

FCC CFR47 PART 15 SUBPART E

TEST REPORT

FOR

802.11a/b MINIPCI TYPE 3B CARD

MODEL NUMBER: PA3234U-1MPC, PA3267U-1MPC

FCC ID: CJ6UPA3234WL

REPORT NUMBER: 03U2054-3

ISSUE DATE: 6/30/2003

Prepared for TOSHIBA CORPORATION DIGITAL MEDIA NETWORK COMPANY 2-9 SUEHIRO-CHO, OME TOKYO, 198-8710 JAPAN

> Prepared by COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885 FAX: (408) 463-0888

TABLE OF CONTENTS

1.	TES	ST RESULT CERTIFICATION	3
2.	DES	SCRIPTION OF EUT	4
3.	TES	ST METHODOLOGY	5
4.	FA	CILITIES AND ACCREDITATION	5
4	4.1.	FACILITIES AND EQUIPMENT	5
4	4.2.	TABLE OF ACCREDITATIONS AND LISTINGS	6
5.	CA	LIBRATION AND UNCERTAINTY	7
	5.1.	MEASURING INSTRUMENT CALIBRATION	7
	5.2.	MEASUREMENT UNCERTAINTY	7
	5.3.	TEST AND MEASUREMENT EQUIPMENT	8
6.	SET	TUP OF EQUIPMENT UNDER TEST	9
7.	API	PLICABLE LIMITS AND TEST RESULTS 1	3
,	7.1.	RADIATED EMISSIONS 1	3
,	7.2.	CO-LOCATED RADIATED EMISSIONS	8
	7.3.	POWERLINE CONDUCTED EMISSIONS	4
8.	SET	TUP PHOTOS	8

Page 2 of 43

1. TEST RESULT CERTIFICATION

COMPANY NAME: TOSHIBA CORPORATION DIGITAL MEDIA NETWORK COMPANY 2-9 SUEHIRO-CHO, OME TOKYO, 198-8710, JAPAN

EUT DESCRIPTION: 802.11a/b MINIPCI TYPE 3B CARD

MODEL: PA3234U-1MPC, PA3267-1MPC

MODEL DIFFERENCE: THE ONLY DIFFERENCE IS THE END-USE APPLICATION OF THE MODULE.

DATE TESTED: 6/12 – 6/15/2003

APPLICABLE STANDARDS			
STANDARD	TEST RESULTS		
FCC PART 15 SUBPART E	NO NON-COMPLIANCE NOTED		

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: This document reports conditions under which testing was conducted and results of tests performed. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document.

Note: The 5.2 GHz band is applicable to this report; the 2.4 GHz band of operation is documented in a separate report. Conducted measurement is documented in separate report.

Approved & Released For CCS By:

Tested By:

MH

MIKE HECKROTTE CHIEF ENGINEER COMPLIANCE CERTIFICATION SERVICES

ALL K

NEELESH RAJ EMC ENGINEER COMPLIANCE CERTIFICATION SERVICES

Page 3 of 43

2. DESCRIPTION OF EUT

The EUT is an 802.11a/b Mini PCI Type 3B Card operating in the 5.15 – 5.35GHz band with a peak output power of 17.32dBm (54mW) has a peak antenna gain of 2.7dBi. The changes are as follows:

Add a new host Toshiba computer model PP4012-624F and add three new film antennas.

- 1. Hitachi Cable, Dual Band Film antenna, model: HTL008, antenna gain 2.7dBi.
- 2. Hitachi Cable, Wide band film antenna, model: HTL012, antenna gain 0.5dBi.
- 3. Tyco Electronics AMP, Dual band film antenna, TIAN01, antenna gain -0.2dBi.

Testing was performed on the worst-case, highest gain antenna since all three antennas are the same type.

Page 4 of 43

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4/1992, FCC CFR 47 Part 2 and FCC CFR 47 Part 15.

4. FACILITIES AND ACCREDITATION

4.1. FACILITIES AND EQUIPMENT

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

Page 5 of 43

4.2. TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 1300
Japan	VCCI	CISPR 22 Two OATS and one conducted Site	VCCI R-1014, R-619, C-640
Norway	NEMKO	EN50081-1, EN50081-2, EN50082-1, EN50082-2, IEC61000-6-1, IEC61000-6-2, EN50083-2, EN50091-2, EN50130-4, EN55011, EN55013, EN55014-1, EN55104, EN55015, EN61547, EN55022, EN55024, EN61000-3-2, EN61000-3-3, EN60945, EN61326-1	N _{ELA 117}
Norway	NEMKO	EN60601-1-2 and IEC 60601-1-2, the Collateral Standards for Electro-Medical Products. MDD, 93/42/EEC, AIMD 90/385/EEC	N _{ELA-171}
Taiwan	BSMI	CNS 13438	(本) SL2-IN-E-1012
Canada	Industry Canada	RSS210 Low Power Transmitter and Receiver	Canada IC2324 A,B,C, and F

Page 6 of 43

5. CALIBRATION AND UNCERTAINTY

5.1. MEASURING INSTRUMENT CALIBRATION

The measurement instruments utilized to perform the tests documented in this report have been calibrated in accordance with the manufacturer's recommendations, and are traceable to national standards.

5.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 43

5.3. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST AND MEASUREMENT EQUIPMENT LIST				
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due Date
Bilog Antenna	AR	LPB-25201A	1185	3/28/2004
EMI Receiver	HP	8542A	3942A00280	11/20/2003
RF Filter Section	HP	85420E	3705A00256	11/20/2003
EMI Test Receiver	R & S	ESHS 20	827129/006	7/17/2004
LISN, 10 kHz ~ 30 MHz	FCC	50/250-25-2	114	9/6/2003
Line Filter	Lindgren	LMF-3489	497	CNR
5GHz reject filter	Micro Tronic	BRM50702	2	N.C.R
Preamplifier, 1 ~ 26 GHz	Miteq	NSP10023988	646456	4/25/2004
Antenna, Horn 1 ~ 18 GHz	EMCO	3115	2238	2/4/2004
Psa SeriesSpectrum Analyzer	HP	E4440A	US41421507	5/8/2004
Antenna, Horn, 18 ~ 26 GHz	ARA	MWH-1826/B	1013	02/02/04

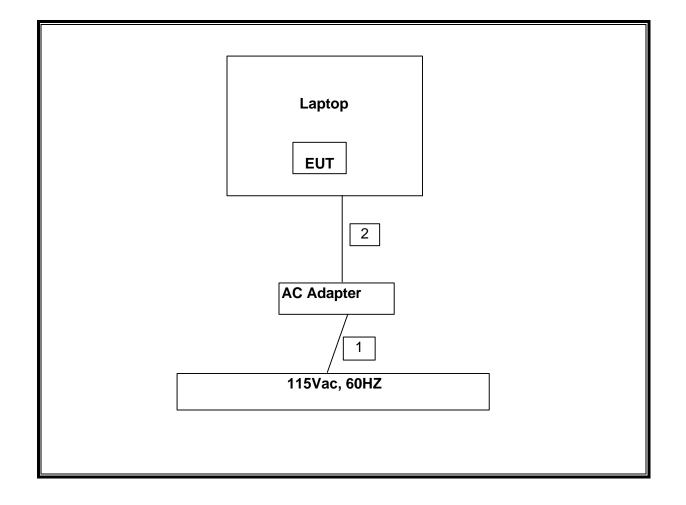
Page 8 of 43

6. SETUP OF EQUIPMENT UNDER TEST

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Device Type	Device Type Manufacturer Model Serial Number FCC ID					
LAPTOP	TOSHIBA	PP4012-624FM	92033677	DoC		
AC ADAPTER	TOSHIBA	ADP-45XH	215141	DoC		

I/O CABLES


	TEST I / O CABLES							
Cable	I/O	# of I/O	Connector	Type of	Cable	Data		
No	Port	Port	Туре	Cable	Length	Traffic	Bundled	Remark
1	AC	1	US 115V	Un-shielded	2m	No	No	Yes on LC Test
2	DC	1	DC	Un-shielded	2m	No	No	N/A
3	USB	2	USB	Un-shielded	2m	Yes	No	Ferrite on EUT's end

TEST SETUP

The EUT was installed in a host computer.

Page 9 of 43

SETUP DIAGRAM

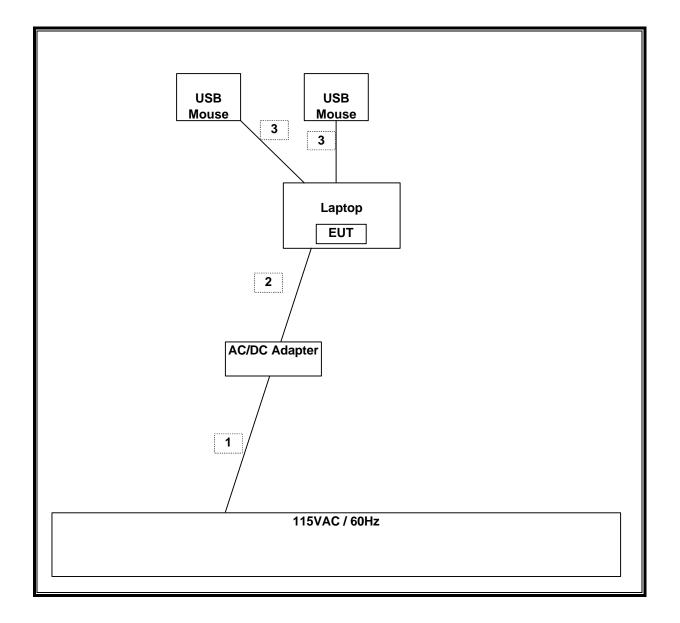
Page 10 of 43

SETUP FOR DIGITAL DEVICE TESTS

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST					
Device Type	Manufacturer	Model	Serial Number	FCC ID	
USB MOUSE	MICROSOFT	4902	4947675	DoC	
USB MOUSE	MICROSOFT	4902	4947676	DoC	
LAPTOP	TOSHIBA	PP4012-624FM	92033677	DoC	
AC ADAPTER	TOSHIBA	ADP-45XH	215141	DoC	

I/O CABLES


Cable	Port	# of	Connector	Cable	Cable	Remarks
No.		Identical Ports	Туре	Туре	Length	
1	AC	1	US 115V	Un-shielded	2m	No
2	DC	1	DC	Un-shielded	2m	No
3	USB	2	USB	Un-shielded	2m	Yes

TEST SETUP

The EUT was installed in a host computer.

Page 11 of 43

SETUP DIAGRAM FOR DIGITAL DEVICE TESTS

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. RADIATED EMISSIONS

<u>LIMITS</u>

\$15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

§15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Page 13 of 43

\$15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

§15.209 (b) In the emission table above, the tighter limit applies at the band edges.

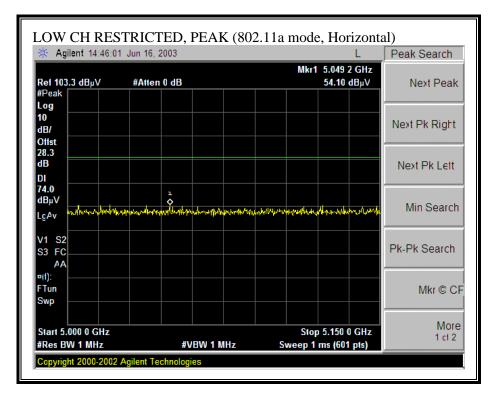
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

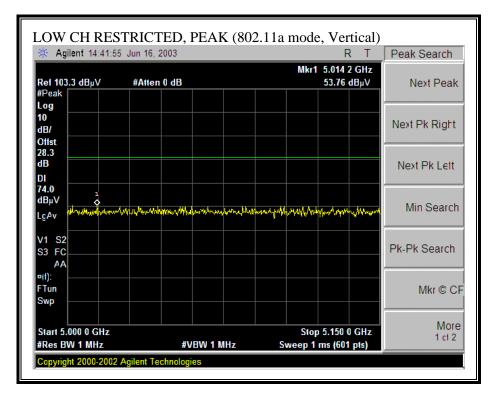

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

No non-compliance noted:

Page 14 of 43

RESTRICTED BANDEDGE (a MODE, LOW CHANNEL, HORIZONTAL)

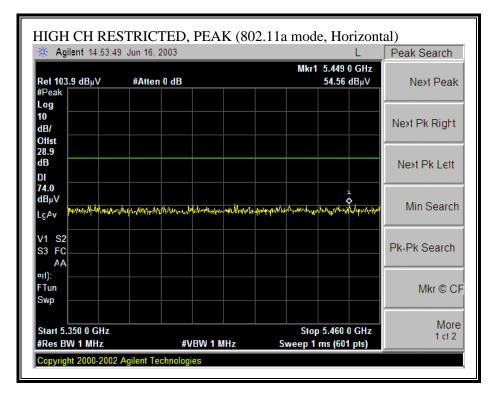


Page 15 of 43

🔆 Agilent 14:46:5	2 Jun 16, 2003	L	Peak Search
Rel 103.3 dBµV	#Atten 0 dB	Mkr1 5.148 0 GHz 42.33 dBμV	Next Peak
#Peak			
10 dB/			Next Pk Right
Offst 28.3 dB			Next Pk Lett
DI			
dBµV LgAv			Min Search
V1 S2 S3 FC			Pk-Pk Search
¤(1): FTun			Mkr © CI
Swp			
Start 5.000 0 GHz		Stop 5.150 0 GHz	- More
#Res BW 1 MHz	#VBW 10 Hz		1 cf 2

Page 16 of 43

RESTRICTED BANDEDGE (a MODE, LOW CHANNEL, VERTICAL)

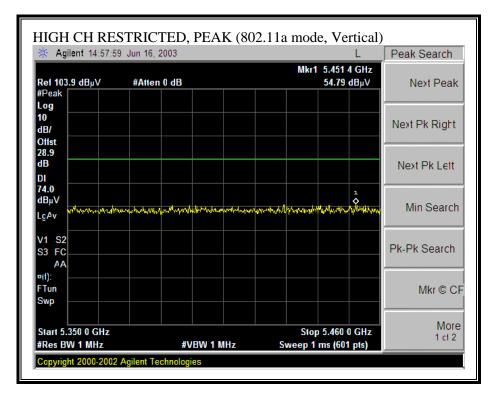


Page 17 of 43

🔆 Agilent 14:41:2	21 Jun 16, 2003			L		Peak Search
Ret 103.3 dBµV	#Atten 0 dB		Mkr1	5.147 8 C 42.66 dB		Next Peak
#Peak Log						
10 dB/						Next Pk Right
Offst 28.3 dB						Next Pk Lett
DI						
dBµV LgAv					1	Min Search
V1 S2 S3 FC					\$	Pk-Pk Search
¤(1): FTun						Mkr © CF
Swp						
Start 5.000 0 GHz #Res BW 1 MHz	#VBW	10 Hz	Stor Sweep 11.	5.150 0 C		More 1 ct 2

Page 18 of 43

RESTRICTED BANDEDGE (a MODE, HIGH CHANNEL, HORIZONTAL)



Page 19 of 43

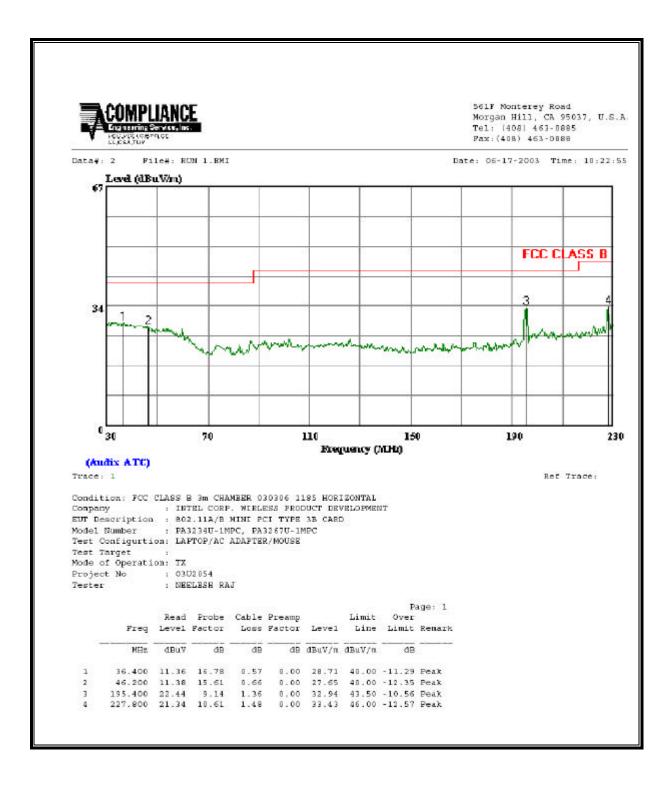
) Jun 16, 2003			L	Peak Search
#Atten 0 dB		Mkr1	5.352 4 GHz 43.12 dBµV	Next Peak
				Next Pk Right
				Next Pk Lett
				Min Search
		<u> </u>		
				Pk-Pk Search
				Mkr © CI
		Stor	5.460 0 GHz	More
	#Atten 0 dB	#Atten 0 dB		Mkr1 5.352 4 GHz #Atten 0 dB 43.12 dBµ∨ Image:

Page 20 of 43

RESTRICTED BANDEDGE (a MODE, HIGH CHANNEL, VERTICAL)

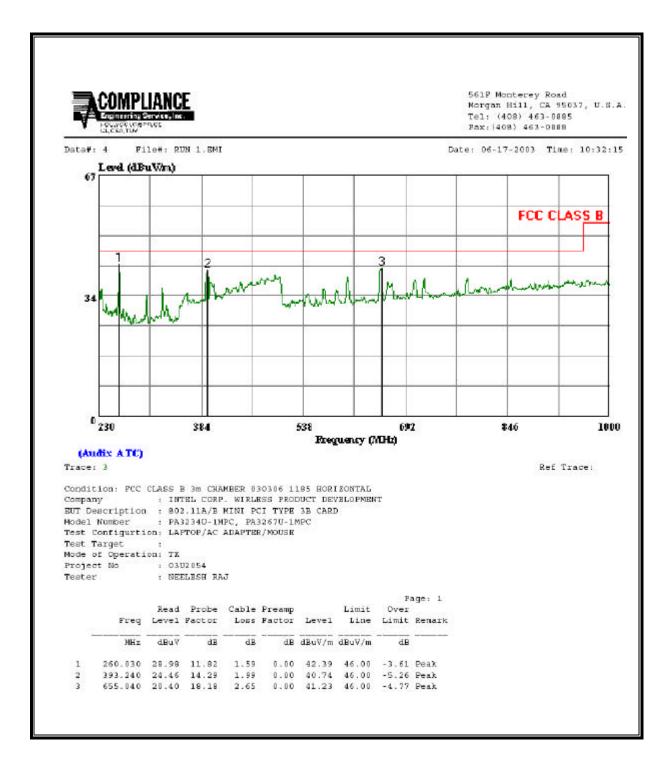
Page 21 of 43

🔆 Agilent 14:58:42	2 Jun 16, 2003		L Peak Search
	#Atten 0 dB	Mkr1 5.352 2 43.33	
#Peak Log			
10 dB/			Next Pk Right
Offst 28.9 dB			Next Pk Lett
DI			NEXT FK LEIL
54.0 dBμV			Min Search
LgAv 1			Minrocaren
V1 S2 S3 FC AA			Pk-Pk Search
¤(1): FTun			Mkr © Cl
Swp			
Start 5.350 0 GHz		Stop 5.460 (GHz More
#Res BW 1 MHz	#VBW 10 F		

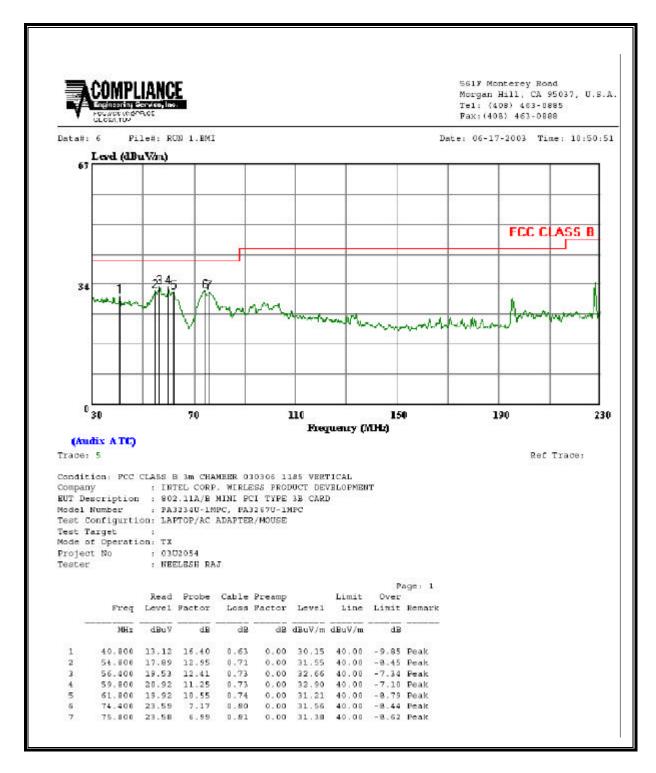

Page 22 of 43

HARMONICS AND SPURIOUS EMISSIONS a-MODE

Fest Eng Project # Compan EUT Des EUT M/I Fest Tar Mode Oj	#: iy: scrip.: N: rget:	802.11a/b Mi	AJ P. WIRELESS iniPCI Type 3B MPC, PA3267U	Card	T										
ЕМСО	11pment:) Horn 1- /N: 6717	18GHz	Pre-amplife T86 Miteq 9		iz	S PS/	pectrum A	nalyzer	-	T87; ARA 1	Horn > 18 18-26GHz; S/	-	•		
🖛 Hi Free	quency Cab	les				•									
(2	ft)		(4 ~ 6 ft)	🗸 (12 ft)		J		1 MHz	Measureme Resolution B Video Bandw	andwidth		leasuremen lution Bandw Bandwidth			
f (2	ft) Dist	 (2 ~ 3 ft) Read Pk 	Read Avg.	AF	CL	Amp	D Corr	1 MHz 1MHz V	Resolution B Video Bandw Peak	andwidth ridth	1 MHz Reso 10Hz Video Pk Lim	lution Bandw Bandwidth Avg Lim	ridth	Avg Mar	Notes
(2		(2~3 ft) Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	1 MHz 1MHz V	Resolution B Video Bandw Peak	andwidth ridth	1 MHz Reso 10Hz Video	lution Bandw Bandwidth Avg Lim	ridth	Avg Mar dB	Notes
f GHz	Dist feet	 (2 ~ 3 ft) Read Pk dBuV HIG 	Read Avg. dBuV H CHANNEL	AF dB/m =5320	dB	dB	dB	1 MHz 1MHz V	Resolution B Video Bandw Peak dBuV/m	andwidth /idth Avg dBuV/m	1 MHz Reso 10Hz Video Pk Lim dBuV/m	lution Bandw Bandwidth Avg Lim dBuV/m	idth Pk Mar dB	dB	
f (2	Dist	(2~3 ft) Read Pk dBuV	Read Avg. dBuV	AF dB/m				1 MHz 1MHz V	Resolution B Video Bandw Peak	andwidth ridth	1 MHz Reso 10Hz Video Pk Lim	lution Bandw Bandwidth Avg Lim	ridth Pk Mar		Notes V (FLOOR NOISE) H (FLOOR NOISE)
f GHz 0.640	Dist feet 9.8	 ✓ (2 ~ 3 ft) Read Pk dBuV HIGI 48.7 	Read Avg. dBuV H CHANNEL 37.0	AF dB/m =5320 38.3	dB 4.8	dB -44.2	dB 0.0	1 MHz 1MHz HPF 1.0	Resolution B Video Bandw Peak dBuV/m 48.5	Avg dBuV/m 36.8	1 MHz Reso 10Hz Video Pk Lim dBuV/m 74.0	lution Bandw Bandwidth Avg Lim dBuV/m 54.0	Pk Mar dB -25.5	dB -17.2	V (FLOOR NOISE)
f GHz 0.640	Dist feet 9.8	(2 ~ 3 ft) Read Pk dBuV HIG 48.7 48.6	Read Avg. dBuV H CHANNEL 37.0	AF dB/m =5320 38.3 38.3	dB 4.8 4.8	-44.2 -44.2	dB 0.0 0.0	1 MHz 1MHz V HPF 1.0 1.0	Resolution B Video Bandw Peak dBuV/m 48.5 48.4	Avg dBuV/m 36.8 36.8	1 MHz Reso 10Hz Video Pk Lim dBuV/m 74.0 74.0	lution Bandw Bandwidth Avg Lim dBuV/m 54.0 54.0	Pk Mar dB -25.5 -25.6	dB -17.2 -17.2	V (FLOOR NOISE) H (FLOOR NOISE)
f GHz 10.640	Dist feet 9.8	(2 ~ 3 ft) Read Pk dBuV HIG 48.7 48.6	Read Avg. dBuV H CHANNEL 37.0 37.0	AF dB/m =5320 38.3 38.3	dB 4.8 4.8	-44.2 -44.2	dB 0.0 0.0	1 MHz 1MHz V HPF 1.0 1.0	Resolution B Video Bandw Peak dBuV/m 48.5 48.4	Avg dBuV/m 36.8 36.8	1 MHz Reso 10Hz Video Pk Lim dBuV/m 74.0 74.0	lution Bandw Bandwidth Avg Lim dBuV/m 54.0 54.0	Pk Mar dB -25.5 -25.6	dB -17.2 -17.2	V (FLOOR NOISE) H (FLOOR NOISE)
f GHz 10.640	Dist feet 9.8	(2 ~ 3 ft) Read Pk dBuV HIG 48.7 48.6	Read Avg. dBuV H CHANNEL 37.0 37.0	AF dB/m =5320 38.3 38.3	dB 4.8 4.8	-44.2 -44.2	dB 0.0 0.0	1 MHz 1MHz V HPF 1.0 1.0	Resolution B Video Bandw Peak dBuV/m 48.5 48.4	Avg dBuV/m 36.8 36.8	1 MHz Reso 10Hz Video Pk Lim dBuV/m 74.0 74.0	lution Bandw Bandwidth Avg Lim dBuV/m 54.0 54.0	Pk Mar dB -25.5 -25.6	dB -17.2 -17.2	V (FLOOR NOISE) H (FLOOR NOISE)


Page 23 of 43

SPURIOUS EMISSIONS 30 TO 230MHz HORIZONTAL (WORST-CASE CONFIGURATION)


Page 24 of 43

SPURIOUS EMISSIONS 230 TO 1000 MHz HORIZONTAL (WORST-CASE CONFIGURATION)

Page 25 of 43

SPURIOUS EMISSIONS 30 TO 230MHz VERTICAL (WORST-CASE CONFIGURATION)

SPURIOUS EMISSIONS 230 TO 1000 MHz VERTICAL (WORST-CASE CONFIGURATION)

Page 27 of 43

7.2. CO-LOCATED RADIATED EMISSIONS

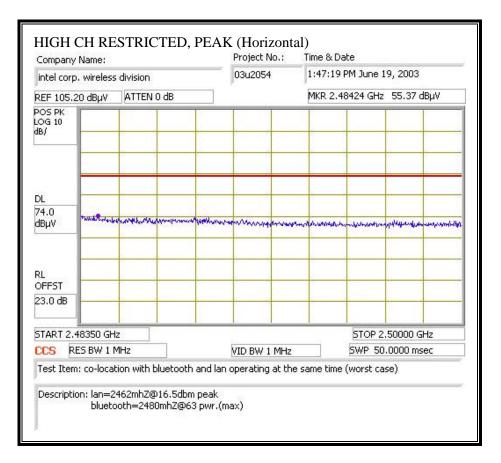
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

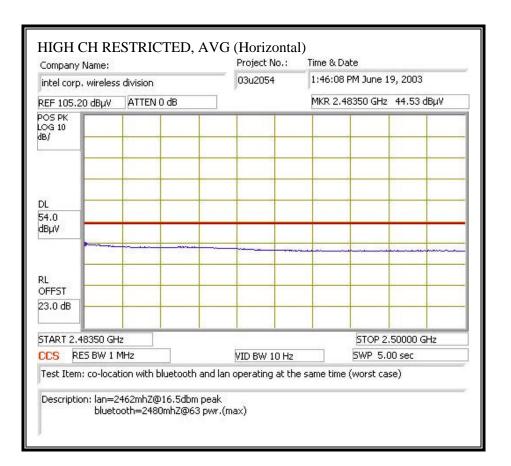
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The dominant transmitter WLAN is set to the worst case channel. The spurious emissions performance of the dominant transmitter is investigated as the settings of the non-dominant transmitter Bluetooth are varied. Worst case results are reported.

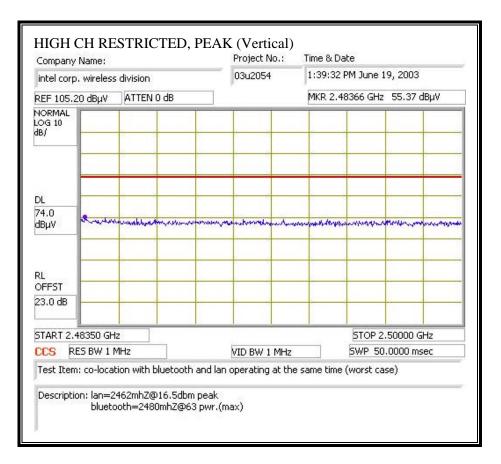

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

RESULTS

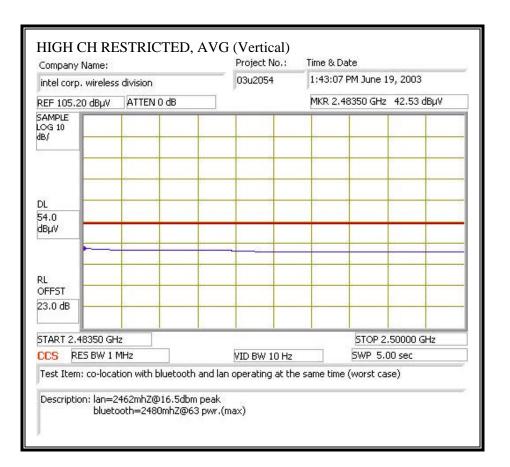

No non-compliance noted:

Page 28 of 43

WORST-CASE RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)



Page 29 of 43



Page 30 of 43

WORST-CASE RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Page 31 of 43

Page 32 of 43

WORST-CASE CO-LOCATED HARMONICS AND SPURIOUS EMISSIONS

Fest Eng Project # Company EUT Des EUT M/I	: y: crip.: N:	NEELESH R 03U2054 Toshiba 802.11a/b Mi PA33234U-1	ni PCI Card												
Fest Tar Mode Op		FCC15.247 / TX	15.407												
Fest Equ	ipment:														
EMCO Horn 1-18GHz Pre-amplifer 1-26GHz						5	Spectrum A	nalyzer			Horn > 18	GHz			
T73; S/N: 6717 @3m T86 Miteq 924341				-	psa	ps a T87; ARA 18-26GHz; S/N:1049					•				
Hi Fred	tt)		(4 ~ 6 ft)	✓ (12 ft)				1 MHz	Measureme Resolution E Video Bandy	Bandwidth		leasuremen lution Bandw Bandwidth			
f GHz	Dist feet	Read Pk dBuV	Read Avg. dBuV	AF dB/m	CL dB	Amp dB	D Corr dB	HPF	Peak dBuV/m	Avg dBuV/m	Pk Lim dBuV/m	Avg Lim dBuV/m	Pk Mar dB	Avg Mar dB	Notes
GIIZ	Icet		HANNEL LAN						ubu v/m	uBu v/m	uBu v/m	ubu v/m	ub	ub	
.924	9.8	49.3	38.6	33.5	3.0	-45.7	0.0	2.0	42.0	31.3	74.0	54.0	-32.0	-22.7	V (NOISE FLOOR)
.924	9.8	47.6	37.9	33.5	3.0	-45.7	0.0	2.0	40.3	30.6	74.0	54.0	-33.7	-23.4	H (NOISE FLOOR)
	9.8 9.8	51.0 48.3	40.1 39.7	36.0 36.0	3.8 3.8	-46.5 -46.5	0.0	2.0 2.0	46.2 43.5	35.3 34.9	74.0 74.0	54.0 54.0	-27.8 -30.5	-18.7 -19.1	V (NOISE FLOOR) H (NOISE FLOOR)
	-				\square										
					L										
											O MOIL-				
		1	NO OTHER S	PURIOU	S EMIS	SIONS SI	EEN IN TH	IE RES	TRICTED I	BANDS UPT	0 20GHZ				
]	NO OTHER SI	PURIOU	S EMIS	SSIONS SI	EEN IN TH	IE RES	TRICTED	BANDS UPT	O 20GHZ				
]	NO OTHER S	PURIOU	S EMIS	SSIONS S	EEN IN TH	IE RES	TRICTED	BANDS UPT	0 20GHZ				
7.386 7.386]	NO OTHER S	PURIOU	S EMIS	SSIONS SI	EEN IN TH	IE RES	TRICTED	BANDS UPT					
			NO OTHER SI	PURIOU	SEMI	SSIONS S	EEN IN TH	IE RES	TRICTED I	BANDS UPT					
	f		NO OTHER S		S EMIS	Amp	Preamp (Gain				Avg Lim	Average F	Field Streng	h Limit
	Dist	Measureme Distance to	ent Frequency			Amp D Corr	Preamp 0 Distance	Gain	ct to 3 mete	ers		Pk Lim	Peak Field	l Strength L	imit
	Dist	Measureme	ent Frequency Antenna leading			Amp D Corr Avg	Preamp 0 Distance Average	Gain Correc Field S		ers 3 m		Pk Lim Avg Mar	Peak Field Margin vs	•	imit imit

Page 33 of 43

7.3. POWERLINE CONDUCTED EMISSIONS

<u>LIMIT</u>

\$15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

The lower limit applies at the boundary between the frequency ranges.

Frequency of Emission (MHz)	Conducted L	imit (dBuV)
	Quasi-peak	Average
0.15-0.5	66 to 56	56 to 46
0.5-5	56	46
5-30	60	50

Decreases with the logarithm of the frequency.

TEST PROCEDURE

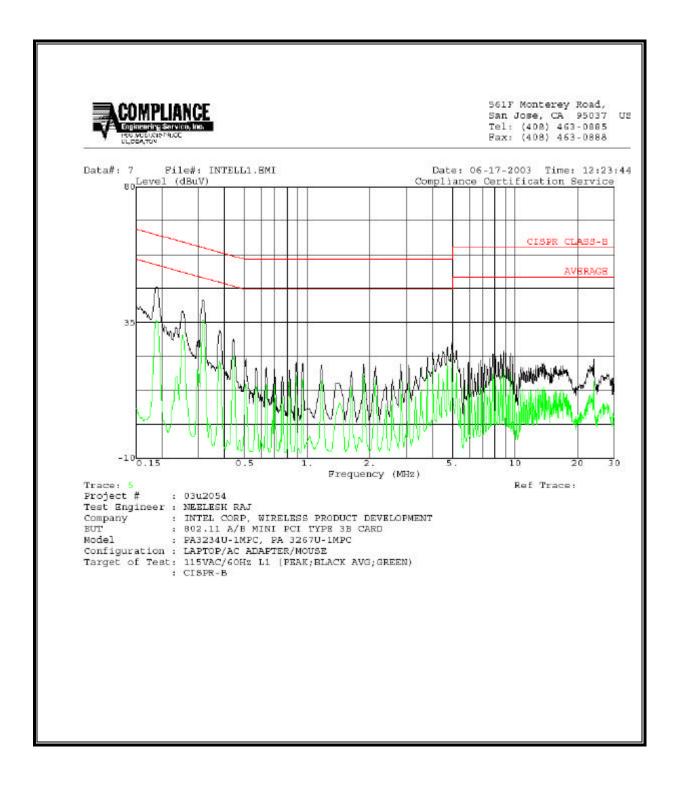
The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4.

The resolution bandwidth is set to 9 kHz for both peak detection and quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

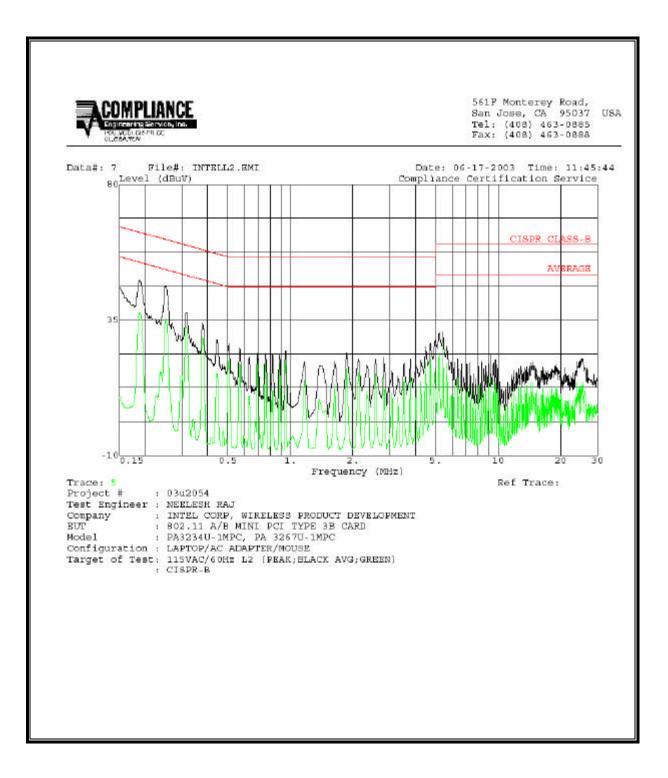
Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

No non-compliance noted:


Page 34 of 43

<u>6 WORST EMISSIONS</u>


Freq.	Reading Closs Limit		Limit	EN_B	Marg	gin	Remark		
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2
0.19	46.86		35.58	0.00	64.94	54.94	-18.08	-19.36	L1
0.25	38.63		30.80	0.00	63.09	53.09	-24.46	-22.29	L1
0.31	42.52		35.83	0.00	61.34	51.34	-18.82	-15.51	L1
0.19	48.20		37.50	0.00	64.94	54.94	-16.74	-17.44	L2
0.25	46.46		35.25	0.00	63.11	53.11	-16.65	-17.86	L2
0.32	37.48		32.59	0.00	61.20	51.20	-23.72	-18.61	L2
6 Worst I	Data								

Page 35 of 43

LINE 1 AND LINE 2 RESULTS

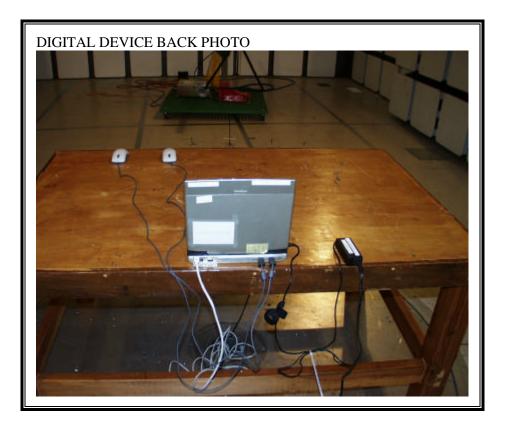
Page 36 of 43

Page 37 of 43

8. SETUP PHOTOS

RADIATED RF MEASUREMENT SETUP

Page 38 of 43



Page 39 of 43

DIGITAL DEVICE RADIATED EMISSIONS SETUP

Page 40 of 43

Page 41 of 43

POWERLINE CONDUCTED EMISSIONS MEASUREMENT SETUP

Page 42 of 43

END OF REPORT

Page 43 of 43