FCC TEST REPORT

FCC ID: 2BFRU-Q32

Report No. : SSP23090157-1E

Applicant : Shenzhen ZhiHuiJu Technology Co.,Ltd

Product Name : Smart watch

Model Name : Q32

Test Standard: FCC Part 15.247

Date of Issue : 2024-05-27

Shenzhen CCUT Quality Technology Co., Ltd.

1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)

This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.

FCC Test Report Page 1 of 32

Test Report Basic Information

Applicant..... Shenzhen ZhiHuiJu Technology Co.,Ltd Room A315, Block A, Huafeng International Robot Industrial Park, Gushu Address of Applicant..... Xixiang, Baoan District, Shenzhen, China Manufacturer..... Shenzhen ZhiHuiJu Technology Co.,Ltd Room A315, Block A, Huafeng International Robot Industrial Park, Gushu Address of Manufacturer.....: Xixiang, Baoan District, Shenzhen, China Product Name..... Smart watch Brand Name..... Main Model...... Q32 Series Models....: Q19 MAX FCC Part 15 Subpart C KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.4-2014 Test Standard....: ANSI C63.10-2013 Date of Test 2024-05-20 to 2024-05-27 Test Result....: PASS Tested By: **APPROVE** Authorized Signatory.....: (Lahm Peng)

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.. All test data presented in this test report is only applicable to presented test sample.

Page 2 of 32 **FCC Test Report**

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	6
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	10
3.1 Standard and Limit	
3.2 Test Result	10
4. Conducted Emissions	11
4.1 Standard and Limit	11
4.2 Test Procedure	11
4.3 Test Data and Results	12
5. Radiated Emissions	15
5.1 Standard and Limit	15
5.2 Test Procedure	
5.3 Test Data and Results	17
6. Band-edge Emissions(Radiated)	21
6.1 Standard and Limit	
6.2 Test Procedure	
6.3 Test Data and Results	21
7. Maximum Conducted Output Power	23
7.1 Standard and Limit	
7.2 Test Procedure	
7.3 Test Data and Results	
8. Occupied Bandwidth	
8.1 Standard and Limit	
8.2 Test Procedure	
8.3 Test Data and Results	
9. Maximum Power Spectral Density	
9.1 Standard and Limit.	
9.2 Test Procedure	
9.3 Test Data and Results	
10. Band-edge Emission(Conducted)	
10.1 Standard and Limit	
10.2 Test Procedure	
10.3 Test Data and Results	
11. Conducted RF Spurious Emissions	
11.1 Standard and Limit	
11.2 Test Procedure	
11.2 Test Procedure	

Report No: SSP23090157-1E

Revision	Issue Date	Description	Revised By
V1.0	2024-05-27	Initial Release	Lahm Peng

FCC Test Report Page 4 of 32

1. General Information

1.1 Product Information

Product Name:	Smart watch
Trade Name:	-
Main Model:	Q32
Series Models:	Q19 MAX
Rated Voltage:	DC 3.8V by battery, USB 5V Charging
Battery:	DC 3.8V, 370mAh
Hardware Version:	Q32-PCB-V1.5
Software Version:	V1.0

Report No: SSP23090157-1E

Note 1: The test data is gathered from a production sample, provided by the manufacturer.

Note 2: The color of appearance and model name of series models listed are different from the main model, but the circuit and the electronic construction are the same, declared by the manufacturer.

Wireless Specification			
Wireless Standard:	Bluetooth BLE		
Operating Frequency:	2402MHz ~ 2480MHz		
RF Output Power:	-0.12dBm		
Number of Channel:	40		
Channel Separation:	2MHz		
Modulation:	GFSK		
Antenna Gain:	-0.18dBi		
Type of Antenna:	Integral Antenna		
Type of Device:	☐ Portable Device ☐ Mobile Device ☐ Modular Device		

FCC Test Report Page 5 of 32

1.2 Test Setup Information

List of Test Modes							
Test Mode	De	escription		Remark			
TM1	BL	LE_1Mbps		2402/2440/2480MHz			
List and Detail	ls of Auxiliary	/ Cable					
Descrip	otion	Length (cm)		Shielded/Unshielded	With/Without Ferrite		
-		-		-	-		
List and Details of Auxiliary Equipment							
Descrip	otion	Manufacturer		Manufacturer		Model	Serial Number
Adap	ter	Huawei		HW-100225C00	N/A		
-		-		-	-		

Report No: SSP23090157-1E

List of Chann	nels						
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	11	2422	21	2442	31	2462
02	2404	12	2424	22	2444	32	2464
03	2406	13	2426	23	2446	33	2466
04	2408	14	2428	24	2448	34	2468
05	2410	15	2430	25	2450	35	2470
06	2412	16	2432	26	2452	36	2472
07	2414	17	2434	27	2454	37	2474
08	2416	18	2436	28	2456	38	2476
09	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

FCC Test Report Page 6 of 32

1.3 Compliance Standards

Compliance Standards				
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
1 dd 1 art 15 Sabpart d	Intentional Radiators			
All measurements contained in this	report were conducted with all above standards			
According to standards for test	methodology			
ECC Dart 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
FCC Part 15 Subpart C	Intentional Radiators			
WDD 550054 D04 45 245 M	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION			
KDB 558074 D01 15.247 Meas Guidance v05r02	SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM			
Guidance v03102	DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES			
	American National Standard for Methods of Measurement of Radio-Noise Emissions			
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40			
	GHz.			
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed			
ANSI C03.10-2013	Wireless Devices			
Maintenance of compliance is the re	esponsibility of the manufacturer or applicant. Any modification of the product, which			

Report No: SSP23090157-1E

Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which result is lowering the emission, should be checked to ensure compliance has been maintained.

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.		
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,		
	Guangming District, Shenzhen, Guangdong, China		
CNAS Laboratory No.:	L18863		
A2LA Certificate No.:	6893.01		
FCC Registration No:	583813		
ISED Registration No.:	CN0164		
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing			

All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.

FCC Test Report Page 7 of 32

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
Conducted Emissions					
AMN	ROHDE&SCHWARZ	ENV216	101097	2023-10-21	2024-10-20
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2023-07-31	2024-07-30
		Radiated Emission	ons		
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2023-07-31	2024-07-30
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2023-07-31	2024-07-30
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2023-07-31	2024-07-30
Amplifier	SCHWARZBECK	BBV 9743B	00251	2023-07-31	2024-07-30
Amplifier	HUABO	YXL0518-2.5-45		2023-07-31	2024-07-30
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2023-07-31	2024-07-30
Loop Antenna	DAZE	ZN30900C	21104	2023-08-07	2024-08-06
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2023-08-07	2024-08-06
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2023-08-07	2024-08-06
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2023-08-07	2024-08-06
Conducted RF Testing					
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2023-07-31	2024-07-30
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2023-07-31	2024-07-30

Report No: SSP23090157-1E

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
Padiated Emissions	30MHz ∼ 1GHz	±3.32 dB
Radiated Emissions	1GHz ∼ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB

FCC Test Report Page 8 of 32

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(b)(3)	Maximum Conducted Output Power	Passed
FCC Part 15.247(a)(2)	Occupied Bandwidth	Passed
FCC Part 15.247(e)	Maximum Power Spectral Density	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed

Report No: SSP23090157-1E

Passed: The EUT complies with the essential requirements in the standard

Failed: The EUT does not comply with the essential requirements in the standard

N/A: Not applicable

FCC Test Report Page 9 of 32

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No: SSP23090157-1E

3.2 Test Result

This product has an Integral antenna, fulfill the requirement of this section.

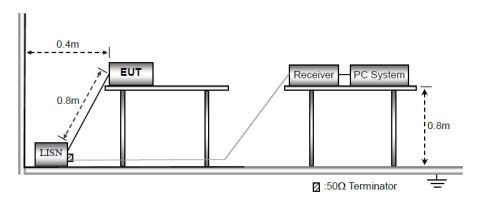
FCC Test Report Page 10 of 32

4. Conducted Emissions

4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	


Report No: SSP23090157-1E

Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz

Note 2: The lower limit applies at the band edges

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver

Attenuation: 10dB

Start Frequency: 0.15MHz Stop Frequency: 30MHz IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

FCC Test Report Page 11 of 32

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No: SSP23090157-1E

- e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f) LISN is at least 80 cm from nearest part of EUT chassis.
- g) For the actual test configuration, please refer to the related Item photographs of the test setup.

4.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 12 of 32

Test V	d Mode:	TM1							
		1 1/1 1							
	oltage:	AC 12	20V/60Hz						
Test P	ower Line:	Neut	ral						
Remai	rk:								
90.0	dBuV	·							
80									
70	_							_	
60								_	FCC Part15 CE-Class B_QP
50									FCC Part15 CE-Class B_AVe
			3						
40	1 1 1 A A M	MALAN			5	Z			11
30	~ \\\\\\	M ANAA	ILL TAWA	MANAGER TO BE AND THE PORT OF	JAPANA HUM	WAY WALL		Area de la Contraction de la C	9
20		ship		physiology, made seath		8 14	Ma JAM.		1710/174/A
10					Land Market	Service Market		W	
									peal
0 -10									**************************************
0.19	50	0.50	<u> </u>		(MHz)		5.0	100	30.000
	T_				I	I			I
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.2265	28.41	9.63	38.04	62.58	-24.54	QP	Р	
2	0.2265	12.93	9.63	22.56	52.58	-30.02	AVG	Р	
3 *	0.7035	31.93	9.62	41.55	56.00	-14.45	QP	Р	
4	0.7035	16.55	9.62	26.17	46.00	-19.83	AVG	Р	
5	1.6845	24.16	10.04	34.20	56.00	-21.80	QP	Р	
6	1.6845	11.13	10.04	21.17	46.00	-24.83	AVG	Р	
7	3.0615	22.84	10.09	32.93	56.00	-23.07	QP	Р	
8	3.0615	11.53	10.09	21.62	46.00	-24.38	AVG	Р	
9	7.9530	21.05	10.25	31.30	60.00	-28.70	QP	Р	
10	7.9530	12.24	10.25	22.49	50.00	-27.51	AVG	Р	
11	22.0290	22.15	10.41	32.56	60.00	-27.44	QP	Р	
12	22.0290	17.11	10.41	27.52	50.00	-22.48	AVG	Р	

FCC Test Report Page 13 of 32

Test	Plot	ts and Data	of Co	ndu	cted	Emi	issio	ons													
Teste	ed M	lode:		TM	M1																
Test	Volt	age:		AC	120V/60Hz																
Test	Pow	ver Line:		Live	9																
Rema	ark:																				
90.0	d	lBuV																			_
80																					
70																					-
60			_												FCC	Par	t15 CE	-Class	B_Q	Р	
50			-												FCC	Par	115 CE	-Class	B_A	Ve	-
40	_	1 A A	M M .		_	<u>\$</u>					Z				9					11	-
30	لما	\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	MA	/W/W	Y	MIV \$	hadhyy H	Pypylyway, shada, da	ware by the	Mayd	LANAN SA	lhylvo	at and spilling of		V.	νų	AJJ.			12 	-
20	~_			W	VV	44		and the second s	Married Wall	Manager	haranda hara			$\downarrow \downarrow \downarrow$	1	Ш	177 W	undal/			
10												- Julio			1	# \ 1					peak
-10																					AVG
0.	150			0.	500				(M	Hz)			5.0	000						30.0	īōo
No).	Frequency (MHz)		ading BuV)		acto (dB)		Level (dBuV)	Lim (dBu		Margi (dB)		Detector	P/F	Re	ma	rk				
1		0.1860	30	.68		9.01		39.69	64.2	1	-24.5	2	QP	Р							
2		0.1860	14	.29	-	9.01		23.30	54.2		-30.9	-	AVG	Р							
3	\perp	0.3165		.67		9.78	_	36.45	59.8		-23.3	-	QP	Р							
4	_	0.3165		.98	_	9.78	\rightarrow	21.76	49.8		-28.04	-	AVG	P							
5	*	0.6945		.05	_	9.84	\rightarrow	39.89	56.0		-16.1	-	QP	Р							
6	\perp	0.6945		.04	_	9.84	\rightarrow	24.88	46.0		-21.1	-	AVG	Р							
7	\perp	3.0570		.43	-	0.1	\rightarrow	33.54	56.0		-22.4	-	QP	Р							
8	_	3.0570		.53	_	0.1	\rightarrow	25.64	46.0		-20.3	-	AVG	Р							
9	\perp	7.9485		.24	_	0.20	\rightarrow	33.44	60.0		-26.5	-	QP	Р							
10	\rightarrow	7.9485		.81	_	0.20	\rightarrow	25.01	50.0		-24.9	_	AVG	Р							
11	\rightarrow	22.0200 22.0200		.83	_	0.44	\rightarrow	33.27 28.62	60.0 50.0		-26.73	-	QP AVG	P							
														l							

FCC Test Report Page 14 of 32

5. Radiated Emissions

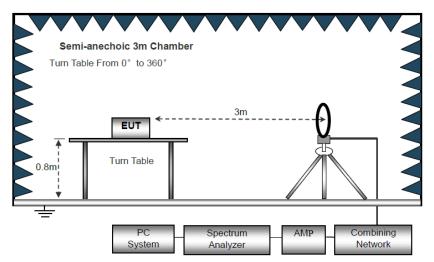
5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

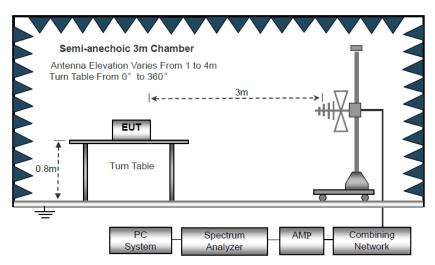
Report No: SSP23090157-1E

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

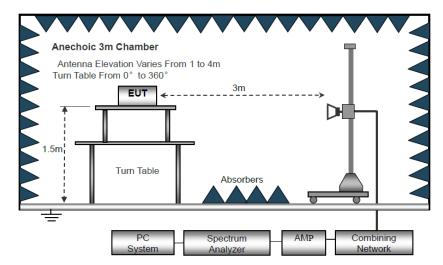
Frequency of Emission	Field Strength	Measurement Distance				
(MHz)	(micorvolts/meter)	(meters)				
0.009~0.490	2400/F(kHz)	300				
0.490~1.705	24000/F(kHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				
Note: The more stringent limit applies at transition frequencies.						


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


FCC Test Report Page 15 of 32

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

FCC Test Report Page 16 of 32

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

Report No: SSP23090157-1E

- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest
- c) Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

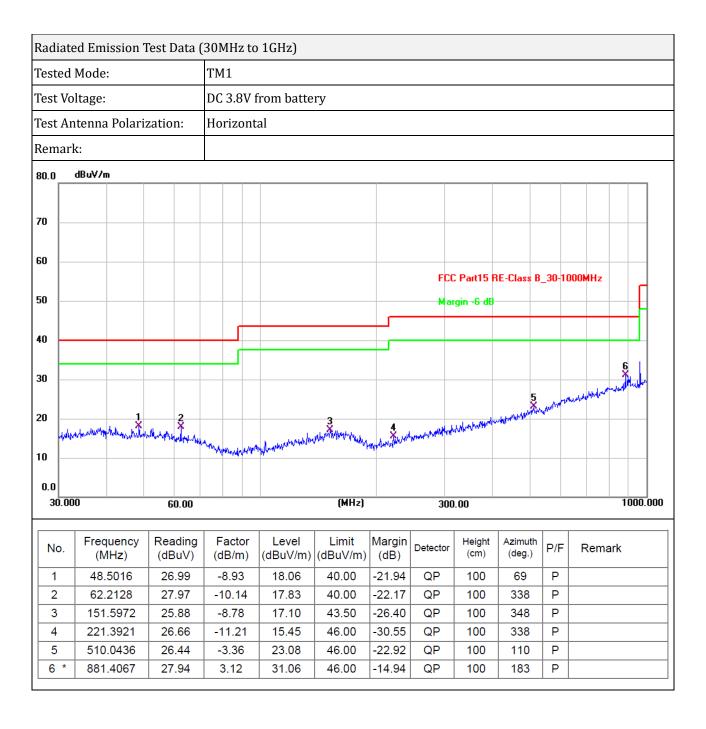
RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz

VBW ≥ RBW, Sweep = auto

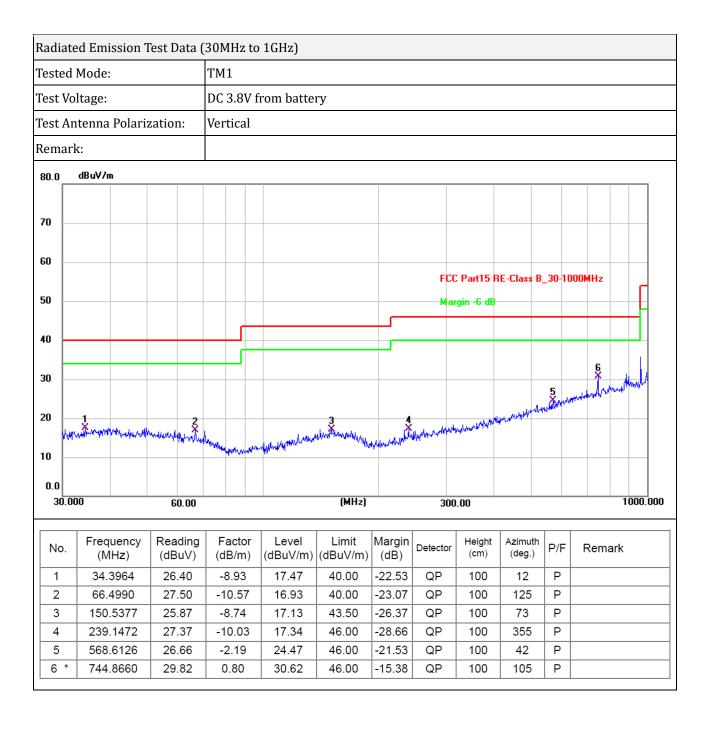
Detector function = peak

Trace = max hold

emissions.


- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.
- f) For the actual test configuration, please refer to the related item EUT test photos.

5.3 Test Data and Results


Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case BLE_1Mbps 2402MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 17 of 32

FCC Test Report Page 18 of 32

FCC Test Report Page 19 of 32

Frequency

MHz

4804

4804

Radiated Emission Test Data (Above 1GHz)

Correct

dB/m

-14.72

-14.72

Result

dBuV/m

62.63

46.57

Lowest Channel (2402MHz)

Limit

dBuV/m

74

54

Reading

dBuV/m

77.35

61.29

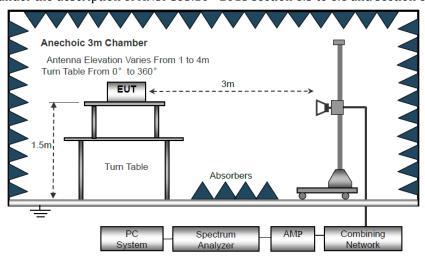
7206	65.37	-8.41	56.96	74	-17.04	Н	PK
7206	45.45	-8.41	37.04	54	-16.96	Н	AV
4804	76.4	-14.72	61.68	74	-12.32	V	PK
4804	57.84	-14.72	43.12	54	-10.88	V	AV
7206	63.89	-8.41	55.48	74	-18.52	V	PK
7206	48.2	-8.41	39.79	54	-14.21	V	AV
			Middle Chann	el (2440MHz)			
4880	76.57	-14.64	61.93	74	-12.07	Н	PK
4880	61.36	-14.64	46.72	54	-7.28	Н	AV
7320	64.87	-8.28	56.59	74	-17.41	Н	PK
7320	50.81	-8.28	42.53	54	-11.47	Н	AV
4880	73.19	-14.64	58.55	74	-15.45	V	PK
4880	59.66	-14.64	45.02	54	-8.98	V	AV
7320	64.88	-8.28	56.6	74	-17.4	V	PK
7320	47.2	-8.28	38.92	54	-15.08	V	AV
			Highest Chanr	nel (2480MHz)			
4960	75.01	-14.53	60.48	74	-13.52	Н	PK
4960	59.54	-14.53	45.01	54	-8.99	Н	AV
7440	62.33	-8.13	54.2	74	-19.8	Н	PK
7440	50.91	-8.13	42.78	54	-11.22	Н	AV
4960	74.46	-14.53	59.93	74	-14.07	V	PK
4960	59.99	-14.53	45.46	54	-8.54	V	AV
7440	62.78	-8.13	54.65	74	-19.35	V	PK
7440	47.39	-8.13	39.26	54	-14.74	V	AV

 $Note\ 2:\ Testing\ is\ carried\ out\ with\ frequency\ rang\ 9kHz\ to\ the\ tenth\ harmonics.\ The\ measurements\ greater\ than$ 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.

Page 20 of 32 **FCC Test Report**

6. Band-edge Emissions(Radiated)


6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP23090157-1E

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case as below:

FCC Test Report Page 21 of 32

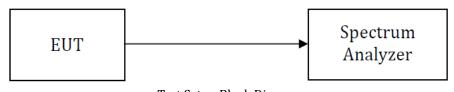
Test Mode	Frequency	Limit	Result
rest Mode	MHz	dBuV/dBc	Result
Loveget	2310.00	<54 dBuV	Pass
Lowest	2390.00	<54 dBuV	Pass
Highest	2483.50	<54 dBuV	Pass
Highest	2500.00	<54 dBuV	Pass

Radiated Em	ission Test Dat	ta (Band edge	emissions)						
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector		
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV		
Lowest Channel (GFSK 2402MHz)									
2310	64.39	-21.34	43.05	74	-30.95	Н	PK		
2310	50.92	-21.34	29.58	54	-24.42	Н	AV		
2390	68.8	-20.96	47.84	74	-26.16	Н	PK		
2390	49.31	-20.96	28.35	54	-25.65	Н	AV		
2400	68.24	-20.91	47.33	74	-26.67	Н	PK		
2400	56.96	-20.91	36.05	54	-17.95	Н	AV		
2310	65.5	-21.34	44.16	74	-29.84	V	PK		
2310	49.78	-21.34	28.44	54	-25.56	V	AV		
2390	67.63	-20.96	46.67	74	-27.33	V	PK		
2390	49.11	-20.96	28.15	54	-25.85	V	AV		
2400	74.52	-20.91	53.61	74	-20.39	V	PK		
2400	53.54	-20.91	32.63	54	-21.37	V	AV		
		Hig	ghest Channel	(GFSK 2480M	Hz)				
2483.50	69.6	-20.51	49.09	74	-24.91	Н	PK		
2483.50	55.65	-20.51	35.14	54	-18.86	Н	AV		
2500	67.89	-20.43	47.46	74	-26.54	Н	PK		
2500	51.08	-20.43	30.65	54	-23.35	Н	AV		
2483.50	68.08	-20.51	47.57	74	-26.43	V	PK		
2483.50	54.91	-20.51	34.4	54	-19.6	V	AV		
2500	66.33	-20.43	45.9	74	-28.1	V	PK		
2500	51.89	-20.43	31.46	54	-22.54	V	AV		

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 22 of 32

7. Maximum Conducted Output Power

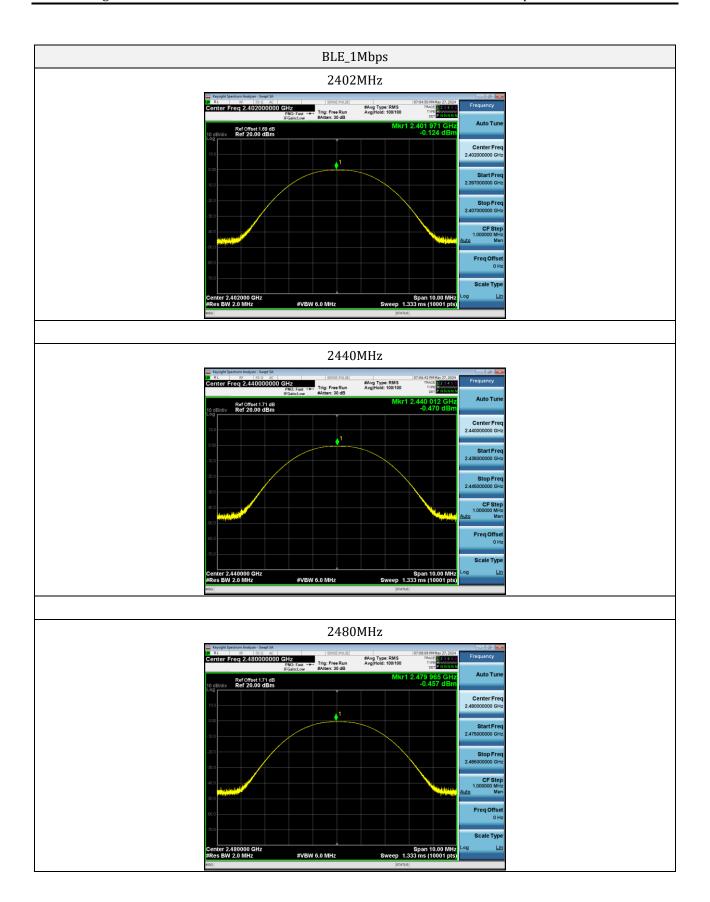

7.1 Standard and Limit

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

Report No: SSP23090157-1E

7.2 Test Procedure

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 2MHz, VBW = 6MHz, Sweep = Auto, Detector = Average.
- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat the above procedures until all frequencies measured were complete.



Test Setup Block Diagram

7.3 Test Data and Results

Test Mode	Test Channel MHz	Conducted Output Power (dBm)	Limit (dBm)	Test Result
BLE_1Mbps	2402	-0.12	30	Pass
	2440	-0.47	30	Pass
	2480	-0.46	30	Pass

FCC Test Report Page 23 of 32

FCC Test Report Page 24 of 32

8. Occupied Bandwidth

8.1 Standard and Limit

According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No: SSP23090157-1E

8.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto.
- 4) Set a reference level on the measuring instrument equal to the highest peak value.
- 5) Measure the frequency difference of two frequencies that were attenuated 6dB from the reference level. Record the frequency difference as the emission bandwidth.
- 6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

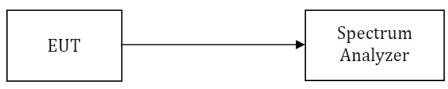
8.3 Test Data and Results

Tost Mode	Test Channel	6dB Bandwidth	99% Bandwidth	6 dB Bandwidth Limit	Toot Dogult
Test Mode	(MHz)	(MHz)	(MHz)	(MHz)	Test Result
	2402	0.699	1.03	0.5	Pass
BLE_1Mbps	2440	0.691	1.031	0.5	Pass
	2480	0.705	1.032	0.5	Pass

FCC Test Report Page 25 of 32

FCC Test Report Page 26 of 32

9. Maximum Power Spectral Density

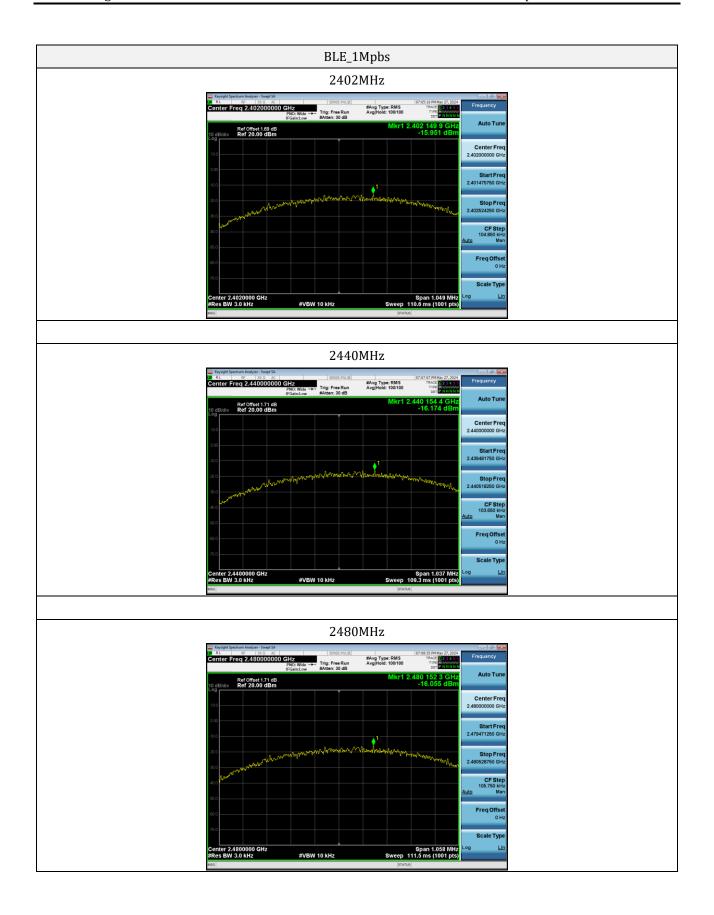

9.1 Standard and Limit

According to FCC 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No: SSP23090157-1E

9.2 Test Procedure

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 3kHz, VBW = 10kHz, Sweep = Auto, Detector = RMS.
- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat above procedures until all frequencies measured were complete.



Test Setup Block Diagram

9.3 Test Data and Results

Test Mode	Test Channel	Power Spectral Density	Limit	Test Result
rest Mode	MHz	(dBm/3kHz)	(dBm/3kHz)	rest Result
	2402	-15.95	8	Pass
BLE_1Mbps	2440	-16.17	8	Pass
	2480	-16.06	8	Pass

FCC Test Report Page 27 of 32

FCC Test Report Page 28 of 32

10. Band-edge Emission(Conducted)

10.1 Standard and Limit

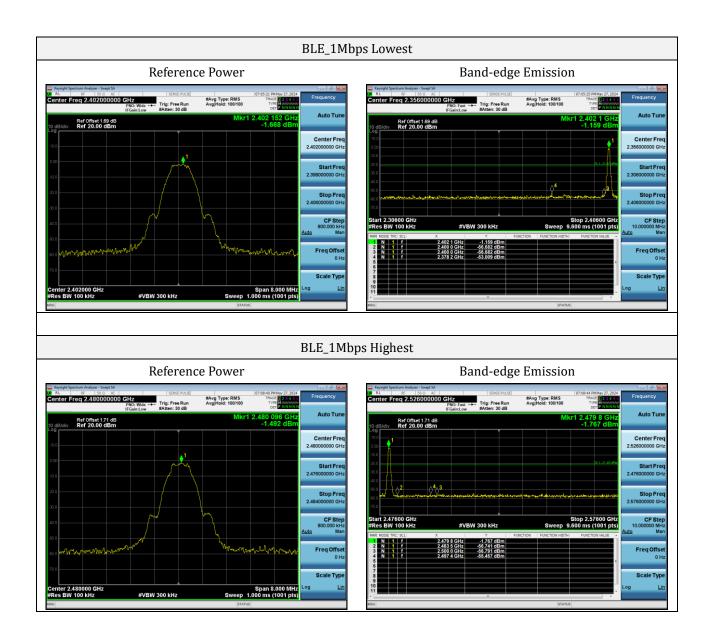
According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP23090157-1E

10.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = RMS.
- 4) Measure the highest amplitude appearing on spectral display and set it as a reference level.
- 5) Set a convenient frequency span including 100 kHz bandwidth from band edge.
- 6) Measure the emission and marking the edge frequency.
- 7) Repeat above procedures until all frequencies measured were complete.



Test Setup Block Diagram

10.3 Test Data and Results

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result
DIE 4M	Lowest	2402	-51.33	-20	Pass
BLE_1Mbps	Highest	2480	-53.96	-20	Pass

FCC Test Report Page 29 of 32

FCC Test Report Page 30 of 32

11. Conducted RF Spurious Emissions

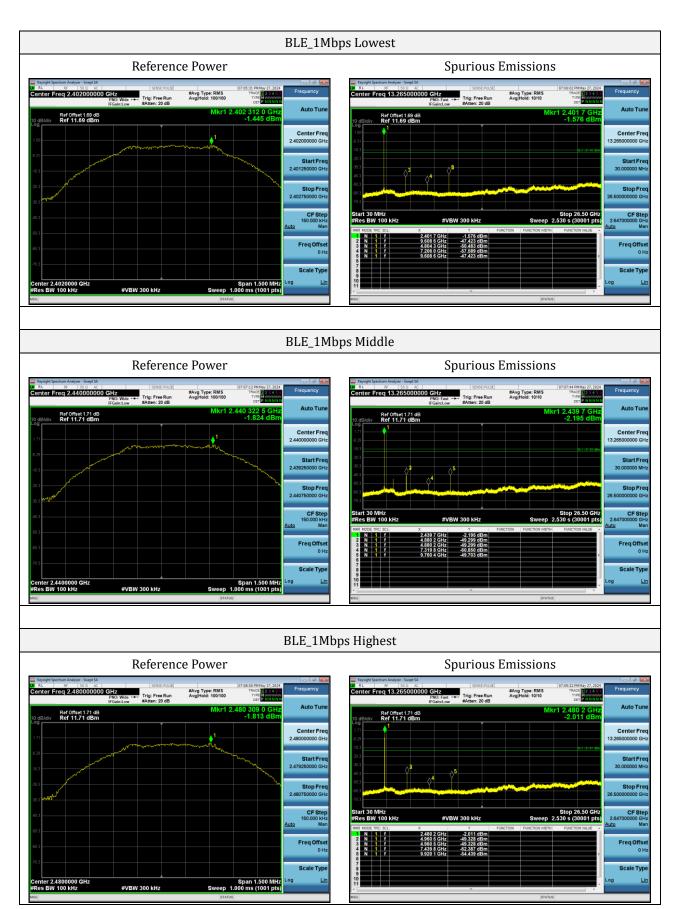
11.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP23090157-1E

11.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.


- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = RMS.
- 4) Measure the highest amplitude appearing on spectral display and set it as a reference level.
- 5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.
- 6) Repeat above procedures until all measured frequencies were complete.

11.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

FCC Test Report Page 31 of 32

***** END OF REPORT *****

FCC Test Report Page 32 of 32