

Report No.: DL-20220727003E

FCC Part 15C Test Report FCC ID: 2AZI4-BTH12

Applicant:	Shen Zhen Seven Like Co., Ltd
Address:	301, building A2, Baoying Industrial Zone, 21 Wulian Road, Longgang District, Shenzhen
Manufacturer:	Shen Zhen Seven Like Co., Ltd
Address:	301, building A2, Baoying Industrial Zone, 21 Wulian Road, Longgang District, Shenzhen
EUT:	Smart Food thermometer
Trade Mark:	N/A N/A A CONTRACT AND CONTRA
Model Number:	BTH12, KTH12
Date of Receipt:	Jul. 14, 2022
Test Date:	Jul. 14, 2022 - Jul. 27, 2022
Date of Report:	Jul. 27, 2022
Prepared By:	Shenzhen DL Testing Technology Co., Ltd.
Address:	101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong Street, Longgang District, Shenzhen, Guangdong, China
Applicable Standards:	FCC PART 15 C 15.249 ANSI C63.10:2013
Test Result:	Pass
Report Number:	DL-20220727003E
	Or con an ar ar ar ar con
Prepared (Test Engir	neer): Alisa Song Alisa Congression

Reviewer (Supervisor):

Alisa Suli

Jack Bu

Approved (Manager):

Jade Yang

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-20220727003E

Table of Contents

Page

1. SUMMARY OF TEST RESULTS **1.1 MEASUREMENT UNCERTAINTY** 2. GENERAL INFORMATION 5 2.1 GENERAL DESCRIPTION OF EUT 5 2.2 DESCRIPTION OF TEST MODES 6 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 7 2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS 8 **3. EMC EMISSION TEST** 9 3.1 CONDUCTED EMISSION MEASUREMENT 9 **3.1.1 POWER LINE CONDUCTED EMISSION LIMITS** 9 3.1.2 TEST PROCEDURE 9 **3.1.3 DEVIATION FROM TEST STANDARD** 9 3.1.4 TEST SETUP 10 3.1.5 EUT OPERATING CONDITIONS 10 3.1.6 TEST RESULTS 10 3.2 RADIATED EMISSION MEASUREMENT 13 **3.2.1 RADIATED EMISSION LIMITS** 13 3.2.2 TEST PROCEDURE 14 **3.2.3 DEVIATION FROM TEST STANDARD** 14 3.2.4 TEST SETUP 14 3.2.5 EUT OPERATING CONDITIONS 15 3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ) 16 3.2.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ) 17 3.2.8 TEST RESULTS (1GHZ~25GHZ) 19 **3.3 RADIATED BAND EMISSION MEASUREMENT** 20 3.3.1 TEST REQUIREMENT: 20 3.3.2 TEST PROCEDURE 20 3.3.3 DEVIATION FROM TEST STANDARD 20 3.3.4 TEST SETUP 21 **3.3.5 EUT OPERATING CONDITIONS** 21 4. BANDWIDTH TEST 23 4.1 APPLIED PROCEDURES / LIMIT 23 4.1.1 TEST PROCEDURE 23 4.1.2 DEVIATION FROM STANDARD 23

Report No.: DL-20220727003E Shenzhen DL Testing Technology Co., Ltd.

Table of Contents	Page
4.1.3 TEST SETUP	23
4.1.4 EUT OPERATION CONDITIONS	23
4.1.5 TEST RESULTS	24
5. ANTENNA REQUIREMENT	25
5.1 STANDARD REQUIREMENT	25
5.2 EUT ANTENNA	25
6. TEST SEUUP PHOTO	<u>ور</u> کور
	- 28

7. EUT PHOTO

Report No.: DL-20220727003E

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

9	FCC Part15 (15.249) , Subpart C							
Standard Section	Test Item	Judgment	Remark					
15.207	Conducted Emission	PASS	б ^а х					
15.205(a) 15.209(a) 15.249(a) 15.249(c)	Fundamental & Radiated Spurious Emission Measurement	PASS						
15.249(d)	Band Edge Emission	PASS						
15.215(c)	20dB Bandwidth	PASS	. Ohi					
15.203	Antenna Requirement	PASS	à Ó					

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.56dB
2	RF power,conducted	±0.42dB
3 🔨	Spurious emissions, conducted	±2.76dB
4	All emissions,radiated(<1G)	±3.65dB
5 0	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7 🗸	Humidity	±2%

Report No.: DL-20220727003E

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name:	Smart Food thermometer
Trademark	N/A
Model No.:	BTH12, KTH12
Model Difference	All samples are the same except the model name and outlook color, so we prepare "BTH12" for test only.
Operation Frequency:	2402~2480MHz
Channel numbers:	40 Channels
Channel separation:	2M
Modulation technology:	GFSK
Antenna Type:	Internal Antenna
Antenna gain:	2.54 dBi
Power supply:	DC 3.7V from battery DC 5V from charger

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. The EUT's all information provided by client.

3.

Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-20220727003E

		Channe	el List 🔨		
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	27	2456
01	2404	15	2432	28	2458
02 0	2406	16	2434	29	2460
03	2408	17	2436	30	2462
04	2410	18	2438	31	2464
× 05 🔇	2412	19	2440	32 0	2466
- 0 06	2414	20	2442	33	🚬 2468 🛇
07	2416	21	2444	34	2470
08	2418	22	2446	35	2472
09	2420	2 3	2448	36	2474
10 0	2422	24	2450	37	2476
.11	2424	25	2452	38	2478
12	2426	26	2454	39	2480
13	2428			105	/

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description	
Mode 1	CH00	AV AT
Mode 2	CH19	GFSK
Mode 3	СН39	
Mode 4	Link Mode	ja Or
- <u> </u>	For Conducted & Radiated Emission	
Final Test Mode	Description	
Mode 1	CH00	
Mode 2	CH19	GFSK

Note:

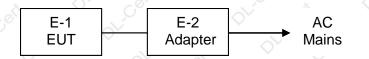
Mode 3

Mode 4

(1) The measurements are performed at the highest, middle, lowest available channels.

Link Mode

CH39


Report No.: DL-20220727003E

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Spurious Emission Test

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item		Equipment	Model/Type No.	Series No.	Note	
3-		Smart Food thermometer	× 2	N/A	EUT	
	E-2	Adapter	HW-0501000E	N/A	Provide by test lab I/P: AC 100-240V 50/60Hz O/P: DC 5V 1A	

Item	Shielded Type	Ferrite Core	Length	Note
Š	\sim \circ	Con	all at	

Note:

(1) For detachable type I/O cable should be specified the length in cm in ^[]Length ^[] column.

2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the end product.

	Test software Version		Test program: EMI_T	ool C
	Frequency	2402 MHz	2440 MHz	2480 MHz
X	Power Setting of Softwave	10	10	10

Report No.: DL-20220727003E

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation test, Band-edge test and 20db bandwidth test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Jer	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4408B	MY50140780	Nov. 06, 2021	Nov. 05, 2022
2	Test Receiver (9kHz-7GHz)	R&S	ESRP7	101393	Nov. 06, 2021	Nov. 05, 2022
3	Bilog Antenna (30MHz-1GHz)	R&S	VULB9162	00306	Nov. 06, 2021	Nov. 05, 2022
4	Horn Antenna (1GHz-18GHz)	Schwarzbeck	BBHA9120D	02139	Nov. 06, 2021	Nov. 05, 2022
5	Horn Antenna (18GHz-40GHz)	A.H. Systems	SAS-574	588	Nov. 06, 2021	Nov. 05, 2022
6	Amplifier (9KHz-6GHz)	Schwarzbeck	BBV9743B	00153	Nov. 06, 2021	Nov. 05, 2022
7	Amplifier (1GHz-18GHz)	EMEC	EM01G8GA	00270	Nov. 06, 2021	Nov. 05, 2022
8	Amplifier (18GHz-40GHz)	Quanjuda	DLE-161	97	Nov. 06, 2021	Nov. 05, 2022
9	Loop Antenna (9KHz-30MHz)	Schwarzbeck	FMZB1519B	00014	Nov. 06, 2021	Nov. 05, 2022
10	RF cables1 (9kHz-1GHz)	ChengYu	966	004	Nov. 06, 2021	Nov. 05, 2022
11	RF cables2 (1GHz-40GHz)	ChengYu	966	003	Nov. 06, 2021	Nov. 05, 2022
12	Antenna connector	Florida RF Labs	N/A	RF 01#	Nov. 06, 2021	Nov. 05, 2022
13	Power probe	KEYSIGHT	U2021XA	MY55210018	Nov. 06, 2021	Nov. 05, 2022
14	Signal Analyzer 9kHz-26.5GHz	Agilent	N9020A	MY55370280	Nov. 06, 2021	Nov. 05, 2022
15	Test Receiver 20kHz-40GHz	R&S	ESU 40	100376	Nov. 06, 2021	Nov. 05, 2022
16	D.C. Power Supply	LongWei	PS-305D	010964729	Nov. 06, 2021	Nov. 05, 2022

Conduction Test equipment

Conduction rest equipment				\sim			
I	ltem	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
×	1	843 Shielded Room	ChengYu	843 Room	843	Nov. 25, 2019	Nov. 24, 2022
3	2	EMI Receiver	R&S	C ESR	101421	Nov. 06, 2021	Nov. 05, 2022
	3	LISN C	R&S	ENV216	102417	Nov. 06, 2021	Nov. 05, 2022
	4	843 Cable 1#	ChengYu	CE Cable	001	Nov. 06, 2021	Nov. 05, 2022

Other

			0.2	
Item	Name	Manufacturer	Model	Software version
1	EMC Conduction Test System	FALA	EZ_EMC	EMC-CON 3A1.1
2	EMC radiation test system	FALA	EZ_EMC	FA-03A2
3	RF test system	MAIWEI	MTS8310	2.0.0.0
4	RF communication test system	MAIWEI	MTS8200	2.0.0.0

Report No.: DL-20220727003E

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits

(Frequency Range 150KHz-30MHz)

	Limit (c			
FREQUENCY (MHz)	Quasi-peak	Average	Standard	
0.15 -0.5	66 - 56 *	56 - 46 *	FCC	
0.50 -5.0	56.00	46.00	FCC	
5.0 -30.0	60.00	50.00	FCC	

Note:

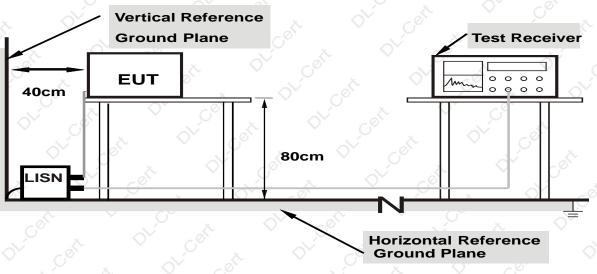
- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


3.1.3 DEVIATION FROM TEST STANDARD

No deviation

Report No.: DL-20220727003E

3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

3.1.6 TEST RESULTS

12

10.063400

16.90

9.88

26.78

Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-20220727003E

emper	ature:	25 ℃			F	Relative	Humid	ity:	54%
Pressure:		1010hPa			× F	Phase :			L
Test Vo	Itage :	AC 120	//60Hz <	д¥ с	0	Fest Mo	de:		Mode 4
1 store	\sim	C°		Ń	all a		\sim	G	
80.0	dBuV								
70									
60									FCC part15 CE-Class_B GP
-									FQC part15 CE-Class_B AV
50									
40	1	n wy	5		7				
			W. Marrier A	WALAN	X		9		
30	W I			· · h. www.	. Make and Mr	violana	+ ar - m	an a	
		MM	6						1 1 1 million and the
20	month		May Maring	Juniu Au			10		
10	Mr.		Q. 64	AM MANAGER AN	In Consideration	Annanna	the provide the second s	maria	and multiply and a
									01.4
0 –									
-10									
-20									
		0.5	00		(MHz)		5.0	00	30.000
Remark			<u>~</u>	- 6		, Ce	2		
Vlargin	= Level - Lir	mit, Corre	ct Factor	= Cable I	ose + LI	SN Inse	rtion los	ss, Le	evel= Reading + Correct facto
<u>×</u>	C	∽ Ø'	Fastas	. /	.X	Manaia) . 		X.
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.293900	31.07	9.04	40.11	60.41	-20.30	QP	Р	
2	0.293900	10.08	9.04	19.12	50.41	-31.29	AVG	P	
3 *	0.505400	39.75	9.19	48.94	56.00	-7.06	QP	P	
4	0.505400	20.60	9.19	29.79	46.00	-16.21	AVG	P	
5	0.779900	31.34	9.36	40.70	56.00	-15.30	QP	P	
	3.11.0000		0.00	10.10	00.00			. • I	
6	0 779900			19 39	46.00			Р	
6	0.779900	10.03	9.36	19.39 37.82	46.00 56.00	-26.61	AVG	P P	
7	1.580900	10.03 28.20	9.36 9.62	37.82	56.00	-26.61 -18.18	AVG QP	Ρ	
7 8	1.580900 1.580900	10.03 28.20 7.18	9.36 9.62 9.62	37.82 16.80	56.00 46.00	-26.61 -18.18 -29.20	AVG QP AVG	P P	
7 8 9	1.580900 1.580900 3.853400	10.03 28.20 7.18 24.00	9.36 9.62 9.62 9.47	37.82 16.80 33.47	56.00 46.00 56.00	-26.61 -18.18 -29.20 -22.53	AVG QP AVG QP	P P P	
7 8	1.580900 1.580900	10.03 28.20 7.18	9.36 9.62 9.62	37.82 16.80	56.00 46.00	-26.61 -18.18 -29.20	AVG QP AVG	P P	

50.00

-23.22

Ρ

AVG

11

12

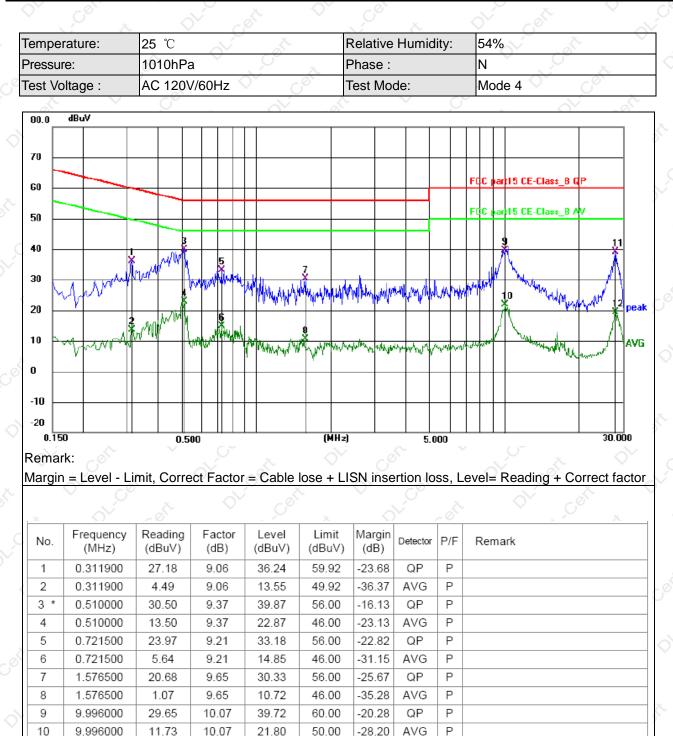
27.995900

27.995900

28.06

8.36

11.11


11.11

39.17

19.47

Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-20220727003E

60.00

50.00

-20.83

-30.53

QP

AVG

P P

Report No.: DL-20220727003E

3.2 RADIATED EMISSION MEASUREMENT 3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)		
0.009~0.490	2400/F(KHz)	300		
0.490~1.705	24000/F(KHz)	30		
1.705~30.0	30 00	30		
30~88	100	3		
88~216	150	3		
216~960	200	3 0		
Above 960	500	A 3 0 0		

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental	Field Strength of Fundamental	Field Strength of Harmonics (microvolts/meter)		
Frequency	(millivolts/meter)			
902 - 928 MHz	50	500		
2400 - 2483.5 MHz	50 0	500		
5725 - 5875 MHz	50 0	500		
24.0 - 24.25 GHz	250	2500		

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/m) (at 3M)					
FREQUENCY (MHz)		PEAK			AVERAGE	
Above 1000	, Con	74	ON	- 05	54	0 X
NL. C		0				00

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Receiver setup:

	beiver betup.) ~0	. / X		
	Frequency	Detector	RBW	VBW	Value
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak
- (150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak
0	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak
0		Peak	1MHz	3MHz	Peak
	Above 1GHz	Peak	1MHz	10Hz	Average

Report No.: DL-20220727003E

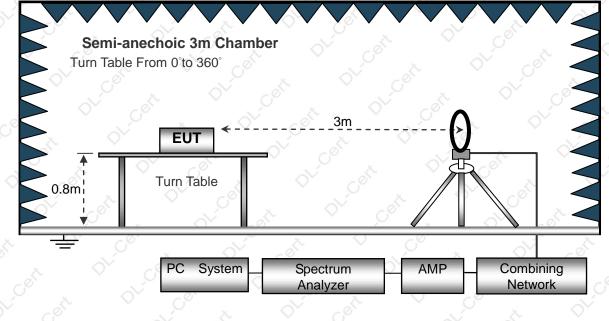
3.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

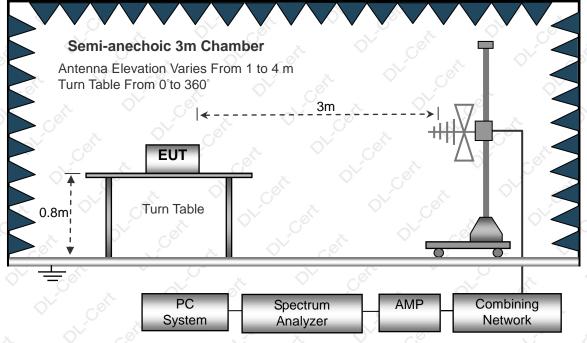
- g. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. (Above 18GHz the distance is 3 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel Note:

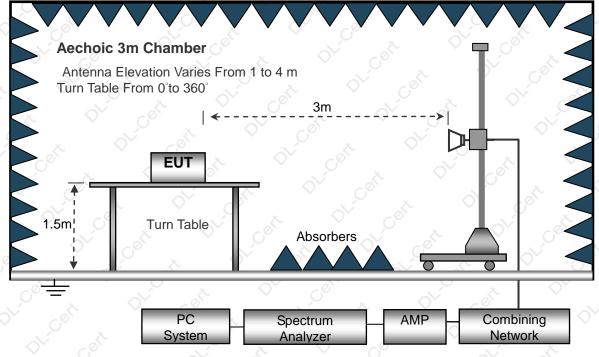

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD

No deviation

3.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz



Report No.: DL-20220727003E

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: DL-20220727003E

3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)

Temperature:	20°C	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 4	Polarization :	

<	Freq.	Reading	Limit	Margin	State
	(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
č	. Q ¹ 0		<u> </u>	Ce <u>s</u>	PASS
	x - 0 ¹	- ²	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Dr - Cor	PASS

NOTE:

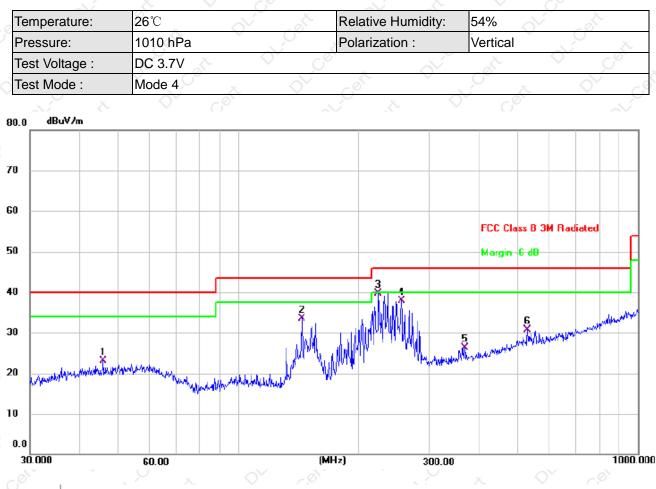
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Report No.: DL-20220727003E

3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)

Temperature:	26 ℃	0 ^V - 6	Relative Hum	nidity: 54%		C.C.
Pressure:	1010 hPa		Polarization :	-	zontal	y y
Test Voltage :	DC 3.7V	× • • •	, C ⁶ x	N co		
Test Mode :	Mode 4	the second se	C C C C C C C C C C C C C C C C C C C		×.	Q [×] C
).0 dBuV/m		,0°°	al at		,0°°	0 ^V
,						
				FC	C Class B 3M R	ladiated
				Ma	rgin 6 dB	
				E La	hall work where	Mar and the market and
haberton war out a postime of the	1 Marana	wood man and wood with	Mu _w ww	Jun Mannus Marine	MANA	
0.0						
30.000	60.00		(MHz)	300.00		1000

6	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	52.9453	34.34	-11.40	22.94	40.00	-17.06	QP	
2	2	143.8295	45.53	-16.19	29.34	43.50	-14.16	QP	
	3 !	223.7334	53.57	-12.57	41.00	46.00	-5.00	QP	
	4 *	247.6819	53.31	-11.81	41.50	46.00	-4.50	QP	
	5!	267.5455	52.28	-11.37	40.91	46.00	-5.09	QP	P
Ś	6	392.0951	39.61	-9.41	30.20	46.00	-15.80	QP	


Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading + Factor; Margin = Level- Limit ;

Report No.: DL-20220727003E

									_
- 20	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	3
	1	45.8553	34.87	-11.72	23.15	40.00	-16.85	QP	
	2	143.8295	49.90	-16.30	33.60	43.50	-9.90	QP	
	3 *	223.7334	51.79	-12.03	39.76	46.00	-6.24	QP	
	4	255.6231	48.63	-10.80	37.83	46.00	-8.17	QP	Γ,
	5	368.1116	35.05	-8.71	26.34	46.00	-19.66	QP	3
	6	528.2458	36.24	-5.53	30.71	46.00	-15.29	QP	

Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading + Factor; Margin = Level- Limit ;

Report No.: DL-20220727003E

3.2.8 TEST RESULTS (1GHZ~25GHZ)

GFSK

S.		× .	\bigcirc^{*}	C ^O		1	x V)
Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detecto
(П/У)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Туре
/	6	- OV			requency:2		V _et	\sim	6
V	2402.00	113.93	52.16	2.78	27.41	91.96	114.00	-22.04	PK
V	2402.00	0103.73	52.16	2.78	27.41	81.76	94.00	-12.24	AV
V	4804.00	77.53	51.74	3.08	31.25	60.12	74.00	-13.88	PK
V	4804.00	60.32	51.74	3.08	31.25 🔇	42.91	54.00	-11.09	AV
V	16132.00	58.48	51.56	7.36	41.57	55.85	74.00	-18.15	🎾 PK
Н	2402.00	112.82	52.16	2.78	27.41	90.85	114.00	-23.15	PK
H,	2402.00	105.89	52.16	2.78	27.41	83.92	94.00	-10.08	AV
Ĥ	4804.00	76.42	51.74	3.08	31.25	59.01	74.00	-14.99	💙 РК 🤇
Н	4804.00	59.67	51.74	3.08	31.25	42.26	54.00	-11,74	AV
Н	16132.00	58.31	51.56	7.36	41.57	55.68	74.00	-18.32	PK
Č.			óp	eration f	requency:2	2440	. 0	× - 0	Ň.
V×	2440.00	113.15	52.11	2.82	27.47	91.33	114.00	-22.67	PK
V.	2440.00	106.23	52.11	2.82	27.47	84.41	94.00	-9.59	AV
V	4880.00	78.14	51.77	3.03	31.34	60.74	74.00	-13.26	PK 🦉
V	4880.00	60.96	51.77	3.03	31.34	🔪 43.56 🛇	54.00	-10.44	AV
v	16132.00	59.31	51.56	7.36	41.57	56.68	74.00	-17.32	РК
Н	2440.00	113.26	52.11	2.82	27.47	91.44	114.00	-22.56	PK
Н	2440.00	105.05	52.11	2.82	27.47	83.23	94.00	-10.77	AV
Щ	4880.00	76.53	51.77	3.03	31.34	59.13	74.00	-14.87	S PK
Н	4880.00	59.61	51.77	3.03	31.34	42.21	54.00	-11.79	AV
HG	16132.00	58.55	51.56	7.36	41.57	55.92	74.00	-18.08	PK
d'	- A		op	eration f	requency:2	2480	Ģ	52	OV .
V	2480.00	113.95	52.23	2.86	27.44	92.02	114.00	-21.98	PK
V	2480.00	106.78	52.23	2.86	27.44	84.85	94.00	-9.15	AV
U V	4960.00	78.82	51.69	3.05	31.39	61.57	74.00	-12.43	PK
V	4960.00	61.14	51.69	3.05	31.39	43.89	54.00 🛇	-10.11 ⁰	AV
V	16132.00	59.68	51.56	7.36	41.57	57.05	74.00	-16.95	PK
H	2480.00	113.76	52.23	2.86	27.44	91.83	114.00	-22.17	PK
Н	2480.00	105.97	52.23	2.86	27.44	84.04	94.00	-9.96	AV
НV	4960.00	77.83	51.69	3.05	31.39	60.58	74.00	-13.42	PK
н	4960.00	59.42 🛇	51.69	3.05	31.39	42.17	54.00	-11.83	AV
Н	16132.00	59.33	51.56	7.36	41.57	56.70	74.00	-17.30	PK

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Report No.: DL-20220727003E

3.3 RADIATED BAND EMISSION MEASUREMENT 3.3.1 TEST REQUIREMENT:

FCC Part15 C Section 15.209 and 15.205

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)					
	PEAK	AVERAGE				
Above 1000	o	54 0				

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

3.3.2 TEST PROCEDURE

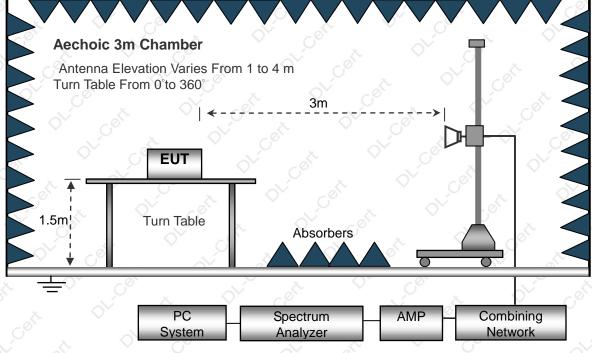
Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.3.3 DEVIATION FROM TEST STANDARD


No deviation

Report No.: DL-20220727003E

3.3.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz

3.3.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: DL-20220727003E

3.3.6 TEST RESULT

GFSK

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Туре
		\bigcirc	္တဲ့ op	eration f	requency:	2402	G		N.
V	2390.00	76.65	52.12	2.73	27.38	54.64	74.00	-19.36	РК
V	2390.00	65.37	52.12	2.73	27.38	43.36	54.00	-10.64	AV
V	2400.00	76.30	52.16	2.78	27.41 <	54.33	74.00	-19.67	_≫ РК
٧ ر	2400.00	64.18	52.16	2.78	27.41	42.21	54.00	-11.79	AV
H	2390.00	76.63	52.12	2.73	27.38	54.62	74.00	-19.38	PK
đ	2390.00	65.38	52.12	2.73	27.38	43.37	54.00	10.63	AV
н	2400.00	76.28	52.16	2.78	27.41	54.31	74.00	-19.69	PK
Н	2400.00	65.34	52.16	2.78	27.41	43.37	54.00	-10.63	AV

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	C°.		ор	eration f	requency:	2480	V at	\vee	0
V	2483.50	76.31	52.23	2.86	27.44	54.38	74.00	-19.62	PK
V	2483.50	65.46 🤇	52.23	2.86	27.44	43.53	54.00	-10.47	AV
V	2500.00	76.73	52.26	2.88	27.49	54.84	74.00	-19.16	PK
Ň.	2500.00	64.63	52.26	2.88	27.49	42.74	54.00	-11.26	AV
Н	2483.50	76.50	52.23	2.86	27.44	54.57	74.00	-19.43	PK
Ψ.C	2483.50	65.72	52.23	2.86	27.44	43.79	54.00	-10.21	AV
H	2500.00	76.59	52.26	2.88	27.49	54.70	74.00	-19.30	PK 🤇
н <	2500.00	65.84	52.26	2.88×	27.49	43.95	54.00	-10.05	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier, Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Report No.: DL-20220727003E

4. BANDWIDTH TEST

4.1 APPLIED PROCEDURES / LIMIT

		FCC Part15 (15.215), Subpart C	
Section	Cer at	Test Item	Oh jost
15.215		Bandwidth	ON CO

4.1.1 TEST PROCEDURE

- 1. Set RBW = 30 kHz.
- 2. Set the video bandwidth (VBW) ≥RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

SPECTRUM ANALYZER

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: DL-20220727003E

4.1.5 TEST RESULTS

Temperature:	25°C	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	TX Mode /CH00, CH19, CH39	\times 0^{\vee}	Cor V Co

Frequency (MHz)	20dB Bandwidth (MHz)	Result
2402	1.080	Pass
2440	1.078	Pass
2480	1.092	Pass
	(MHz) 2402 2440	(MHz) (MHz) 2402 1.080 2440 1.078

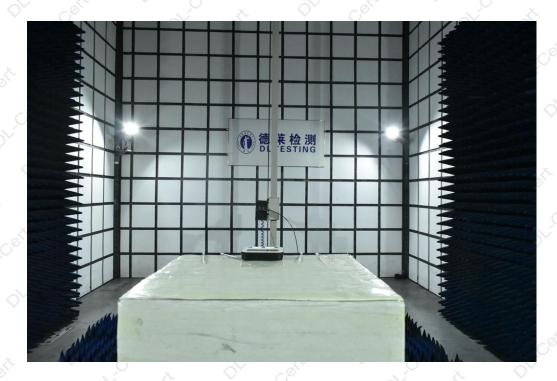
Report No.: DL-20220727003E

5. ANTENNA REQUIREMENT

5.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

5.2 EUT ANTENNA


The EUT antenna is internal antenna, It comply with the standard requirement.

Report No.: DL-20220727003E

6. TEST SEUUP PHOTO

Report No.: DL-20220727003E

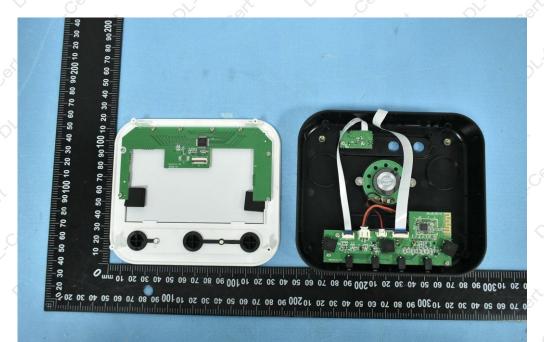
Conducted Measurement Photos

Report No.: DL-20220727003E

7. EUT PHOTO

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 29 of 32

Report No.: DL-20220727003E



Report No.: DL-20220727003E

***** END OF REPORT *****