

Test Report for the Testing of a Qubi 3 Model H to the FCC Rules For QED Advanced Systems Ltd

Test Report number 12774TR1

Project number C3936

McReh

Author: M Render BSc, PhD, MIET Senior Engineer

estl

Checked: C Greenfield BEng (Hons), Laboratory Business Manager

Approved: Dr. D. Bozec, BSc(Hons), PhD, MBA, CEng, MIET Laboratories Director

Issue	Description					Issue by	Date	
1	Copy 1		Copy 2		PDF		MR	3 rd May 2018

This report shall not be reproduced, except in full without the prior written approval of York EMC Services Ltd. The results contained in this report are only applicable to the apparatus tested.

Registered Address: Eurofins York i54 Business Park, Valiant Way, Wolverhampton, WV9 5GB, UK Registered in England and Wales Company Reg No. 6048589 | VAT Reg No. 887 1276 83

A BEIS designated Notified Body No 2636

CONTENTS

Test Re	Test Report Change History							
Section	1 Test Location	6						
1.1	UKAS Accreditation							
Section	2 Customer Information	7						
•		_						
Section								
3.1	Equipment Under Test (EUT)							
3.2	EUT Photos							
3.3	Configuration of EUT							
3.4	EUT Monitoring/Auxiliary Equipment	11						
Section	4 Test Summary	12						
4.1	Knowledge Database References.							
4.1.1	Conducted Emissions							
4.1.2								
4.1.2								
4.1.3	Compliance Statement							
4.2	Compliance Statement	13						
Section	5 Conducted Emission Results	14						
5.1	Test Specification							
5.2	Power Line Emission Limits							
5.3	Receiver Settings							
5.4	Procedure and Test Software Version							
5.4.1	Date of Test							
5.4.2								
5.4.3								
5.4.4								
5.4.5	Correction factors							
5.4.6								
0.1.0		10						
Section	6 Radiated Emission Results	19						
6.1	Test Specification							
6.2	Procedure and Test Software Version							
6.3	Magnetic Field Radiated Emissions (9kHz to 30MHz)							
6.3.1	Limits	20						
6.3.2	Receiver Settings	20						
6.3.3	Emissions measurements	21						
6.3.4	Date of Test	21						
6.3.5	Test Area	21						
6.3.6	SAC Test Setup	21						
6.3.7	·							
6.3.8	Magnetic field emissions,9kHz to 30MHz and outside the band 13.110MHz to 14.010MHz							
6.3.9	Sample Data							
6.4	Radiated Emissions (30MHz to 1GHz)							
6.4.1	Limits at 3m							
6.4.2								
6.4.3	Emissions measurements							
6.4.4	Date of Test							
6.4.5	Test Area							
6.4.6								
6.4.7								
6.4.8								
6.4.9	Sample Data							
0.4.9		51						
Section	7 Frequency Stability	32						
7.1.1	Date of Test							

7.1.2 7.1.3 7.1.4	Test Area Procedure Test Results	32
Section 8	Variation of field strength with operating voltage	34
8.1.1	Date of Test	
8.1.2	Test Area	34
8.1.3	Procedure	34
8.1.4	Test Results	34
Section 9	20dB bandwidth	
9.1.1	Date of Test	
9.1.2	Test Area	
9.1.3	Procedure	
9.1.4	Test Results	35
Appendix A	A Test Equipment List	37

List of Figures

Figure 1: Diagram of EUT	11
Figure 2: Test setup for Conducted Emissions on the AC power port	. 15
Figure 3: Conducted Emissions Plot - Input Power 120V 60Hz Live	. 16
Figure 4: Conducted Emissions Plot - Input Power 120V 60Hz Neutral	. 17
Figure 5: Test Setup for H-Field Measurements from 9kHz to 30MHz	21
Figure 6: Magnetic field emissions Plot, Parallel	23
Figure 7: Magnetic field emissions Plot, 9kHz to 30MHz Perpendicular	23
Figure 8: Test Setup for E-Field Measurements from 30MHz to 1GHz	29
Figure 9: Electric field emissions Plot, 30MHz to 1GHz	30

Test Report Change History

Issue	Date	Modification Details
1	3 rd May 2018	Original issue of test report
2		
3		
4		
5		
6		
7		
8		
9		
10		

Section 1 Test Location

All testing was performed at;

Eurofins York Ltd	Unit 5
	Speedwell Road
	Castleford
	WF10 5PY
Tel:	01977 731173
Tests performed by	Mark Render, Senior Engineer
Website	http://www.yorkemc.co.uk
UKAS Testing No.	1574

1.1 UKAS Accreditation

Tests marked "Not UKAS Accredited" in this report are not included in the UKAS Accreditation Schedule for our laboratory.

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Eurofins York latest accreditation schedule can be found at:

http://www.ukas.org/testing/lab_detail.asp?lab_id=989&location_id=&vMenuOption=3

Eurofins York Castleford Laboratory (formerly York EMC Services), is an Accredited facility recognised by the Federal Communications Commission (FCC) for certification testing. The appropriate FCC Designation Number is number is UK0022, dated 5th September 2017.

Section 2 Customer Information

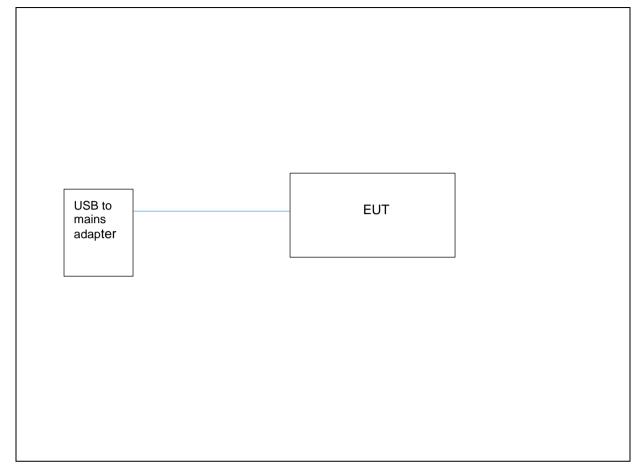
Company name	QED Advanced Systems Ltd
Address	The Hive
	Beaufighter Road
	Weston-super-Mare
	Somerset
	BS24 8EE
Tel:	44 (0)1934 836960
Contact	lan Fisher
Email	andy.fisher@qedas.com
Customer Representative(s) present during testing	lan Fisher

Section 3 Equipment Details

3.1 Equipment Under Test (EUT)

Date received:	5 th April 2018					
EUT name:	Qubi 3 Model H					
Type/Part no:	Qubi 3 Model H					
Serial no/s:	Q3H100001					
EUT description:	Device Overview					
	The device is a microprocessor based unit with a compiled 'C' based operating system for indicating the status of bookable workspaces as well as providing an interactive capability to book the space, check-in to a pre-booked space, extend a booking in progress and check-out of the session early.					
	The device connects via WiFi to either an on-premise or cloud based server using HTTP or HTTPS commands for status updates every 60 seconds or on-demand in the event of an interactive action from the touch pads or RFID reader(s).					
	Power is supplied via a standard Micro USB port and this port can also be used to initially configure the settings in terms of WiFi parameters and host server.					
	There are 2 options for RFID frequency depending on the end users' existing RFID standard in use i.e. LF 125 kHz and HF 13.56 MHz. These are only selectable individually through the device setup process.					
	Other circuit functions are;					
	LEDS - these indicate the workspace status with Red (Busy), Green (Free), Amber (Check-In) and Blue (start-up or connecting to server for interactive access)					
	OLED display - this is a black and white pixel based OLED technology module for communicating workspace session details, name of workspace, WiFi signal, time and options for interactive access.					
	Speaker - Used to confirm card and touch pad actions					
	Touch Pads - Consist of 3 capacitive touch pads for initiating interactive actions					
	Other devices not in current use include - Microphone, Wireless Receiver, PIR and 3-axis motion sensor.					
	Antenna's					
	There are 2 PCB tracked antenna's for the WiFi module and 13.56 MHz.					
	The LF RFID module uses the manufacturers on-board antenna.					
	See separate antenna document for full details.					
	Ground System					
	The PCB tracking includes a variety of ground planes as required.					

No of units tested:	One									
EUT power:	120	V	60	Н	z		Single phase			
Highest internal frequency:	40MF	Ηz								
Cables:	Cable 1		3		m	m Unscreened		USB to mains adapt		ains adapter
Size of EUT (m)	L:	12ci	m		W:		11cm	F	1:	1cm
Tested as	Table top									
Mode/s of operation	Transmitting modulated 13.56MHz near field communication signal.									
	Transmitting unmodulated 13.56MHz near field communication signal									
Hardware Version	Issue 5									
Software Version	V1.11.00									
Client modification statement:	Not applicable									
Modifications incorporated during testing:	No modifications were applied									


Radio Module(s)

Module	Frequency Range (MHz)	FCC Status	FCC ID	
Mifare/NFC 13.56 MHz RFID	13.56	Not certified	ТВС	
Elatec low power communications device	0.125	Single modular authorisation	WP5TWN4F4	
Silicon Laboratories Pty Ltd, Digital transmission system	2412.0-2462.0	Limited single modular	2ABPY-5B9198	

3.2 EUT Photos

Photographs are not included in this test report and are supplied separately.

3.3 Configuration of EUT

The apparatus contains the radio modules listed in table above in Section 3.1.

3.4 EUT Monitoring/Auxiliary Equipment

None.

Section 4 Test Summary

The tests were performed in accordance with Eurofins York Quotation QuC3936.

Test Standard	Relevant Section	Class/limit	Test Order	
CFR 47 Part 15C & ANSI C63.10-2013	Section 15.225(a) Field strength within the band 13.553MHz-13.567MHz	As specified in Section 15.225(a)	1	Pass
	Section 15.225(a) Field strength within the bands 13.410MHz- 13.552MHz and 13.567MHz to 13.710MHz	As specified in Section 15.225(b)	2	Pass
	15.225(b) Field strength within the bands 13.110MHz- 13.410MHz and 13.710MHz to 14.010MHz	As specified in Section 15.225(c)	3	Pass
	Section 15.225(d) Field Strength outside the band 13.110MHz-14.010MHz	As specified in Section 15.209	4	Pass
	Section 15.225(e) Frequency tolerance of the carrier signal	As specified in Section 15.225(e)	5	Pass
	Section 15.31(e) Field strength variation with operating voltage	As specified in Section 15.31(e)	7	Pass
	15.215 (c) 20dB bandwidth	As specified in Section 15.215 (c)	8	Pass
	Section 15.207 Mains conducted emissions	As specified in Section 15.207(a)	6	Pass
		Test not applicable		

Note 1 :All testing was carried out at a test distance of 3m and the limits adjusted accordingly.

Note 2 :Note 2: Applies to carrier current systems see reference 47CFR Part 15Clause 15.109(e).

4.1 Knowledge Database References

The following KDBs were referenced during the testing of the: Qubi 3 Model H The latest knowledge database references are available via the FCC KDB website at: <u>https://apps.fcc.gov/kdb</u>

4.1.1 Conducted Emissions

Publication Number	Keyword	Publication Date
174176	Section 15.107, 15.207,18.307, C63.4, C63.10, Suitable Dummy Load, AC Power Line Conducted Measurement	03/06/2015

4.1.2 Radiated Emissions (9kHz to 30MHz)

Publication Number	Keyword	Publication Date
937606	Test Site Requirements for Part 15 and 18 Devices Operating Below 30 MHz	10/10/2014
460108	Radiated emission measurements below 30 MHz	06/15/2015

4.1.3 Radiated Emissions (30MHz to 1000MHz)

913591	Measurement of radiated emissions at the band-edge for a Part 15 RF Device	04/05/2017
--------	--	------------

4.2 Compliance Statement

The Qubi 3 Model H as tested, was shown to meet requirements of the tests listed in Section 4 of this report.

Section 5 Conducted Emission Results

5.1 Test Specification

Standard	ANSI C63-10:2013
Measurement Uncertainty	The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 % is
	+/- 3.31dB

5.2 Power Line Emission Limits

Frequency (MHz)	Clas (dBj		Clas (dBj	
	Quasi Peak	Average	Quasi Peak	Average
0.15 – 0.5	79.0	66.0	66 – 56*	56 – 46*
0.5 – 5.0	73.0	60.0	56.0	46.0
5.0 - 30	73.0	60.0	60.0	50.0

Note: * The limit decreases linearly with the logarithm of the frequency in the range

5.3 Receiver Settings

Receiver Parameters	Setting	
Detector Function	Quasi Peak and Average	
Start Frequency	150kHz	
Stop Frequency	30MHz	
Resolution Bandwidth	10kHz	
Video Bandwidth	Auto	

5.4 Procedure and Test Software Version

EurofinsYork test procedure	CEP19 Issue 2		
Test software	RadiMation Version 2016.1.6		

5.4.1 Date of Test

5th April 2018

5.4.2 Test Area

LAB 2

5.4.3 Test Setup

This test was applied to the EUT's Live and Neutral lines. The EUT was configured in the screened room on an 80cm high table and was positioned 40cm from the room wall.

A calibrated mains extension lead was used to ensure a known impedance was presented to the EUT

The EUT was then powered from the mains supply via a Line Impedance Stabilisation Network (LISN).

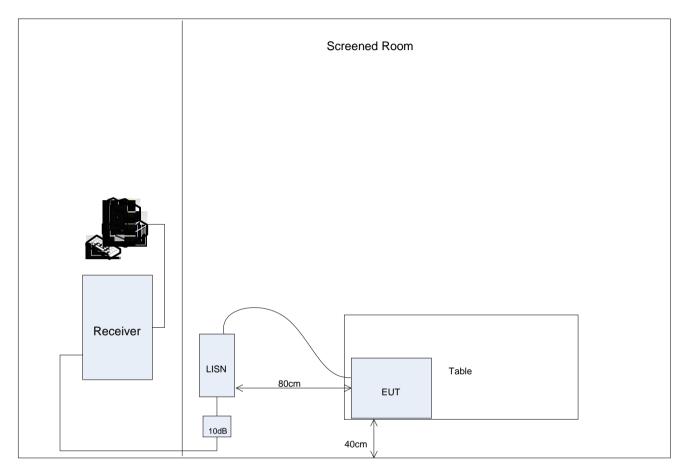


Figure 2: Test setup for Conducted Emissions on the AC power port

The screened room provides an environment that ensures valid, repeatable measurement results that meet the requirements of Clause 5.2 of ANSI C63.4-2014.

5.4.4 Plots

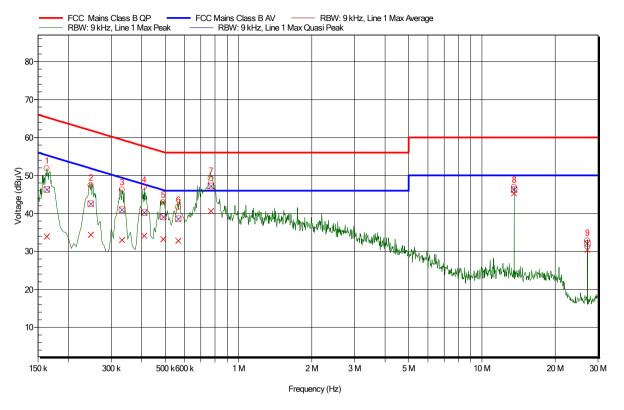


Figure 3: Conducted Emissions Plot - Input Power 120V 60Hz Live

Frequency	Average	Average Limit	Average Difference	Average Correction	Average Status	Quasi- Peak	Quasi- Peak Limit	Quasi- Peak Difference	Quasi- Peak Correction	Quasi- Peak Status	Overall Status
MHz	dBµV	dBµV	dB	dB	dB	dBµV	dBµV	dB	dB		
0.163	34 0	55.3	-21.34	10 0	Pass	46.3	65.3	-19 0	10 0	Pass	Pass
0.247	34.4	51.9	-17.46	10 0	Pass	42.6	61.9	-19.29	10 0	Pass	Pass
0.332	33 0	49.4	-16.38	10 0	Pass	41 0	59.4	-18.41	10 0	Pass	Pass
0.770	40.6	46 0	-5.38	10 0	Pass	47.2	56 0	-8.8 dB	10 0	Pass	Pass
0.409	34.2	47.7	-13.48	10 0	Pass	40.3	57.7	-17.39	10 0	Pass	Pass
0.565	32.8	46 0	-13.2	10.1	Pass	38.6	56 .0	-17.4	10.1	Pass	Pass
0.490	33.2	46.2	-12.93	10.1	Pass	39.1	56.2	-17.04	10.1	Pass	Pass
13.560	45.3	50 0	-4.72	11.0	Pass	46.3	60 0	-13.7	11 0	Pass	Pass
27.119	30.4	50 0	-19.62	11.6	Pass	32.1	60 0	-27.9	11.6	Pass	Pass

Table 1: Input Power Live Conducted Emissions Peaks

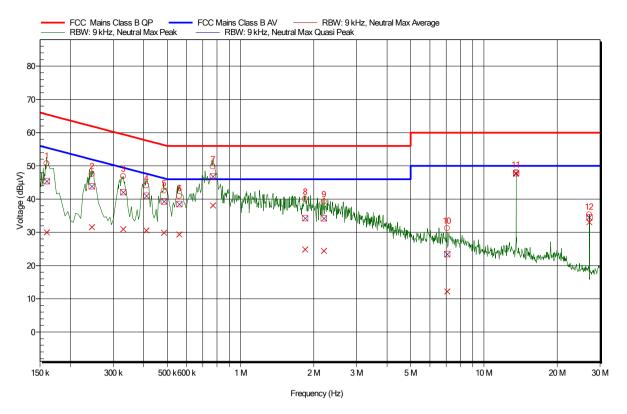


Figure 4: Conducted Emissions Plot - Input Power 120V 60Hz Neutral

Frequency	Average	Averag e Limit	Average Difference	Average Correction	Average Status	Quasi- Peak	Quasi- Peak Limit	Quasi- Peak Difference	Quasi- Peak Correction	Quasi- Peak Status	Overall Status
MHz	dBµV	dBµV	dB	dB	dB	dBµV	dBµV	dB	dB		
0.160	30 0	55.5	-25.45	10 0	Pass	45.4	65.5	-20.07	10 0	Pass	Pass
0.245z	31.6	51.9	-20.3	10.0	Pass	43.9	61.9	-18.07	10.0	Pass	Pass
0.3295	30.9	49.5	-18.51	10 .0	Pass	42.1	59.5	-17.39	10 .0	Pass	Pass
0.770	38.1	46 0	-7.9	10.0	Pass	46.9	56.0	-9.14	10.0	Pass	Pass
0.410z	30.6	47.6	-17.08	10 .0	Pass	41.0	57.6	-16.65	10 .0	Pass	Pass
0.560	29.4	46 0	-16.6	10.1	Pass	38.5	56.0	-17.51	10.1	Pass	Pass
0.485z	29.9	46.3	-16.34	10.1	Pass	39.3	56.3	-16.94	10.1	Pass	Pass
7.055	12.2	50 0	-37.79	10.5	Pass	23.4	60.0	-36.58	10.5	Pass	Pass
13.56	47.6	50 0	-2.38	11 .0	Pass	47.8 d	60.0	-12.2	11 .0	Pass	Pass
27.119	33 0	50 0	-16.96	11.6	Pass	34.5	60.0	-25.5	11.6	Pass	Pass

Table 2: Input Power 120V 60Hz Neutral Conducted Emissions Peaks

5.4.5 Correction factors

The quasi-peak correction and average correction are shown in the above table. This correction figure consists of LISN Insertion loss (IL), Cable loss (CL) and Transient Limiter Loss (TL).

The Actual Signal Level (ASL) is calculated as follows:

ASL $(dB\mu V)$ = Indicated Signal Level $(dB\mu V)$ + IL (dB) + CL (dB) + TL (dB)

5.4.6 Sample Data

The Live conductor Quasi-Peak level at 13.56MHz MHz

ASL $(dB\mu V) = 35.3 dB\mu V + 0.56 dB + 0.3 dB + 10.17 (dB) = 46.3 (dB\mu V)$

Section 6 Radiated Emission Results

6.1 Test Specification

FCC Rule	47CFR 15.225 Operation in the band 13.110-14.010MHz
Test Standard	ANSI C63.10:2013
Measurement Uncertainty	The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95% is +/- 4.27dB for the frequency range from 9kHz to 30MHz +/- 5.81dB for the frequency range 30MHz to 1GHz +/- 4.64dB for the frequency range from 1GHz to 6GHz +/- 4.96dB for the frequency range from 6GHz to 18GHz
	+/- 4.77dB for the frequency range from 18GHz to 40GHz

6.2 Procedure and Test Software Version

Eurofins York Test procedure (9kHz to 30MHz)	CEP22 Issue 2
Eurofins York test procedure (30MHz to 1GHz)	CEP23b Issue 2
Eurofins York test procedure (1GHz to 40GHz)	CEP64b Issue 2
Test software	RadiMation Version 2016.2.8 Keysight Connection Expert software Excel

6.3 Magnetic Field Radiated Emissions (9kHz to 30MHz)

6.3.1 Limits

Frequency	Limits (dBµV/m)
9kHz to 490kHz	2400/F(kHz) at 300m
490kHz to 1.705MHz	24000/F(kHz) at 30m
1,705MHz to 30MHz	30 at 30m

Note 1: FCC 47 CFR Part 15 Section 15.209 has different test limits from 300m to 30m depending upon the measurement frequency range. The measured was adjusted for a measurement distance of 3m. Distance Correction Factor = 40log(test distance /specific distance).

6.3.2 Receiver Settings

Receiver Parameters	Setting
Detector Function	Peak
Start Frequency	9kHz
Stop Frequency	150Hz
Resolution Bandwidth	200Hz
Video Bandwidth	Auto

Receiver Parameters	Setting
Detector Function	Peak
Start Frequency	150kHz
Stop Frequency	30MHz
Resolution Bandwidth	10kHz
Video Bandwidth	Auto

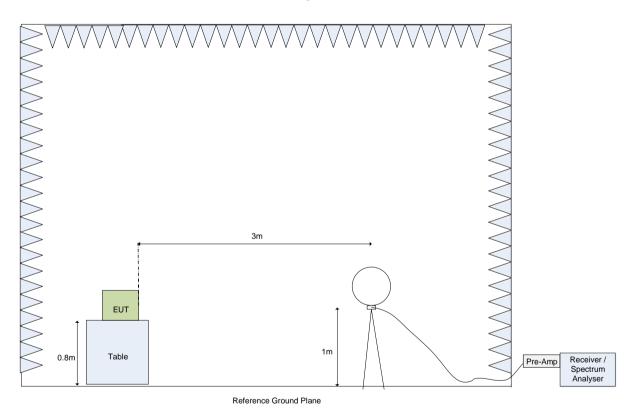
6.3.3 Emissions measurements

6.3.4 Date of Test

5th April 2018

6.3.5 Test Area

LAB 1 (SAC)


6.3.6 SAC Test Setup

The EUT was configured in the SAC on an 80cm high table.

The measurement was then performed with an antenna to EUT separation distance of 3m within the semianechoic chamber based upon the highest emissions results recorded on the outside test site.

The centre of the loop antenna was 1m above the ground and results were obtained with it parallel to the EUT and then perpendicular to the EUT.

The results are maximised in orientation 0-360 degrees.

Figure 5: Test Setup for H-Field Measurements from 9kHz to 30MHz

- Note 1: With the EUT de-energized the ambient radio noise and signals met the 6dB peak detection requirement of ANSI C63.4-2014 Clause 5.1.3.
- Note 2 : There were no significant environmental temperature changes during the test duration and hence it was not considered necessary to consider any variation in cable loss.

6.3.7 Magnetic field emissions,13.110MHz to 14.010MHz

The field strength is split into sub-bands as defined below in Section 47CFR 15.225:

a) Section 15.225(a) Field strength within the band 13.553MHz-13.567MHz

Limit: 15848μ V/m at 30m = $84dB\mu$ V/m at 30m

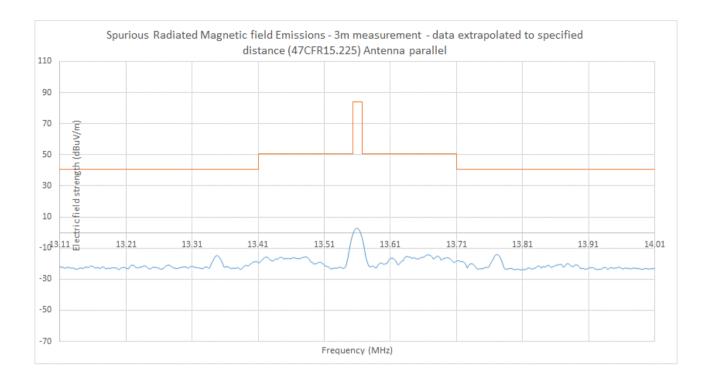
 b) Section 15.225(b) Field strength within the bands 13.410MHz-13.552MHz and 13.567MHz to 13.710MHz

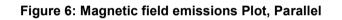
Limit: 3348μ V/m at 30m = 50.5dB μ V/m at 3m

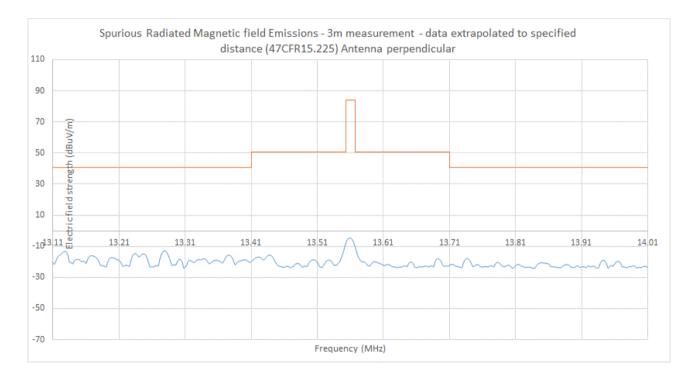
c) Section 15.225(c) Field strength within the bands 13.110MHz-13.410MHz and 13.710MHz to 14.010MHz

Limit: 106μ V/m at 30m = 40.5dB μ V/m at 3m

The results of peak detector max-hold emission measurements are presented below. The measurements were taken using an SAC as initial measurements.


Measurements were performed at a 3m measurement distance. The detector used was a peak detector.


For measurements in the band 0.009MHz to 0.490MHz the specified measurement distance is 300m. The distance correction will be:


$$Correction = 40*log (3/300) = -80dB$$

For measurements in the band 0.490MHz to 30MHz the specified measurement distance is 30m. The distance correction will be:

Correction = 40*log (3/30) = -40dB

Figure 7: Magnetic field emissions Plot, 9kHz to 30MHz Perpendicular

Freq	Rx	Pre- amp	Antenna	n tactor		Limit At 30m	Margin	Result
(MHz)	(dBµV)	(dB)	factor dB/m	(40dB/de cade)	(dBµV/m)	(dBµV/m)	(dB)	
13.11	14.9	-29.6	32.7	-40	-22.0	40.5	-62.5	Below limit
13.41	17.4	-29.6	32.7	-40	-19.5	40.5	-60.0	Below limit
13.56	36.9	-29.6	32.7	-40	2.8	84.0	-81.2	Below limit
13.71	19.0	-29.6	32.7	-40	-17.9	40.5	-58.4	Below limit
13.89	14.1	-29.6	32.7	-40	-22.8	40.5	-17.7	Below limit
14.01	13.9	-29.6	32.7	-40	-23.0	40.5	-63.5	Below limit

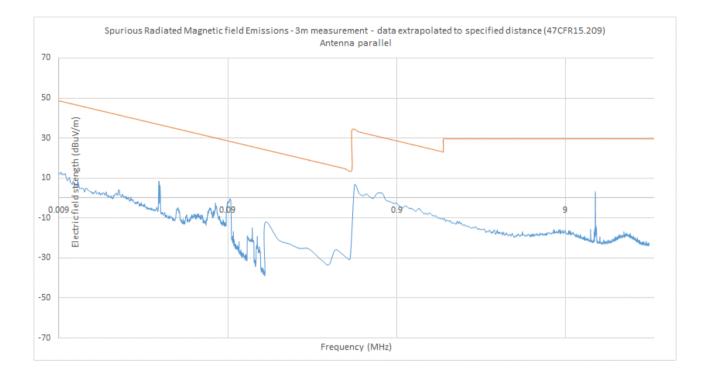
Table 3.2.2 Receiving antenna at 1m measurement height – Parallel orientation

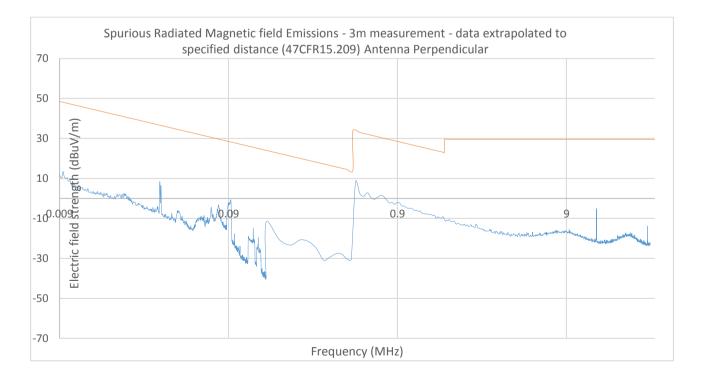
Freq	Rx	Pre- amp	Antenna	Distance correctio n factor	Result at 30m	Limit At 30m	Margin	Result
(MHz)	(dBµV)	(dB)	factor dB/m	(40dB/de cade)	(dBµV/m)	(dBµV/m)	(dB)	
13.11	16.6	-29.6	32.7	-40	-20.3	40.5.	-60.8	Below limit
13.41	17.5	-29.6	32.7	-40	-19.2	40.5	-59.7	Below limit
13.56	32.3	-29.6	32.7	-40	-4.6	84.0	-79.4	Below limit
13.71	14.8	-29.6	32.7	-40	-22.1	40.5	-62.6	Below limit
13.89	13.9	-29.6	32.7	-40	-23.0	40.5	-61.5	Below limit
14.01	13.41	-29.6	32.7	-40	-23.49	40.5	-64.0	Below limit

Table 3.2.2 Receiving antenna at 1m measurement height – Perpendicular orientation

Rx = Test receiver reading (voltage dBµV) before the addition of cable loss and antenna factor.

CL = total cable loss between antenna and test receiver (dB)


Result at 10m = Field strength (dB μ V/m) at a measurement distance of 10m, calculated as follows:


Field strength $(dB\mu V/m) = Rx (dBmV) + Antenna factor (dB/m)$

No radiated spurious emissions were detected from the product other than the carrier (13.56MHz). The above representative noise floor emissions were taken.

6.3.8 Magnetic field emissions,9kHz to 30MHz and outside the band 13.110MHz to 14.010MHz

The results of peak detector max-hold emission measurements are presented below. The measurements were taken using an SAC as initial measurements.

Freq	Rx	Pre- amp	Antenna	Distance correction factor	Result at 30m	Limit At 30m	Margin	Result
(MHz)	(dBμV)	(dB)	factor dB/m	(40dB/deca de)	(dBµV/m)	(dBµV/m)	(dB)	
0.090	39.8	29.8	67.6	-80	-2.4	28.5	-30.9	Below limit
0.150	9.6	29.7	63	-80	-37.1	24.1	-61.2	Below limit
0.508	23.5	29.7	52.5	-40	6.3	33.5	-27.2	Below limit
1.016	19.1	29.7	46.7	-40	-3.9	27.5	-31.4	Below limit
10.836	17.2	29.6	33.1	-40	-19.3	29.5	-48.8	Below limit
20.000	20.7	29.6	32.1	-40	-16.8	29.5	-46.3	Below limit

Table 3.2.2 Receiving antenna at 1m measurement height, Antenna parallel

Freq (MHz)	Rx (dBµV)	Pre- amp (dB)	Antenna factor dB/m	Distance correction factor (40dB/deca de)	Result at 30m (dBμV/m)	Limit At 30m (dBµV/m)	Margin (dB)	Result
0.09	39.7	29.8	67.6	-80	-2.5	28.5	-31	Below limit
0.15	8.4	29.7	63	-80	-38.3	24.1	-62.4	Below limit
0.5082	25.5	29.7	52.5	-40	8.3	33.5	-25.2	Below limit
1.01565	18.4	29.7	46.7	-40	-4.6	27.5	-32.1	Below limit
10.8363	18.2	29.6	33.1	-40	-18.3	29.5	-47.8	Below limit
20.0002	19	29.6	32.1	-40	-18.5	29.5	-48	Below limit

Table 3.2.2 Receiving antenna at 1m measurement height. Antenna perpendicular

No radiated spurious emissions were detected from the product other than the carrier (13.56MHz). The above representative noise floor emissions were taken.

Rx = Test receiver reading (voltage dBµV) before the addition of cable loss and antenna factor.

Result at 30m is calculated form a field strength ($dB\mu V/m$) at a measurement distance of 3m, as follows:

Field strength $(dB\mu V/m) = Rx (dB\mu V) - pre$ amplifier gain (dB) + Extrapolation (dB) + Antenna factor (dB/m)

6.3.9 Sample Data

Example:

At 20MHz

At 3m field strength = receiver reading (20.7dBuV)

-pre amplifier gain (29.6)

+ Antenna factor (32.1dB/m)+ extrapolation (-40dB)

= -16.8dBuV/m

The limit was calculated according to 47CFR15.209 table:

Between 0.009MHz and 0.490MHz

Limit (dBuV/m) at 300m = 20log₁₀(2400/F)

Between 0.490MHz and 30MHz

Limit (dBuV/m) at 300m = 20log₁₀(24000/F)

Where F is frequency in kHz.

6.4 Radiated Emissions (30MHz to 1GHz)

6.4.1 Limits at 3m

Frequency (MHz)	Class B (dBµV/m)
	Quasi Peak, Limit at 3m
30 - 88	40.0
88 -216	43.5
216 - 960	46.0
960- 1000	54.0

Note: FCC 47 CFR Part 15 Section 15.209 specifies test limits at 3m.

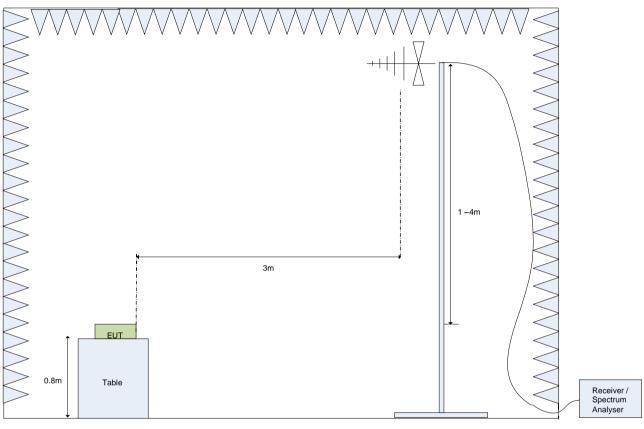
6.4.2 Receiver Settings

Receiver Parameters	Setting		
Detector Function	Quasi Peak		
Start Frequency	30MHz		
Stop Frequency	1000MHz		
Resolution Bandwidth	120kHz		
Video Bandwidth	Auto		

6.4.3 Emissions measurements

6.4.4 Date of Test

5th April 2018


6.4.5 Test Area

LAB 1 (SAC)

6.4.6 Test Setup

The EUT was configured in the SAC on an 80cm.

The measurement was performed with an antenna to EUT separation distance of 3m. The Quasi peak limits are therefore increased by 10dB (from the 10m values), to allow for the reduction in the measurement distance. The results were maximised in orientation 0-360 degrees and height 1-4m.

Reference Ground Plane

Figure 8: Test Setup for E-Field Measurements from 30MHz to 1GHz

- Note 1: With the EUT de-energized the ambient radio noise and signals met the 6dB peak detection requirement of ANSI C63.4-2014 Clause 5.1.3.
- Note 2 : There were no significant environmental temperature changes during the test duration and hence it was not considered necessary to consider any variation in cable loss.

6.4.7 Electric field emissions, 30MHz to 1GHz

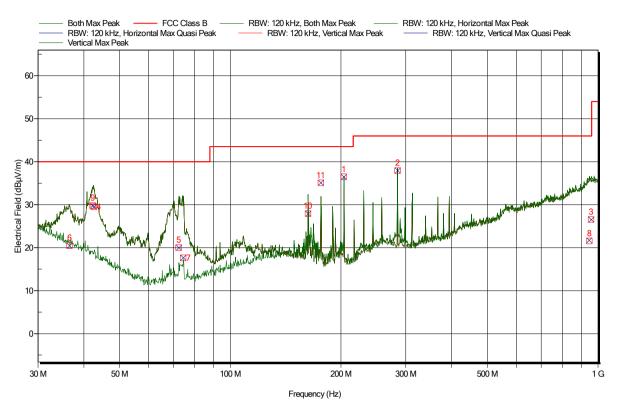


Figure 9: Electric field emissions Plot, 30MHz to 1GHz. Combined horizontal and vertical antenna polarisations

Frequency	Quasi- Peak	Quasi Peak Limit	Quasi- Peak Difference	Quasi- Peak Correction	Quasi- Peak Status	U	Height	Polarization
MHz	dBµV/m	dBµV/m	dB	dB		degrees	m	
36.540	20.5	40	-19.5	22.8	Pass	115	1	Vertical
42.240	29.8	40	-10.2	20.1	Pass	35	1	Vertical
42.540	29.5	40	-10.5	19.9	Pass	310	1	Vertical
72.420	20.0	40	-20	13.6	Pass	195	1.4	Vertical
74.460	17.6	40	-22.4	13.8	Pass	135	1.7	Vertical
162.720	27.9	43.5	-15.6	17.4	Pass	145	1.9	Horizontal
176.280	35.1	43.5	-8.4	16.7	Pass	65	1	Vertical
203.400	36.5	43.5	-7	16.6	Pass	310	1.6	Horizontal
284.760	38.0	46	-8	20.6	Pass	330	1	Horizontal
946.260	21.6	46	-24.4	34.8	Pass	85	3.3	Vertical
956.400	26.6	46	-19.4	34.9	Pass	295	1.4	Horizontal

 Table 3: Electric Field Emissions Peaks, 30MHz to 1GHz

6.4.8 Quasi Peak correction factors

The quasi peak correction is shown in the above table. This correction figure consists of), Antenna factor (AF); Attenuator loss (AL) and Cable loss (CL).

Field strength (FS) is calculated as follows:

FS $(dB\mu V/m)$ = Indicated Signal Level $(dB\mu V)$ + AF (dB) + AL (dB) + CL (dB)

6.4.9 Sample Data

The Quasi-Peak level at 203.4MHz

FS (dB μ V/m) = 19.9(dBmV) + 15.6 (dB/m) +1.0(dB) = 36.5 (dB μ V/m)

Section 7 Frequency Stability

FCC Rule	47CFR 15.225 (e) – Frequency tolerance with temperature variation
Standard	ANSI C63.10:2013
Measurement Uncertainty	The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95% is $\pm 1 \times 10^{-8}$

±1x10⁻⁸

7.1.1 Date of Test

5th April 2018

7.1.2 Test Area

Environmental chamber Asset number: C0412.

7.1.3 Procedure

For frequency stability with respect to supply voltage the procedures of ANSIC63.10 Section 6.8.2 were followed. The measurements were performed at ambient room temperature.

For frequency stability with respect to ambient temperature the procedure of ANSI C63.10 Section 6.8.1 was followed.

7.1.4 Test Results

Supply volta	age (V ac)	Frequency (MHz)	Nominal Deviation		Limit	Result
115% of Nom	138	13.559497	13.56	0.00370944	0.01	Within limit
85% of Nom	102	13.559497	13.56	0.00370944	0.01	Within limit

Frequency stability with supply voltage

Temperature C	Time	Frequency (MH)	Nominal	Deviation %	Limit 47CFR15.225 %	Result
	Startup	13.559434	13.56	0.004174041	0.01	Within Limit
50	2min	13.559432	13.56	0.004188791	0.01	Within Limit
50	5min	13.559427	13.56	0.004225664	0.01	Within Limit
	10min	13.559422	13.56	0.004262537	0.01	Within Limit
	Startup	13.55943	13.56	0.00420354	0.01	Within Limit
40	2min	13.559424	13.56	0.004247788	0.01	Within Limit
40	5min	13.559423	13.56	0.004255162	0.01	Within Limit
	10min	13.559425	13.56	0.004240413	0.01	Within Limit
	Startup	13.559428	13.56	0.004218289	0.01	Within Limit
30	2min	13.559431	13.56	0.004196165	0.01	Within Limit
30	5min	13.559434	13.56	0.004174041	0.01	Within Limit
	10min	13.55944	13.56	0.004129794	0.01	Within Limit
	Startup	13.559486	13.56	0.00379056	0.01	Within Limit
20	2min	13.559482	13.56	0.003820059	0.01	Within Limit
20	5min	13.559481	13.56	0.003827434	0.01	Within Limit
	10min	13.559483	13.56	0.003812684	0.01	Within Limit
	Startup	13.559525	13.56	0.00350295	0.01	Within Limit
10	2min	13.559518	13.56	0.003554572	0.01	Within Limit
10	5min	13.559517	13.56	0.003561947	0.01	Within Limit
	10min	13.559518	13.56	0.003554572	0.01	Within Limit
	Startup	13.559523	13.56	0.003517699	0.01	Within Limit
0	2min	13.559525	13.56	0.00350295	0.01	Within Limit
0	5min	13.55953	13.56	0.003466077	0.01	Within Limit
	10min	13.559539	13.56	0.003399705	0.01	Within Limit
	Startup	13.559552	13.56	0.003303835	0.01	Within Limit
10	2min	13.559566	13.56	0.00320059	0.01	Within Limit
-10	5min	13.559569	13.56	0.003178466	0.01	Within Limit
	10min	13.559571	13.56	0.003163717	0.01	Within Limit
	Startup	13.55955	13.56	0.003318584	0.01	Within Limit
20	2min	13.559661	13.56	0.0025	0.01	Within Limit
-20	5min	13.559566	13.56	0.00320059	0.01	Within Limit
	10min	13.559567	13.56	0.003193215	0.01	Within Limit

Frequency stability with temperature

Section 8 Variation of field strength with operating voltage

FCC Rule	47CFR 15.31 (e) – Frequency tolerance with temperature variation
Standard	ANSI C63.10:2013
Measurement Uncertainty	The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95% is +/- 4.2dB

8.1.1 Date of Test

11th April 2018

8.1.2 Test Area

Lab 1

8.1.3 Procedure

For field strength respect to supply voltage the procedures of ANSIC63.10 Section 5.13 were followed.

8.1.4 Test Results

Supply voltage	Orientation	Freq (MHz)	Rx	Pre- amp	Antenna factor	Distance correction factor	Result at 30m	Limit At 30m	Margin	Result
(V ac)			(dBµV)	(dB)	dB/m	(40dB/deca de)	(dBµV/m)	(dBµV/m)	(dB)	
102	Perp.	13.56	37.0	29.6	32.7	-40	0.1	84.0	-83.9	Below limit
138	Perp.	13.56	35.5	29.6	32.7	-40	-1.4	84.0	-85.4	Below limit
102	Parallel	13.56	37.3	29.6	32.7	-40	0.4	84.0	-83.6	Below limit
138	Parallel	13.56	37.3	29.6	32.7	-40	0.4	84.0	-83.6	Below limit

Rx = Test receiver reading (voltage dBµV) before the addition of cable loss and antenna factor.

Result at 30m is calculated form a field strength ($dB\mu V/m$) at a measurement distance of 3m, as follows:

Field strength (dB μ V/m) = Rx (dB μ V) – pre amplifier gain (dB)+ Extrapolation (dB) + Antenna factor (dB/m)

Section 9 20dB bandwidth

FCC Rule	47CFR 15.215 (c) – 20dB Bandwidth
Standard	ANSI C63.10:2013
Measurement Uncertainty	The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95% is $\pm 1 \times 10^{-8}$

9.1.1 Date of Test

5th April 2018

9.1.2 Test Area

Lab 1

9.1.3 Procedure

For 20dB bandwidth the procedures of ANSIC63.10 Section 6.9.2 were followed.

9.1.4 Test Results

The 20dB bandwidth was measured using the bandwidth function of the signal analyser and the procedures of Clause 6.9.2 of ANSI C63.10-2013.

The measured 20dB bandwidth was 440.5kHz which was contained within the operating band 13.110 to 14.01MHz.

Multic R SOQ DC SUBJECT Marker (Free D2:32:00 PM prof. 2018 Trace/Detector VBW 82.000 KHz NFE Image: Second Million (Second	Keysight Spectrum Analyzer - Occupied BV						
NFE Trg: Free Run Avg[Hold:>1010 Radio Device: BTS 10 dB/div Ref -18.00 dBm Clear Write 230	<mark> </mark>					Trace	Detector
10 dB/div Ref -18.00 dBm Log 30 40 40 40 40 40 40 40 40 40 4					vice: BTS		
Log 280 480 480 480 480 480 480 480 4		#IFGain:Low #Atten		Radio De	vice. B13		
Log 280 480 480 480 480 480 480 480 4	10 dB/din Dof -12 00 dB	m					
380 Clear Write 480 Average 580 Average 580 Max Hold 680 Total Power 99.00 % x dB Bandwidth 440.5 kHz % of OBW Power 99.00 % x dB Bandwidth 440.5 kHz x dB 600 Span 3 MHz Min Hold Max Hold	Log						
Average Average Average Average Average Max Hold Center 13.56 MHz Res BW 27 kHz Transmit Freq Error x dB Bandwidth 440.5 kHz x dB Caller 440.5 kHz x dB Cal						c	ear Write
Average Average Average Average Average Average Max Hold Center 13.56 MHz Res BW 27 kHz Transmit Freq Error x dB Bandwidth 440.5 kHz X dB Bandwidth 440.5 kHz X dB Bandwidth Average Average Average Average Max Hold Detector Average Max Hold Max Hold Max Hold Max Hold Max Hold Max Hold Max Hold Max Hold Max Hold Average Max Hold Max Hold Max Hold Max Hold Max Hold Average Max Hold Average Max Hold Average Max Hold Max Hold Max Hold Max Hold Max Hold Average Max Hold Average Man Average Average Man Average Max Hold Average Max Hold Average Max Hold Average Max Hold Average Max Hold Average Max Hold Average Max Hold Average Max Hold Average Man Auto	-38.0					Ŭ	
Average Average Average Max Hold Center 13.56 MHz Res BW 27 kHz Span 3 MHz Sysep 5.133 ms Average Max Hold Max Hold							
78.0 69.0 100 Center 13.56 MHz Res BW 27 kHz Span 3 MHz Syme 5.133 ms Cocupied Bandwidth 495.45 kHz Transmit Freq Error x dB Bandwidth 440.5 kHz x dB Bandwidth 440.5 kHz x dB Bandwidth 440.5 kHz Cocupied Bandwidth Cocupied Bandwi		a Carly N					
^{68.0} ^{98.0} ¹⁰⁰ ¹⁰							Average
98.0 Max Hold 100 Span 3 MHz Center 13.56 MHz Span 3 MHz Res BW 27 kHz Span 3 MHz #VBW 82 kHz Sweep 5.133 ms Occupied Bandwidth Total Power 495.45 kHz Detector Average > Average > x dB Bandwidth 440.5 kHz x dB x dB Bandwidth 440.5 kHz x dB							
108 Image: Span 3 MHz Span 3 MHz Sweep 5.133 ms Center 13.56 MHz Res BW 27 kHz #VBW 82 kHz Span 3 MHz Sweep 5.133 ms Occupied Bandwidth Total Power -29.9 dBm 495.45 kHz % of OBW Power 99.00 % x dB Bandwidth 440.5 kHz x dB -20.00 dB -20.00 dB Man	. A AAD AA	MARIN (MARINE)		han ha an an an			
Center 13.56 MHz Res BW 27 kHz Span 3 MHz Sweep 5.133 ms Min Hold Occupied Bandwidth 495.45 kHz Total Power -29.9 dBm Transmit Freq Error -32.788 kHz % of OBW Power 99.00 % x dB Bandwidth 440.5 kHz x dB -20.00 dB	MYLAMI'A ALA LA L			┞┥ <u>┟</u> ┙╹╵┣┩╹╝┩╱╎ <u>╟</u> ║╎╢	Mal Martin		Max Hold
Res BW 27 kHz #VBW 82 kHz Sweep 5.133 ms Min Hold Occupied Bandwidth Total Power -29.9 dBm 495.45 kHz More of OBW Power 99.00 % Transmit Freq Error -32.788 kHz % of OBW Power 99.00 % x dB Bandwidth 440.5 kHz x dB -20.00 dB Man	-108 # 1 1 1 1 1			<u> </u>			
Occupied Bandwidth Total Power -29.9 dBm 495.45 kHz Detector Transmit Freq Error -32.788 kHz % of OBW Power 99.00 % x dB Bandwidth 440.5 kHz x dB -20.00 dB	Center 13.56 MHz			Sp	oan 3 MHz		
495.45 kHz Detector Transmit Freq Error -32.788 kHz % of OBW Power 99.00 % x dB Bandwidth 440.5 kHz x dB -20.00 dB	Res BW 27 kHz	#\	/BW 82 kHz	Sweep	5.133 ms		Min Hold
495.45 kHz Detector Transmit Freq Error -32.788 kHz % of OBW Power 99.00 % x dB Bandwidth 440.5 kHz x dB -20.00 dB	Occupied Bandwidt	b	Total Power	-29 9 dBm			
Transmit Freq Error -32.788 kHz % of OBW Power 99.00 % x dB Bandwidth 440.5 kHz x dB -20.00 dB				2010 0811			
Transmit Freq Error -32.788 kHz % of OBW Power 99.00 % Auto Man x dB Bandwidth 440.5 kHz x dB -20.00 dB Image: Comparison of	4	95.45 KHZ					
	Transmit Freq Error	-32.788 kHz	% of OBW Power	99.00 %		<u>Auto</u>	-
	x dB Bandwidth	440.5 kHz	x dB	-20.00 dB			
MSG STATUS Align Now All required							
MSG STATUS Align Now All required							
MSG STATUS SAlign Now All required							
	MSG			STATUS 🐼 Align N	Now All require	ed	

20dB Bandwidth measurement

Appendix A Test Equipment List

Conducted Emissions

ltem	Serial No.	Last Calibration Date	Calibration Interval
Keysight MXE EMI Receiver	MY51210185	15/03/2017	15 Months
Rohde & Schwarz ESH3-Z5 plus calibrated mains lead (C0448)	831767/010	26/01/18	12 Months
Cable	LF3	15/052017	12 Months
Cable	J7	15/05/2017/2017	12 Months
Cable	J9	15/05/2017/2017	12 Months
Teseq 10dB Transient limiter	34718	10/05/2017	12 Months

Radiated Emissions Equipment

Item	Serial No.	Last Calibration Date	Calibration Interval	
Laboratory 1 Semi-Anechoic Chamber	Lab 1	07/12/2016	24 Months	
ETS Lindgren 2017B Mast (1 – 4m)		N/A	N/A	
EMCO Loop antenna 6512	00148043	20/04/2016	24 Months	
Chase CPA9231 Pre amplifier	1434	14/02/2017	12 Months	
HF18 Cable (For use from 9kHz to 18GHz)	167004-001	15/05/2017	12 Months	
Keysight MXE EMI Receiver	MY51210185	15/03/2017	15 Months	
Chase CBL6112B Bilog Antenna 78167		16/11/2016	18 Months	
HF14 Cable (For use from 9kHz to 18GHz)	167003-001	15/05/2017	12 Months	
HF17 Cable (For use from 9kHz to 18GHz)	167002-001	15/05/2017	12 Months	