | -6.9 | 1.67 | 0.34 | 1.35 | 0.22 | -10.5 | 10 | 3 | | 700 | 18.5 | -6.8 | 1.67 | 0.42 | 1.41 | 0.15 | -10.5 | 10 | 3 | | 750 | 19.1 | -6.3 | 1.87 | 0.54 | 1.46 | 0.25 | -10.5 | 10 | 3 | | 800 | 19.6 | -6.3 | 1.90 | 0.46 | 1.51 | 0.25 | -10.5 | 10 | 3 | | 850 | 20.1 | -6.0 | 1.99 | 0.60 | 1.56 | 0.27 | -10.5 | 10 | 3 | | 900 | 20.8 | -5.8 | 2.14 | 0.60 | 1.63 | 0.29 | -10.5 | 10 | 3 | | 950 | 21.1 | -5.6 | 2.22 | 0.60 | 1.66 | 0.33 | -10.5 | 10 | 3 | | 1000 | 21.6 | -5.6 | 2.23 | 0.61 | 1.71 | 0.30 | -10.5 | 10 | 3 | | | | | | | | | | | | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$ Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values. TEST REPORT REFERENCE: MDE_UBLOX_1828_FCCc ## 6.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ) | Frequency | AF
R&S
HF907 | Corr. | |-----------|--------------------|-------| | MHz | dB (1/m) | dB | | 1000 | 24.4 | -19.4 | | 2000 | 28.5 | -17.4 | | 3000 | 31.0 | -16.1 | | 4000 | 33.1 | -14.7 | | 5000 | 34.4 | -13.7 | | 6000 | 34.7 | -12.7 | | 7000 | 35.6 | -11.0 | | cable loss 1 (relay + cable inside chamber) | cable
loss 2
(outside
chamber) | cable loss 3 (switch unit, atten- uator & pre-amp) | cable
loss 4 (to
receiver) | | |---|---|--|----------------------------------|--| | dB | dB | dB | dB | | | 0.99 | 0.31 | -21.51 | 0.79 | | | 1.44 | 0.44 | -20.63 | 1.38 | | | 1.87 | 0.53 | -19.85 | 1.33 | | | 2.41 | 0.67 | -19.13 | 1.31 | | | 2.78 | 0.86 | -18.71 | 1.40 | | | 2.74 | 0.90 | -17.83 | 1.47 | | | 2.82 | 0.86 | -16.19 | 1.46 | | | Frequency | AF
R&S
HF907 | Corr. | |-----------|--------------------|-------| | MHz | dB (1/m) | dB | | 3000 | 31.0 | -23.4 | | 4000 | 33.1 | -23.3 | | 5000 | 34.4 | -21.7 | | 6000 | 34.7 | -21.2 | | 7000 | 35.6 | -19.8 | | cable
loss 1
(relay
inside
chamber) | cable
loss 2
(inside
chamber) | cable
loss 3
(outside
chamber) | cable loss 4 (switch unit, atten- uator & | cable
loss 5 (to
receiver) | used
for
FCC
15.247 | |---|--|---|---|----------------------------------|------------------------------| | dB | dB | dB | pre-amp)
dB | dB | 13.247 | | 0.47 | 1.87 | 0.53 | -27.58 | 1.33 | | | 0.56 | 2.41 | 0.67 | -28.23 | 1.31 | | | 0.61 | 2.78 | 0.86 | -27.35 | 1.40 | | | 0.58 | 2.74 | 0.90 | -26.89 | 1.47 | | | 0.66 | 2.82 | 0.86 | -25.58 | 1.46 | | | Frequency | AF
R&S
HF907 | Corr. | |-----------|--------------------|-------| | MHz | dB (1/m) | dB | | 7000 | 35.6 | -57.3 | | 8000 | 36.3 | -56.3 | | 9000 | 37.1 | -55.3 | | 10000 | 37.5 | -56.2 | | 11000 | 37.5 | -55.3 | | 12000 | 37.6 | -53.7 | | 13000 | 38.2 | -53.5 | | 14000 | 39.9 | -56.3 | | 15000 | 40.9 | -54.1 | | 16000 | 41.3 | -54.1 | | 17000 | 42.8 | -54.4 | | 18000 | 44.2 | -54.7 | | cable loss 1 (relay loss 2 inside chamber) cable loss 3 (pre-pass) cable loss 3 (pre-pass) cable loss 4 (pre-pass) cable loss 5 (outside chamber) cable chamber) chamber) chamber) chamber) receiver) dB </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> | | | | | | | |---|----------------------------|-----------------|-----------------|-------------------|--------------------|---------------| | dB 0.69 0.61 -61.81 3.06 3.06 1.09 1.60 1.60 1.60 1.67 1.67 1.70 1.60 1.67 1.70 1.67 1.70 1.70 1.70 1.67 1.73 1.32 1.33 1.26 1.73 | loss 1
(relay
inside | loss 2
(High | loss 3
(pre- | loss 4
(inside | loss 5
(outside | loss 6
(to | | 0.69 0.71 -61.49 2.84 1.00 1.53 0.68 0.65 -60.80 3.06 1.09 1.60 0.70 0.54 -61.91 3.28 1.20 1.67 0.80 0.61 -61.40 3.43 1.27 1.70 0.84 0.42 -59.70 3.53 1.26 1.73 0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00 | dB | dB | dB | dB | dB | dB | | 0.68 0.65 -60.80 3.06 1.09 1.60 0.70 0.54 -61.91 3.28 1.20 1.67 0.80 0.61 -61.40 3.43 1.27 1.70 0.84 0.42 -59.70 3.53 1.26 1.73 0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00 | 0.56 | 1.28 | -62.72 | 2.66 | 0.94 | 1.46 | | 0.70 0.54 -61.91 3.28 1.20 1.67 0.80 0.61 -61.40 3.43 1.27 1.70 0.84 0.42 -59.70 3.53 1.26 1.73 0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00 | 0.69 | 0.71 | -61.49 | 2.84 | 1.00 | 1.53 | | 0.80 0.61 -61.40 3.43 1.27 1.70 0.84 0.42 -59.70 3.53 1.26 1.73 0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00 | 0.68 | 0.65 | -60.80 | 3.06 | 1.09 | 1.60 | | 0.84 0.42 -59.70 3.53 1.26 1.73 0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00 | 0.70 | 0.54 | -61.91 | 3.28 | 1.20 | 1.67 | | 0.83 0.44 -59.81 3.75 1.32 1.83 0.91 0.53 -63.03 3.91 1.40 1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00 | 0.80 | 0.61 | -61.40 | 3.43 | 1.27 | 1.70 | | 0.91 0.53 -63.03 3.91 1.40
1.77 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00 | 0.84 | 0.42 | -59.70 | 3.53 | 1.26 | 1.73 | | 0.98 0.54 -61.05 4.02 1.44 1.83 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00 | 0.83 | 0.44 | -59.81 | 3.75 | 1.32 | 1.83 | | 1.23 0.49 -61.51 4.17 1.51 1.85 1.36 0.76 -62.36 4.34 1.53 2.00 | 0.91 | 0.53 | -63.03 | 3.91 | 1.40 | 1.77 | | 1.36 0.76 -62.36 4.34 1.53 2.00 | 0.98 | 0.54 | -61.05 | 4.02 | 1.44 | 1.83 | | | 1.23 | 0.49 | -61.51 | 4.17 | 1.51 | 1.85 | | 1.70 0.53 -62.88 4.41 1.55 1.91 | 1.36 | 0.76 | -62.36 | 4.34 | 1.53 | 2.00 | | | 1.70 | 0.53 | -62.88 | 4.41 | 1.55 | 1.91 | ## Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values. ## 6.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ) | _ | AF
EMCO | | |-----------|------------|-------------| | Frequency | 3160-09 | Corr.
dB | | MHz | dB (1/m) | | | 18000 | 40.2 | -23.5 | | 18500 | 40.2 | -23.2 | | 19000 | 40.2 | -22.0 | | 19500 | 40.3 | -21.3 | | 20000 | 40.3 | -20.3 | | 20500 | 40.3 | -19.9 | | 21000 | 40.3 | -19.1 | | 21500 | 40.3 | -19.1 | | 22000 | 40.3 | -18.7 | | 22500 | 40.4 | -19.0 | | 23000 | 40.4 | -19.5 | | 23500 | 40.4 | -19.3 | | 24000 | 40.4 | -19.8 | | 24500 | 40.4 | -19.5 | | 25000 | 40.4 | -19.3 | | 25500 | 40.5 | -20.4 | | 26000 | 40.5 | -21.3 | | 26500 | 40.5 | -21.1 | | ` | | , | | | |----------|--------|----------|---------|-----------| | cable | cable | cable | cable | cable | | loss 1 | loss 2 | loss 3 | loss 4 | loss 5 | | (inside | (pre- | (inside | (switch | (to | | chamber) | amp) | chamber) | unit) | receiver) | | dB | dB | dB | dB | dB | | 0.72 | -35.85 | 6.20 | 2.81 | 2.65 | | 0.69 | -35.71 | 6.46 | 2.76 | 2.59 | | 0.76 | -35.44 | 6.69 | 3.15 | 2.79 | | 0.74 | -35.07 | 7.04 | 3.11 | 2.91 | | 0.72 | -34.49 | 7.30 | 3.07 | 3.05 | | 0.78 | -34.46 | 7.48 | 3.12 | 3.15 | | 0.87 | -34.07 | 7.61 | 3.20 | 3.33 | | 0.90 | -33.96 | 7.47 | 3.28 | 3.19 | | 0.89 | -33.57 | 7.34 | 3.35 | 3.28 | | 0.87 | -33.66 | 7.06 | 3.75 | 2.94 | | 0.88 | -33.75 | 6.92 | 3.77 | 2.70 | | 0.90 | -33.35 | 6.99 | 3.52 | 2.66 | | 0.88 | -33.99 | 6.88 | 3.88 | 2.58 | | 0.91 | -33.89 | 7.01 | 3.93 | 2.51 | | 0.88 | -33.00 | 6.72 | 3.96 | 2.14 | | 0.89 | -34.07 | 6.90 | 3.66 | 2.22 | | 0.86 | -35.11 | 7.02 | 3.69 | 2.28 | | 0.90 | -35.20 | 7.15 | 3.91 | 2.36 | | | | · | · | | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values. ## 6.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ) | Frequency | AF
EMCO
3160-10 | Corr. | |-----------|-----------------------|-------| | GHz | dB (1/m) | dB | | 26.5 | 43.4 | -11.2 | | 27.0 | 43.4 | -11.2 | | 28.0 | 43.4 | -11.1 | | 29.0 | 43.5 | -11.0 | | 30.0 | 43.5 | -10.9 | | 31.0 | 43.5 | -10.8 | | 32.0 | 43.5 | -10.7 | | 33.0 | 43.6 | -10.7 | | 34.0 | 43.6 | -10.6 | | 35.0 | 43.6 | -10.5 | | 36.0 | 43.6 | -10.4 | | 37.0 | 43.7 | -10.3 | | 38.0 | 43.7 | -10.2 | | 39.0 | 43.7 | -10.2 | | 40.0 | 43.8 | -10.1 | | cable
loss 1
(inside
chamber) | cable
loss 2
(outside
chamber) | cable
loss 3
(switch
unit) | cable
loss 4
(to
receiver) | distance
corr.
(-20 dB/
decade) | d _{Limit}
(meas.
distance
(limit) | d _{used}
(meas.
distance
(used) | |--|---|-------------------------------------|-------------------------------------|--|---|---| | dB | dB | dB | dB | dB | m | m | | 4.4 | | | | -15.6 | 3 | 0.5 | | 4.4 | | | | -15.6 | 3 | 0.5 | | 4.5 | | | | -15.6 | 3 | 0.5 | | 4.6 | | | | -15.6 | 3 | 0.5 | | 4.7 | | | | -15.6 | 3 | 0.5 | | 4.7 | | | | -15.6 | 3 | 0.5 | | 4.8 | | | | -15.6 | 3 | 0.5 | | 4.9 | | | | -15.6 | 3 | 0.5 | | 5.0 | | | | -15.6 | 3 | 0.5 | | 5.1 | | | | -15.6 | 3 | 0.5 | | 5.1 | | | | -15.6 | 3 | 0.5 | | 5.2 | | | | -15.6 | 3 | 0.5 | | 5.3 | | | | -15.6 | 3 | 0.5 | | 5.4 | | | | -15.6 | 3 | 0.5 | | 5.5 | | | | -15.6 | 3 | 0.5 | #### Sample calculation E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading AF = Antenna factor Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values. #### 7 SETUP DRAWINGS Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used. **Drawing 1:** Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting groundplane. **Drawing 2:** Setup for conducted radio tests. ## 8 MEASUREMENT UNCERTAINTIES | Test Case | Parameter | Uncertainty | |--------------------------------------|--------------------|------------------------| | AC Power Line | Power | ± 3.4 dB | | Field Strength of spurious radiation | Power | ± 5.5 dB | | 6 dB / 26 dB / 99% Bandwidth | Power
Frequency | ± 2.9 dB
± 11.2 kHz | | Conducted Output Power | Power | ± 2.2 dB | | Band Edge Compliance | Power
Frequency | ± 2.2 dB
± 11.2 kHz | | Frequency Stability | Frequency | ± 25 Hz | | Power Spectral Density | Power | ± 2.2 dB | ## 9 PHOTO REPORT Please see separate photo report.