No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China 518057 Telephone: +86 (0) 755 2601 2053 Report No.: SZEM170200117301 Fax: +86 (0) 755 2671 0594 Fax: +86 (0) 755 2671 0594 Page: 1 of 101 Email: ee.shenzhen@sgs.com # TEST REPORT Application No.: SZEM1702001173CR Applicant: Dongguan Koppo Electronics Co., Ltd. Address of Applicant: No.2 3 Road, Buxinji Industrial Area, Guanjingtou Village, Fenggang Town, Dongguan City, Guangdong Province, China **Manufacturer:** Dongguan Koppo Electronics Co., Ltd. Address of Manufacturer: No.2 3 Road, Buxinji Industrial Area, Guanjingtou Village, Fenggang Town, Dongguan City, Guangdong Province, China Factory: Dongguan Koppo Electronics Co., Ltd. Address of Factory: No.2 3 Road, Buxinji Industrial Area, Guanjingtou Village, Fenggang Town, Dongguan City, Guangdong Province, China **Equipment Under Test (EUT):** **EUT Name:** Bluetooth Headset Model No.: BT565S-1 **FCC ID:** 2AG68BT565S-1 Standards: 47 CFR Part 15, Subpart C 15.247 **Date of Receipt**: 2017-02-27 **Date of Test**: 2017-03-09 to 2017-05-02 **Date of Issue**: 2017-08-30 Test Result : Pass* Jack Zhang EMC Laboratory Manager The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing. This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. ^{*} In the configuration tested, the EUT complied with the standards specified above. Report No.: SZEM170200117301 Page: 2 of 101 | | Revision Record | | | | | | | | |---------|-----------------|------------|----------|----------|--|--|--|--| | Version | Chapter | Date | Modifier | Remark | | | | | | 01 | | 2017-08-30 | | Original | Authorized for issue by: | | | |--------------------------|-----------------------------|--| | | Brix Chen | | | | Bill Chen /Project Engineer | | | | Eric Fu | | | | Eric Fu /Reviewer | | Report No.: SZEM170200117301 Page: 3 of 101 # 2 Test Summary | Radio Spectrum Technical Requirement | | | | | | | | |--|-------------------------------------|--------|--|--------|--|--|--| | Item | Standard | Method | Requirement | Result | | | | | Antenna
Requirement | 47 CFR Part 15,
Subpart C 15.247 | N/A | 47 CFR Part 15,
Subpart C 15.203 &
15.247(c) | Pass | | | | | Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence | 47 CFR Part 15,
Subpart C 15.247 | N/A | 47 CFR Part 15,
Subpart C
15.247(a)(1),(g),(h) | Pass | | | | | Radio Spectrum Matter Part | | | | | | | | |---|-------------------------------------|---|---|--------|--|--|--| | Item | Standard | Method | Requirement | Result | | | | | Conducted
Emissions at AC
Power Line (150kHz-
30MHz) | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.2 | 47 CFR Part 15,
Subpart C 15.207 | Pass | | | | | Conducted Peak
Output Power | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.5 | 47 CFR Part 15,
Subpart C
15.247(b)(1) | Pass | | | | | 20dB Bandwidth | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.7 | 47 CFR Part 15,
Subpart C
15.247(a)(1) | Pass | | | | | Carrier Frequencies
Separation | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.2 | 47 CFR Part 15,
Subpart C
15.247a(1) | Pass | | | | | Hopping Channel
Number | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.3 | 47 CFR Part 15,
Subpart C
15.247a(1)(iii) | Pass | | | | | Dwell Time | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.4 | 47 CFR Part 15,
Subpart C
15.247a(1)(iii) | Pass | | | | | Conducted Band
Edges Measurement | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.6 | 47 CFR Part 15,
Subpart C
15.247(d) | Pass | | | | | Conducted Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.8 | 47 CFR Part 15,
Subpart C
15.247(d) | Pass | | | | | Radiated Emissions
which fall in the
restricted bands | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.10.5 | 47 CFR Part 15,
Subpart C 15.205
& 15.209 | Pass | | | | | Radiated Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.4,6.5,6.6 | 47 CFR Part 15,
Subpart C 15.205
& 15.209 | Pass | | | | Report No.: SZEM170200117301 Page: 4 of 101 # 3 Contents | | | | Page | |---|----------------|--|------| | 1 | COVE | R PAGE | 1 | | 2 | TEST | SUMMARY | 3 | | 3 | CONT | ENTS | Δ | | | | | | | 4 | GENE | RAL INFORMATION | 6 | | | | DETAILS OF E.U.T. | | | | | DESCRIPTION OF SUPPORT UNITS | | | | | MEASUREMENT UNCERTAINTY | | | | | EST LOCATION | | | | | EST FACILITY
DEVIATION FROM STANDARDS | | | | | ABNORMALITIES FROM STANDARD CONDITIONS | | | | | | | | 5 | EQUIF | PMENT LIST | 9 | | 6 | DADIC | SPECTRUM TECHNICAL REQUIREMENT | 10 | | 6 | | | | | | 6.1 A | ANTENNA REQUIREMENT | | | | 6.1.1 | 1 | | | | 6.1.2 | Conclusion | | | | | OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM HOPPING SEQUENCE | | | | 6.2.1
6.2.2 | Test Requirement: | | | | _ | | | | 7 | RADIC | O SPECTRUM MATTER TEST RESULTS | 15 | | | 7.1 C | CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz) | 15 | | | 7.1.1 | | 16 | | | 7.1.2 | Test Setup Diagram | | | | 7.1.3 | Measurement Procedure and Data | | | | | CONDUCTED PEAK OUTPUT POWER | | | | 7.2.1 | 1 | | | | | Test Setup Diagram | | | | 7.2.3
7.3 2 | Measurement Procedure and Data | | | | _ | ODB BANDWIDTH
E.U.T. Operation | | | | 7.3.1
7.3.2 | Test Setup Diagram | | | | 7.3.3 | Measurement Procedure and Data | | | | | Carrier Frequencies Separation | | | | 7.4.1 | E.U.T. Operation | | | | 7.4.2 | Test Setup Diagram | | | | 7.4.3 | Measurement Procedure and Data | 22 | | | | HOPPING CHANNEL NUMBER | | | | 7.5.1 | E.U.T. Operation | | | | 7.5.2 | Test Setup Diagram | | | | 7.5.3 | Measurement Procedure and Data | | | | | OWELL TIME | | | | 7.6.1
7.6.2 | E.U.T. Operation | | | | 7.6.2
7.6.3 | Test Setup Diagram | | | | 7.0.0 | Modelinent i recodure and Data | 20 | Report No.: SZEM170200117301 Page: 5 of 101 | | 7.7 | CONDUCTED BAND EDGES MEASUREMENT | .27 | |---|---------------|--|-----| | | <i>7.7.</i> 1 | =.0 0,000,000 | | | | 7.7.2 | Part Setup Diagram | .27 | | | 7.7.3 | Measurement Procedure and Data | .27 | | | 7.8 | CONDUCTED SPURIOUS EMISSIONS | .28 | | | 7.8.1 | | | | | 7.8.2 | | .28 | | | 7.8.3 | | | | | 7.9 | RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS | | | | 7.9.1 | 1 | | | | 7.9.2 | | | | | 7.9.3 | | | | | 7.10 | RADIATED SPURIOUS EMISSIONS. | | | | 7.10 | 1 | | | | 7.10 | = ····· | | | | 7.10 | 3 Measurement Procedure and Data | .37 | | 8 | PHO | TOGRAPHS | .43 | | | 8.1 | CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz) TEST SETUP | .43 | | | 8.2 | RADIATED SPURIOUS EMISSIONS TEST SETUP | .44 | | | 8.3 | EUT CONSTRUCTIONAL DETAILS | .45 | | 9 | APP | ENDIX | .52 | | | 9.1 | APPENDIX 15.247 | 101 | | | | | | Report No.: SZEM170200117301 Page: 6 of 101 ## 4 General Information ### 4.1 Details of E.U.T. Power supply: Rechargeable battery: DC 3.7V (Charge by USB) Test voltage: AC 120V 50Hz Frequency Range: 2402MHz to 2480MHz BT Version V4.1 with EDR Modulation Technique: Frequency Hopping Spread Spectrum(FHSS) Modulation Type: GFSK Number of Channels: 79 Hopping Channel Type: Adaptive Frequency Hopping systems Antenna Type Chip Antenna Antenna Gain 2dBi ### **Operation Frequency each of channel** | Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------|---------|-----------|---------|-----------| | 0 | 2402MHz | 20 | 2422MHz | 40 |
2442MHz | 60 | 2462MHz | | 1 | 2403MHz | 21 | 2423MHz | 41 | 2443MHz | 61 | 2463MHz | | 2 | 2404MHz | 22 | 2424MHz | 42 | 2444MHz | 62 | 2464MHz | | 3 | 2405MHz | 23 | 2425MHz | 43 | 2445MHz | 63 | 2465MHz | | 4 | 2406MHz | 24 | 2426MHz | 44 | 2446MHz | 64 | 2466MHz | | 5 | 2407MHz | 25 | 2427MHz | 45 | 2447MHz | 65 | 2467MHz | | 6 | 2408MHz | 26 | 2428MHz | 46 | 2448MHz | 66 | 2468MHz | | 7 | 2409MHz | 27 | 2429MHz | 47 | 2449MHz | 67 | 2469MHz | | 8 | 2410MHz | 28 | 2430MHz | 48 | 2450MHz | 68 | 2470MHz | | 9 | 2411MHz | 29 | 2431MHz | 49 | 2451MHz | 69 | 2471MHz | | 10 | 2412MHz | 30 | 2432MHz | 50 | 2452MHz | 70 | 2472MHz | | 11 | 2413MHz | 31 | 2433MHz | 51 | 2453MHz | 71 | 2473MHz | | 12 | 2414MHz | 32 | 2434MHz | 52 | 2454MHz | 72 | 2474MHz | | 13 | 2415MHz | 33 | 2435MHz | 53 | 2455MHz | 73 | 2475MHz | | 14 | 2416MHz | 34 | 2436MHz | 54 | 2456MHz | 74 | 2476MHz | | 15 | 2417MHz | 35 | 2437MHz | 55 | 2457MHz | 75 | 2477MHz | | 16 | 2418MHz | 36 | 2438MHz | 56 | 2458MHz | 76 | 2478MHz | | 17 | 2419MHz | 37 | 2439MHz | 57 | 2459MHz | 77 | 2479MHz | | 18 | 2420MHz | 38 | 2440MHz | 58 | 2460MHz | 78 | 2480MHz | | 19 | 2421MHz | 39 | 2441MHz | 59 | 2461MHz | | | #### Note: In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below: Report No.: SZEM170200117301 Page: 7 of 101 | Channel | Frequency | |---------------------|-----------| | The Lowest channel | 2402MHz | | The Middle channel | 2441MHz | | The Highest channel | 2480MHz | ## 4.2 Description of Support Units The EUT has been tested with associated equipment below. | Description | Manufacturer | Model No. | |-------------|---------------|-----------| | Laptop | Lenovo | T430u | | Test board | Supply to SGS | FT232 | ## 4.3 Measurement Uncertainty | No. | Item | Measurement Uncertainty | |-----|---------------------------------|-------------------------| | 1 | Radio Frequency | 7.25 x 10 ⁻⁸ | | 2 | Duty cycle | 0.37% | | 3 | Occupied Bandwidth | 3% | | 4 | RF conducted power | 0.75dB | | 5 | RF power density | 2.84dB | | 6 | Conducted Spurious emissions | 0.75dB | | 7 | DE Dadiated newer | 4.5dB (below 1GHz) | | / | RF Radiated power | 4.8dB (above 1GHz) | | 8 | Padiated Spurious emission test | 4.5dB (30MHz-1GHz) | | 0 | Radiated Spurious emission test | 4.8dB (1GHz-18GHz) | | 9 | Temperature test | 1℃ | | 10 | Humidity test | 3% | | 11 | Supply voltages | 1.5% | | 12 | Time | 3% | Report No.: SZEM170200117301 Page: 8 of 101 ### 4.4 Test Location All tests were performed at: SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057. Tel: +86 755 2601 2053 Fax: +86 755 2671 0594 No tests were sub-contracted. ### 4.5 Test Facility The test facility is recognized, certified, or accredited by the following organizations: ### CNAS (No. CNAS L2929) CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. #### · A2LA (Certificate No. 3816.01) SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01. #### VCCI The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively. ### FCC –Designation Number: CN1178 SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory. Designation Number: CN1178. Test Firm Registration Number: 406779. ### Industry Canada (IC) Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3. ### 4.6 Deviation from Standards None #### 4.7 Abnormalities from Standard Conditions None Report No.: SZEM170200117301 Page: 9 of 101 # 5 Equipment List | Conducted Emissions at AC Power Line (150kHz-30MHz) | | | | | | | | |---|--|---------------------|--------------|------------|--------------|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | Shielding Room | ZhongYu Electron | GB-88 | SEM001-06 | 2017-05-10 | 2018-05-10 | | | | Measurement Software | AUDIX | e3
V5.4.1221d | N/A | N/A | N/A | | | | LISN | Rohde & Schwarz | ENV216 | SEM007-01 | 2016-10-09 | 2017-10-09 | | | | LISN | ETS-LINDGREN | 3816/2 | SEM007-02 | 2017-04-14 | 2018-04-13 | | | | 8 Line ISN | Fischer Custom
Communications
Inc. | FCC-TLISN-
T8-02 | EMC0120 | 2016-09-28 | 2017-09-28 | | | | 4 Line ISN | Fischer Custom
Communications
Inc. | FCC-TLISN-
T4-02 | EMC0121 | 2016-09-28 | 2017-09-28 | | | | 2 Line ISN | Fischer Custom | FCC-TLISN-
T2-02 | EMC0122 | 2016-09-28 | 2017-09-28 | | | | Conducted Peak Output Power | | | | | | | | |-----------------------------|-----------------|-------------------------|--------------|------------|--------------|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | Measurement Software | JS Tonscend | JS1120-2
BT/WIFI V2. | N/A | N/A | N/A | | | | Signal Generator | Rohde & Schwarz | SML03 | SEM006-02 | 2017-04-14 | 2018-04-13 | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | 20dB Bandwidth | | | | | | |----------------------|-----------------|-------------------------|--------------|------------|--------------| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | Measurement Software | JS Tonscend | JS1120-2
BT/WIFI V2. | N/A | N/A | N/A | | Signal Generator | Rohde & Schwarz | SML03 | SEM006-02 | 2017-04-14 | 2018-04-13 | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | Report No.: SZEM170200117301 Page: 10 of 101 | Carrier Frequencies Separation | | | | | | | | | | | | |--------------------------------|-----------------|-------------------------|--------------|------------|--------------|--|--|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | | | | | Measurement Software | JS Tonscend | JS1120-2
BT/WIFI V2. | N/A | N/A | N/A | | | | | | | | Signal Generator | Rohde & Schwarz | SML03 | SEM006-02 | 2017-04-14 | 2018-04-13 | | | | | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | | | | | Hopping Channel Number | | | | | | | | | | | | |------------------------|-----------------|-------------------------|--------------|------------|--------------|--|--|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | | | | | Measurement Software | JS Tonscend | JS1120-2
BT/WIFI V2. | N/A | N/A | N/A | | | | | | | | Signal Generator | Rohde & Schwarz | SML03 | SEM006-02 | 2017-04-14 | 2018-04-13 | | | | | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | | | | | Dwell Time | | | | | | | | | | | | |----------------------|-----------------|-------------------------|--------------|------------|--------------|--|--|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | | | | | Measurement Software | JS Tonscend | JS1120-2
BT/WIFI V2. | N/A | N/A | N/A | | | | | | | | Signal Generator | Rohde & Schwarz | SML03 | SEM006-02 | 2017-04-14 | 2018-04-13 | | | | | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | | | | | Conducted Band Edges Measurement | | | | | | | | | | | | |----------------------------------|-----------------|-------------------------|--------------|------------|--------------|--|--|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | | | | | Measurement Software | JS Tonscend | JS1120-2
BT/WIFI V2. | N/A | N/A | N/A | | | | | | | | Signal Generator | Rohde & Schwarz | SML03 | SEM006-02 | 2017-04-14 | 2018-04-13 | | | | | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | | | | Report No.: SZEM170200117301 Page: 11 of 101 | Conducted Spurious Emissions | | | | | | | | | | | |
---|-----------------|-------------------------|-----------|------------|------------|--|--|--|--|--|--| | Equipment Manufacturer Model No Inventory No Cal Date Cal Due | | | | | | | | | | | | | DC Power Supply | ZhaoXin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSP | SEM004-06 | 2016-10-09 | 2017-10-09 | | | | | | | | Measurement Software | JS Tonscend | JS1120-2
BT/WIFI V2. | N/A | N/A | N/A | | | | | | | | Signal Generator | Rohde & Schwarz | SML03 | SEM006-02 | 2017-04-14 | 2018-04-13 | | | | | | | | Power Meter | Rohde & Schwarz | NRVS | SEM014-02 | 2016-10-09 | 2017-10-09 | | | | | | | | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | |---------------------------------------|--|-----------------------|--------------|------------|--------------| | 3m Semi-Anechoic
Chamber | AUDIX | N/A | SEM001-02 | 2017-05-02 | 2020-05-01 | | Measurement Software | AUDIX | e3 V8.2014-
6-27 | N/A | N/A | N/A | | Spectrum Analyzer | Rohde & Schwarz | FSU43 | SEM004-08 | 2017-04-14 | 2018-04-13 | | BiConiLog Antenna
(26-3000MHz) | ETS-Lindgren | 3142C | SEM003-02 | 2017-03-05 | 2020-03-05 | | Horn Antenna (1-
18GHz) | Rohde & Schwarz | HF907 | SEM003-07 | 2015-06-14 | 2018-06-14 | | Horn Antenna
(15GHz-40GHz) | Schwarzbeck | BBHA 9170 | SEM003-14 | 2017-06-16 | 2020-06-15 | | Pre-amplifier
(0.1-1300MHz) | HP | 8447D | SEM005-02 | 2016-10-09 | 2017-10-09 | | Low Noise Amplifier
(100MHz-18GHz) | Black Diamond
Series | BDLNA-
0118-352810 | SEM005-05 | 2016-10-09 | 2017-10-09 | | Pre-amplifier
(0.1-26.5GHz) | Compliance
Directions Systems
Inc. | PAP-0126 | SEM004-10 | 2016-10-17 | 2017-10-17 | | Pre-amplifier
(26GHz-40GHz) | Compliance
Directions Systems
Inc. | PAP-2640-50 | SEM005-08 | 2017-04-14 | 2018-04-13 | | DC Power Supply | Zhao Xin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | Active Loop Antenna | ETS-Lindgren | 6502 | SEM003-08 | 2015-08-14 | 2018-08-14 | | Band filter | N/A | N/A | SEM023-01 | N/A | N/A | Report No.: SZEM170200117301 Page: 12 of 101 | Radiated Spurious Emissions | | | | | | | | | | | |---------------------------------------|--|-----------------------|-----------|------------|--------------|--|--|--|--|--| | Equipment | Manufacturer | Model No Inventory No | | Cal Date | Cal Due Date | | | | | | | 3m Semi-Anechoic
Chamber | AUDIX | N/A | SEM001-02 | 2017-05-02 | 2020-05-01 | | | | | | | Measurement Software | AUDIX | e3 V8.2014-
6-27 | N/A | N/A | N/A | | | | | | | Spectrum Analyzer | Rohde & Schwarz | FSU43 | SEM004-08 | 2017-04-14 | 2018-04-13 | | | | | | | BiConiLog Antenna
(26-3000MHz) | ETS-Lindgren | 3142C | SEM003-02 | 2017-03-05 | 2020-03-05 | | | | | | | Horn Antenna (1-
18GHz) | Rohde & Schwarz | HF907 | SEM003-07 | 2015-06-14 | 2018-06-14 | | | | | | | Horn Antenna
(15GHz-40GHz) | Schwarzbeck | BBHA 9170 | SEM003-14 | 2017-06-16 | 2020-06-15 | | | | | | | Pre-amplifier
(0.1-1300MHz) | HP | 8447D | SEM005-02 | 2016-10-09 | 2017-10-09 | | | | | | | Low Noise Amplifier
(100MHz-18GHz) | Black Diamond
Series | BDLNA-
0118-352810 | SEM005-05 | 2016-10-09 | 2017-10-09 | | | | | | | Pre-amplifier
(0.1-26.5GHz) | Compliance
Directions Systems
Inc. | PAP-0126 | SEM004-10 | 2016-10-17 | 2017-10-17 | | | | | | | Pre-amplifier
(26GHz-40GHz) | Compliance
Directions Systems
Inc. | PAP-2640-50 | SEM005-08 | 2017-04-14 | 2018-04-13 | | | | | | | DC Power Supply | Zhao Xin | RXN-305D | SEM011-02 | 2016-10-09 | 2017-10-09 | | | | | | | Active Loop Antenna | ETS-Lindgren | 6502 | SEM003-08 | 2015-08-14 | 2018-08-14 | | | | | | | Band filter | N/A | N/A | SEM023-01 | N/A | N/A | | | | | | | General used equipment | | | | | | | | | | | |------------------------------------|---|----------|--------------|------------|--------------|--|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory No | Cal Date | Cal Due Date | | | | | | | Humidity/ Temperature
Indicator | Shanghai
Meteorological
Industry Factory | ZJ1-2B | SEM002-03 | 2016-10-12 | 2017-10-12 | | | | | | | Humidity/ Temperature
Indicator | Shanghai
Meteorological
Industry Factory | ZJ1-2B | SEM002-04 | 2016-10-12 | 2017-10-12 | | | | | | | Humidity/ Temperature Indicator | Mingle | N/A | SEM002-08 | 2016-10-12 | 2017-10-12 | | | | | | | Barometer | Changchun
Meteorological
Industry Factory | DYM3 | SEM002-01 | 2017-04-18 | 2018-04-18 | | | | | | Report No.: SZEM170200117301 Page: 13 of 101 # 6 Radio Spectrum Technical Requirement ### 6.1 Antenna Requirement ### 6.1.1 Test Requirement: 47 CFR Part 15, Subpart C 15.203 & 15.247(c) #### 6.1.2 Conclusion #### Standard Requirment: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. ### 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### **EUT Antenna:** The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi. Report No.: SZEM170200117301 Page: 14 of 101 # 6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence ### 6.2.1 Test Requirement: 47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h) #### 6.2.2 Conclusion Standard Requirment: The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1): According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. Number of shift register stages: 9 Length of pseudo-random sequence: 29 -1 = 511 bits Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: Each frequency used equally on the average by each transmitter. According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g): According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system. Compliance for section 15.247(h): According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum band so that it individ Report No.: SZEM170200117301 Page: 15 of 101 # 7 Radio Spectrum Matter Test Results ### 7.1 Conducted Emissions at AC Power Line (150kHz-30MHz) Test Requirement 47 CFR Part 15, Subpart C 15.207 Test Method: ANSI C63.10 (2013) Section 6.2 Limit: | Everyoney of emission/MUT) | Conducte | ed limit(dBµV) | | | | | |---|------------|----------------|--|--|--|--| | Frequency of emission(MHz) | Quasi-peak | Average | | | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | | | | 0.5-5 | 56 | 46 | | | | | | 5-30 60 50 | | | | | | | | *Decreases with the logarithm of the frequency. | | | | | | | Report No.: SZEM170200117301 Page: 16 of 101 ### 7.1.1 E.U.T. Operation Operating
Environment: Temperature: 25 °C Humidity: 55 % RH Atmospheric Pressure: 1015 mbar Test mode: c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.1.2 Test Setup Diagram #### 7.1.3 Measurement Procedure and Data - 1) The mains terminal disturbance voltage test was conducted in a shielded room. - 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50µH + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded. - 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, - 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. - 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. Remark: LISN=Read Level+ Cable Loss+ LISN Factor Report No.: SZEM170200117301 Page: 17 of 101 Mode:c; Line:Live Line Site : Shielding Room Condition : CE LINE Job No. : 01173CR Test Mode : C | | Freq | Cable
Loss | LISN
Factor | | | Limit
Line | Over
Limit | Remark | |-----|---------|---------------|----------------|-------|-------|---------------|---------------|--------| | | MHz | dB | dB | dBuV | dBuV | dBuV | ——dB | | | 1 | 0.19242 | 0.02 | 9.64 | 30.75 | 40.41 | 53.93 | -13.52 | Peak | | 2 | 0.29869 | 0.02 | 9.64 | 29.82 | 39.48 | 50.28 | -10.80 | Peak | | 3 @ | 0.59794 | 0.02 | 9.65 | 30.81 | 40.48 | 46.00 | -5.52 | Peak | | 4 | 1.141 | 0.03 | 9.66 | 19.03 | 28.71 | 46.00 | -17.29 | Peak | | 5 | 2.334 | 0.03 | 9.68 | 18.98 | 28.69 | 46.00 | -17.31 | Peak | | 6 | 8.062 | 0.10 | 9.81 | 23.52 | 33.44 | 50.00 | -16.56 | Peak | Report No.: SZEM170200117301 Page: 18 of 101 Mode:c; Line:Neutral Line Site : Shielding Room Condition : CE NEUTRAL Job No. : 01173CR Test Mode : c | | Frea | Cable | LISN
Factor | | | Limit | Over
Limit | Remark | |-----|---------|-------|----------------|-------|-------|-------|---------------|----------| | | | 2000 | | 20101 | 20101 | 22110 | 2211120 | Tremuz z | | | MHz | dB | dB | dBuV | dBuV | dBuV | dB | | | 1 | 0.24165 | 0.02 | 9.63 | 20.04 | 20 E0 | E2 04 | 10 45 | Doole | | 1 | 0.24165 | 0.02 | 9.03 | 29.94 | 39.59 | 52.04 | -12.45 | reak | | 2 @ | 0.60112 | 0.02 | 9.63 | 29.82 | 39.47 | 46.00 | -6.53 | Peak | | 3 | 1.645 | 0.03 | 9.65 | 20.03 | 29.71 | 46.00 | -16.29 | Peak | | 4 | 2.707 | 0.03 | 9.66 | 19.47 | 29.16 | 46.00 | -16.84 | Peak | | 5 | 7.566 | 0.09 | 9.78 | 20.63 | 30.50 | 50.00 | -19.50 | Peak | | 6 | 13.695 | 0.15 | 9.94 | 24.02 | 34.11 | 50.00 | -15.89 | Peak | Report No.: SZEM170200117301 Page: 19 of 101 ## 7.2 Conducted Peak Output Power Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(1) Test Method: ANSI C63.10 (2013) Section 7.8.5 Limit: 20.97dBm Report No.: SZEM170200117301 Page: 20 of 101 ### 7.2.1 E.U.T. Operation Operating Environment: Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar Test mode b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.2.2 Test Setup Diagram ## Ground Reference Plane ### 7.2.3 Measurement Procedure and Data Report No.: SZEM170200117301 Page: 21 of 101 ### 7.3 20dB Bandwidth Test Requirement 47 CFR Part 15, Subpart C 15.247(a)(1) Test Method: ANSI C63.10 (2013) Section 7.8.7 ### 7.3.1 E.U.T. Operation Operating Environment: Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar Test mode b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.3.2 Test Setup Diagram # Ground Reference Plane ### 7.3.3 Measurement Procedure and Data Report No.: SZEM170200117301 Page: 22 of 101 ### 7.4 Carrier Frequencies Separation Test Requirement 47 CFR Part 15, Subpart C 15.247a(1) Test Method: ANSI C63.10 (2013) Section 7.8.2 Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W ### 7.4.1 E.U.T. Operation Operating Environment: Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar Test mode b:TX non-Hop mode Keep the EUT in continuously transmitting mode with GFSK b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.4.2 Test Setup Diagram ## Ground Reference Plane ### 7.4.3 Measurement Procedure and Data Report No.: SZEM170200117301 Page: 23 of 101 ## 7.5 Hopping Channel Number Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)(iii) Test Method: ANSI C63.10 (2013) Section 7.8.3 Limit: | Frequency range(MHz) | Number of hopping channels (minimum) | |----------------------|--------------------------------------| | 902-928 | 50 for 20dB bandwidth <250kHz | | 902-926 | 25 for 20dB bandwidth ≥250kHz | | 2400-2483.5 | 15 | | 5725-5850 | 75 | Report No.: SZEM170200117301 Page: 24 of 101 ### 7.5.1 E.U.T. Operation Operating Environment: Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar Test mode a:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.5.2 Test Setup Diagram ### Ground Reference Plane #### 7.5.3 Measurement Procedure and Data Report No.: SZEM170200117301 Page: 25 of 101 7.6 Dwell Time Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)(iii) Test Method: ANSI C63.10 (2013) Section 7.8.4 Limit: | Frequency(MHz) | Limit | | | |----------------|---|--|--| | 902-928 | 0.4S within a 20S period(20dB bandwidth<250kHz) | | | | 902-928 | 0.4S within a 10S period(20dB bandwidth≥250kHz) | | | | 2400 2492 5 | 0.4S within a period of 0.4S multiplied by the number | | | | 2400-2483.5 | of hopping channels | | | | 5725-5850 | 0.4S within a 30S period | | | Report No.: SZEM170200117301 Page: 26 of 101 ### 7.6.1 E.U.T. Operation Operating Environment: Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar Test mode a:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.6.2 Test Setup Diagram ### Ground Reference Plane #### 7.6.3 Measurement Procedure and Data Report No.: SZEM170200117301 Page: 27 of 101 ### 7.7 Conducted Band Edges Measurement Test Requirement 47 CFR Part 15, Subpart C 15.247(d) Test Method: ANSI C63.10 (2013) Section 7.8.6 ### 7.7.1 E.U.T. Operation Operating Environment: Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar Test mode b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.7.2 Test Setup Diagram ## Ground Reference Plane ### 7.7.3 Measurement Procedure and Data Report No.: SZEM170200117301 Page: 28 of 101 ### 7.8 Conducted Spurious Emissions Test Requirement 47 CFR Part 15, Subpart C 15.247(d) Test Method: ANSI C63.10 (2013) Section 7.8.8 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. ### 7.8.1 E.U.T. Operation Operating Environment: Temperature: 23 °C Humidity: 56 % RH Atmospheric Pressure: 1020 mbar Test mode b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. #### 7.8.2 Test Setup Diagram ## **Ground Reference Plane** ### 7.8.3 Measurement Procedure and Data Report No.: SZEM170200117301 Page: 29 of 101 ### 7.9 Radiated Emissions which fall in the restricted bands Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209 Test Method: ANSI C63.10 (2013) Section 6.10.5 Measurement Distance: 3m Limit: | Frequency(MHz)₽ | Field-
strength(microvolts/meter)- | Measurement-
distance(meters)∂ | |-----------------|---------------------------------------|-----------------------------------| | 0.009-0.490₽ | 2400/F(kHz)₽ | 300₽ | | 0.490-1.705₽ | 24000/F(kHz)+ ³ | 30€ | | 1.705-30.0₽ | 30₽ | 30€ | | 30-88₽ | 100€ | 3₽ | | 88-216₽ | 150₽ | 3₽ | | 216-960₽ | 200₽ | 3₽ | | Above-960₽ | 500₽ | 3₽ | Remark: The emission limits shown
in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. #### 7.9.1 E.U.T. Operation Operating Environment: Temperature: 23 Pretest these mode to find the worst case: 20 0 Humidity: 54 % RH Atmospheric Pressure: 1020 mbar b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. The worst case for final test: c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. Report No.: SZEM170200117301 Page: 30 of 101 #### 7.9.2 Test Setup Diagram 30MHz-1GHz Above 1GHz #### 7.9.3 Measurement Procedure and Data - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - h. Test the EUT in the lowest channel, the middle channel, the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor Report No.: SZEM170200117301 Page: 31 of 101 Mode:c; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low Condition: 3m HORIZONTAL Job No: : 01173CR Mode: : 2402 Bandedge | | Freq | | | Preamp
Factor | | | | | Remark | |------|----------|------|-------|------------------|-------|--------|--------|--------|--------| | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 2361.071 | 5.31 | 28.99 | 37.96 | 47.26 | 43.60 | 74.00 | -30.40 | | | 2 | 2390.000 | 5.34 | 29.08 | 37.96 | 45.15 | 41.61 | 74.00 | -32.39 | | | 3 рр | 2402.148 | 5.35 | 29.11 | 37.96 | 96.44 | 92.94 | 74.00 | 18.94 | | Report No.: SZEM170200117301 Page: 32 of 101 Mode:c; Polarization:Vertical; Modulation Type:GFSK; Channel:Low Condition: 3m Vertical Job No: : 01173CR Mode: : 2402 Bandedge | | Freq | | | Preamp
Factor | | | | | Remark | |------|----------|------|-------|------------------|-------|--------|--------|--------|--------| | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | 1 | 2369.993 | 5.32 | 29.02 | 37.96 | 47.48 | 43.86 | 74.00 | -30.14 | | | 2 | 2390.000 | 5.34 | 29.08 | 37.96 | 45.04 | 41.50 | 74.00 | -32.50 | | | 3 рр | 2402.250 | 5.35 | 29.11 | 37.96 | 94.04 | 90.54 | 74.00 | 16.54 | | Report No.: SZEM170200117301 Page: 33 of 101 Mode:c; Polarization:Horizontal; Modulation Type:GFSK; Channel:High Condition: 3m HORIZONTAL Job No: : 01173CR Mode: : 2480 Bandedge | | Freq | | | | | Level | | | Remark | |------|----------|------|-------|-------|--------|--------|--------|--------|--------| | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | 1 pp | 2479.855 | 5.41 | 29.34 | 37.95 | 101.71 | 98.51 | 74.00 | 24.51 | | | 2 | 2483.500 | 5.41 | 29.35 | 37.95 | 49.08 | 45.89 | 74.00 | -28.11 | | | 3 | 2484.021 | 5.41 | 29.35 | 37.95 | 50.95 | 47.76 | 74.00 | -26.24 | | Report No.: SZEM170200117301 Page: 34 of 101 Mode:c; Polarization:Vertical; Modulation Type:GFSK; Channel:High Condition: 3m VERTICAL Job No: : 01173CR Mode: : 2480 Bandedge | | Freq | | | Preamp
Factor | | | | | Remark | |---|----------------------|------|-------|------------------|-------|--------|--------|--------|--------| | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | | | 2479.805
2483.500 | | | | | | | | | | 3 | 2484.520 | 5.41 | 29.36 | 37.95 | 47.88 | 44.70 | 74.00 | -29.30 | | Report No.: SZEM170200117301 Page: 35 of 101 ### 7.10 Radiated Spurious Emissions Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209 Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6 Measurement Distance: 3m Limit: | Frequency(MHz) | Field strength(microvolts/meter) | Measurement distance(meters) | |----------------|----------------------------------|------------------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. Report No.: SZEM170200117301 Page: 36 of 101 ### 7.10.1 E.U.T. Operation Operating Environment: Temperature: 23 °C Humidity: 54 % RH Atmospheric Pressure: 1020 mbar Pretest these mode to find the worst case: b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. The worst case for final test: c:Charge + TX_non-Hop mode_Keep the EUT in charging and continuously transmitting mode with GFSK modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.10.2Test Setup Diagram Below 30MHz 30MHz-1GHz Above 1GHz Report No.: SZEM170200117301 Page: 37 of 101 #### 7.10.3 Measurement Procedure and Data - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - h. Test the EUT in the lowest channel, the middle channel, the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor Report No.: SZEM170200117301 Page: 38 of 101 Below 1G: **Detector:QP** Mode:c; Polarization:Horizontal Condition: 3m HORIZONTAL Job No. : 01173CR Test mode: charge + TX | |
 Cable | Ant | Preamp | Read | | Limit | 0ver | |------|--------|-------|--------|--------|-------|--------|--------|--------| | | Freq | Loss | Factor | Factor | Level | Level | Line | Limit | | | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | 1 | 93.11 | 1.13 | 8.82 | 27.21 | 40.11 | 22.85 | 43.50 | -20.65 | | 2 | 169.60 | 1.35 | 9.50 | 26.82 | 39.22 | 23.25 | 43.50 | -20.25 | | 3 | 193.09 | 1.39 | 10.13 | 26.73 | 39.29 | 24.08 | 43.50 | -19.42 | | 4 pp | 240.83 | 1.63 | 12.01 | 26.56 | 48.18 | 35.26 | 46.00 | -10.74 | | 5 | 287.99 | 1.85 | 13.37 | 26.43 | 42.10 | 30.89 | 46.00 | -15.11 | | 6 | 375.94 | 2.13 | 16.01 | 26.97 | 37.06 | 28.23 | 46.00 | -17.77 | Report No.: SZEM170200117301 Page: 39 of 101 Mode:c; Polarization:Vertical Condition: 3m VERTICAL Job No. : 01173CR Test mode: charge + TX | | Freq | | | Preamp
Factor | | | | | |------|--------|------|-------|------------------|-------|--------|--------|--------| | _ | MHz | dB | dB/m | dB | dBuV | dBuV/m | dBuV/m | dB | | 1 pp | 93.11 | 1.13 | 8.82 | 27.21 | 49.44 | 32.18 | 43.50 | -11.32 | | 2 | 170.79 | 1.35 | 9.53 | 26.81 | 43.02 | 27.09 | 43.50 | -16.41 | | 3 | 240.83 | 1.63 | 12.01 | 26.56 | 38.90 | 25.98 | 46.00 | -20.02 | | 4 | 383.93 | 2.16 | 16.11 | 27.03 | 35.00 | 26.24 | 46.00 | -19.76 | | 5 | 434.07 | 2.35 | 16.58 | 27.35 | 39.06 | 30.64 | 46.00 | -15.36 | | 6 | 629 48 | 2 76 | 20 52 | 27 50 | 31 73 | 27 51 | 46 00 | -18 49 | Report No.: SZEM170200117301 Page: 40 of 101 Above 1G **Detector:Peak** Mode:c; Polarization:Horizontal; Modulation Type:GFSK; hannel:Low | Freq
(MHz) | Antenna
_Factor
(dB/m) | Cable
_Loss (dB) | Preamp
_Gain (dB) | Read
_Level
(dBuV) | Level
(dBuV/m) | Limit
_Line
(dBuV/m) | Over
_Limit (dB) | |---------------|------------------------------|---------------------|----------------------|--------------------------|-------------------|----------------------------|---------------------| | 1646.948 | 26.45 | 4.65 | 38.04 | 43.97 | 37.55 | 74 | -36.45 | | 3184.250 | 31.65 | 6.07 | 37.92 | 44.74 | 45.18 | 74 | -28.82 | | 4804.000 | 34.16 | 7.73 | 38.40 | 46.90 | 50.78 | 74 | -23.22 | | 7206.000 | 36.42 | 9.65 | 37.11 | 41.82 | 51.04 | 74 | -22.96 | | 9608.000 | 37.52 | 11.06 | 35.10 | 38.29 | 52.22 | 74 | -21.78 | | 12086.330 | 38.65 | 12.53 | 35.81 | 36.96 | 53.07 | 74 | -20.93 | Mode:c; Polarization: Vertical; Modulation Type:GFSK; hannel:Low | Freq
(MHz) | Antenna
_Factor
(dB/m) | Cable
_Loss (dB) | Preamp
_Gain (dB) | Read
_Level
(dBuV) | Level
(dBuV/m) | Limit
_Line
(dBuV/m) | Over
_Limit (dB) | |---------------|------------------------------|---------------------|----------------------|--------------------------|-------------------|----------------------------|---------------------| | 1333.284 | 25.10 | 4.26 | 38.07 | 47.37 | 39.16 | 74 | -34.84 | | 2050.000 | 27.98 | 5.06 | 37.99 | 43.95 | 40.35 | 74 | -33.65 | | 4804.000 | 34.16 | 7.73 | 38.40 | 46.50 | 50.38 | 74 | -23.62 | | 7206.000 | 36.42 | 9.65 | 37.11 | 42.17 | 51.39 | 74 | -22.61 | | 9608.000 | 37.52 | 11.06 | 35.10 | 38.33 | 52.26 | 74 | -21.74 | | 12148.020 | 38.69 | 12.62 | 35.96 | 37.11 | 53.18 | 74 | -20.82 | Report No.: SZEM170200117301 Page: 41 of 101 Mode:c; Polarization:Horizontal; Modulation Type:GFSK; Channel:middle | Freq
(MHz) | Antenna
_Factor
(dB/m) | Cable
_Loss
(dB) | Preamp
_Gain
(dB) | Read
_Level
(dBuV) | Level
(dBuV/m) | Limit
_Line
(dBuV/m) | Over
_Limit
(dB) | |---------------|------------------------------|------------------------|-------------------------|--------------------------|-------------------|----------------------------|------------------------| | 1388.708 | 25.34 | 4.34 | 38.06 | 44.65 | 36.76 | 74 | -37.24 | | 3192.366 | 31.66 | 6.08 | 37.92 | 45.32 | 45.78 | 74 | -28.22 | | 4882.000 | 34.30 | 7.84 | 38.44 | 47.18 | 51.29 | 74 | -22.71 | | 7323.000 | 36.37 | 9.73 | 37.01 | 42.58 | 51.90 | 74 | -22.10 | | 9764.000 | 37.55 | 11.21 | 35.02 | 37.85 | 52.05 | 74 | -21.95 | | 12429.540 | 38.86 | 13.04 | 36.63 | 37.77 | 53.67 | 74 | -20.33 | Mode:c; Polarization:Vertical; Modulation Type:GFSK; Channel:middle | Freq
(MHz) | Antenna
_Factor
(dB/m) | Cable
_Loss (dB) | Preamp
_Gain (dB) | Read
_Level
(dBuV) | Level
(dBuV/m) | Limit
_Line
(dBuV/m) | Over
_Limit (dB) | |---------------|------------------------------|---------------------|----------------------|--------------------------|-------------------|----------------------------|---------------------| | 1755.164 | 26.89 | 4.76 | 38.02 | 43.67 | 37.91 | 74 | -36.09 | | 3489.840 | 32.18 | 6.29 | 37.95 | 44.88 | 45.94 | 74 | -28.06 | | 4882.000 | 34.30 | 7.84 | 38.44 | 48.39 | 52.50 | 74 | -21.50 | | 7323.000 | 36.37 | 9.73 | 37.01 | 41.86 | 51.18 | 74 | -22.82 | | 9764.000 | 37.55 | 11.21 | 35.02 | 38.07 | 52.27 | 74 | -21.73 | | 12272.340 | 38.76 | 12.81 | 36.25 | 37.59 | 53.59 | 74 | -20.41 | Report No.: SZEM170200117301 Page: 42 of 101 Mode:c; Polarization:Horizontal; Modulation Type:GFSK; Channel:High | Freq
(MHz) | Antenna
_Factor
(dB/m) | Cable
_Loss (dB) | Preamp
_Gain (dB) | Read
_Level
(dBuV) | Level
(dBuV/m) | Limit
_Line
(dBuV/m) | Over
_Limit (dB) | |---------------|------------------------------|---------------------|----------------------|--------------------------|-------------------|----------------------------|---------------------| | 1350.362 | 25.18 | 4.29 | 38.06 | 44.16 | 36.07 | 74 | -37.93 | | 1913.838 | 27.49 | 4.93 | 38.01 | 44.36 | 39.75 | 74 | -34.25 | | 3258.042 | 31.78 | 6.13 | 37.93 | 45.00 | 45.59 | 74 | -28.41 | | 4960.000 | 34.43 | 7.95 | 38.48 | 46.70 | 51.03 | 74 | -22.97 | | 7440.000 | 36.32 | 9.81 | 36.90 | 43.51 | 52.96 | 74 | -21.04 | | 9920.000 | 37.58 | 11.36 | 34.94 | 38.80 | 53.26 | 74 | -20.74 | Mode:c; Polarization:Vertical; Modulation Type:GFSK; Channel:High | Freq
(MHz) | Antenna
_Factor
(dB/m) | Cable
_Loss (dB) | Preamp
_Gain (dB) | Read
_Level
(dBuV) | Level
(dBuV/m) | Limit
_Line
(dBuV/m) | Over
_Limit (dB) | |---------------|------------------------------|---------------------|----------------------|--------------------------|-------------------|----------------------------|---------------------| | 1498.912 | 25.80 | 4.47 | 38.05 | 48.68 | 41.38 | 74 | -32.62 | | 3003.173 | 31.31 | 5.93 | 37.90 | 44.82 | 45.32 | 74 | -28.68 | | 4960.000 | 34.43 | 7.95 | 38.48 | 48.92 | 53.25 | 74 | -20.75 | | 7440.000 | 36.32 | 9.81 | 36.90 | 44.97 | 54.42 | 74 | -19.58 | | 9920.000 | 37.58 | 11.36 | 34.94 | 38.50 | 52.96 | 74 | -21.04 | | 12210.020 | 38.73 | 12.71 | 36.10 | 37.11 | 53.15 | 74 | -20.85 | Report No.: SZEM170200117301 Page: 43 of 101 #### 8 Photographs #### 8.1 Conducted Emissions at AC Power Line (150kHz-30MHz) Test Setup Report No.: SZEM170200117301 Page: 44 of 101 #### 8.2 Radiated Spurious Emissions Test Setup Report No.: SZEM170200117301 Page: 45 of 101 #### 8.3 EUT Constructional Details Report No.: SZEM170200117301 Page: 46 of 101 Report No.: SZEM170200117301 Page: 47 of 101 Report No.: SZEM170200117301 Page: 48 of 101 Report No.: SZEM170200117301 Page: 49 of 101 Report No.: SZEM170200117301 Page: 50 of 101 Report No.: SZEM170200117301 Page: 51 of 101 Report No.: SZEM170200117301 Page: 52 of 101 #### 9 Appendix #### 9.1 Appendix 15.247 #### 1.20 dB Bandwidth | Test Mode | Test Channel | EBW[MHz] | Limit[MHz] | Verdict | |-----------|--------------|----------|------------|---------| | DH5 | 2402 | 0.950 | | PASS | | DH5 | 2441 | 0.948 | | PASS | | DH5 | 2480 | 0.950 | | PASS | | 2DH5 | 2402 | 1.278 | | PASS | | 2DH5 | 2441 | 1.242 | | PASS | | 2DH5 | 2480 | 1.244 | | PASS | | 3DH5 | 2402 | 1.286 | | PASS | | 3DH5 | 2441 | 1.268 | | PASS | | 3DH5 | 2480 | 1.264 | | PASS | Report No.: SZEM170200117301 Page: 53 of 101 Report No.: SZEM170200117301 Page: 54 of 101 Report No.: SZEM170200117301 Page: 55 of 101 Report No.: SZEM170200117301 Page: 56 of 101 Report No.: SZEM170200117301 Page: 57 of 101 Report No.: SZEM170200117301 Page: 58 of 101 #### 2.Conducted Peak Output Power | Test Mode | Test Channel | Power[dBm] | Limit[dBm] | Verdict | |-----------|--------------|------------|------------|---------| | DH5 | 2402 | -5.02 | <20.97 | PASS | | DH5 | 2441 | -2.8 | <20.97 | PASS | | DH5 | 2480 | -2.87 | <20.97 | PASS | | 2DH5 | 2402 | -7.14 | <20.97 | PASS | | 2DH5 | 2441 | -4.66 | <20.97 | PASS | | 2DH5 | 2480 | -4.76 | <20.97 | PASS | | 3DH5 | 2402 | -6.87 | <20.97 | PASS | | 3DH5 | 2441 | -4.31 | <20.97 | PASS | | 3DH5 | 2480 | -4.41 | <20.97 | PASS | Report No.: SZEM170200117301 Page: 59 of 101 Report No.: SZEM170200117301 Page: 60 of 101 Report No.: SZEM170200117301 Page: 61 of 101 Report No.: SZEM170200117301 Page: 62 of 101 Report No.: SZEM170200117301 Page: 63 of 101 Report No.: SZEM170200117301 Page: 64 of 101 #### 3. Carrier Frequency Separation | Test Mode | Test Channel | Result[MHz] | Limit[MHz] | Verdict | |-----------|--------------|-------------|------------|---------| | DH5 | 2441 | 1.005 | >=0.634 | PASS | | 2DH5 | 2441 | 1.011 | >=0.852 | PASS | | 3DH5 | 2441 | 1.164 | >=0.858 | PASS | Report No.: SZEM170200117301 Page: 65 of 101 Report No.: SZEM170200117301 Page: 66 of 101 Report No.: SZEM170200117301 Page: 67 of 101 #### 4.Dwell Time | Test
Mode | Test
Channel | Burst
Width[ms/hop/ch] | Total
Hops[hop*ch] | Dwell Time[s] | Limit[s] | Verdict | |--------------|-----------------|---------------------------|-----------------------|---------------|----------|---------| | DH1 | 2402 | 0.4 | 320 | 0.128 | <0.4 | PASS | | DH3 | 2402 | 1.66 | 160 | 0.266 | <0.4 | PASS | | DH5 | 2402 | 2.9 | 110 | 0.319 | <0.4 | PASS | | 2DH1 | 2402 | 0.41 | 320 | 0.131 | <0.4 | PASS | | 2DH3 | 2402 | 1.67 | 160 | 0.267 | <0.4 | PASS | | 2DH5 | 2402 | 2.91 | 110 | 0.32 | <0.4 | PASS | | 3DH1 | 2402 | 0.41 | 310 | 0.127 | <0.4 | PASS | | 3DH3 | 2402 | 1.67 | 160 | 0.267 | <0.4 | PASS | | 3DH5 | 2402 | 2.91 | 100
| 0.291 | <0.4 | PASS | Report No.: SZEM170200117301 Page: 68 of 101 Report No.: SZEM170200117301 Page: 69 of 101 Report No.: SZEM170200117301 Page: 70 of 101 Report No.: SZEM170200117301 Page: 71 of 101 Report No.: SZEM170200117301 Page: 72 of 101 Report No.: SZEM170200117301 Page: 73 of 101 Report No.: SZEM170200117301 Page: 74 of 101 Report No.: SZEM170200117301 Page: 75 of 101 Report No.: SZEM170200117301 Page: 76 of 101 Report No.: SZEM170200117301 Page: 77 of 101 ### **5.Hopping Channel Number** | Test Mode | Test Channel | Number of Hopping Channel[N] | Limit[N] | Verdict | |-----------|--------------|------------------------------|----------|---------| | DH5 | 2402 | 79 | >=15 | PASS | | 2DH5 | 2402 | 79 | >=15 | PASS | | 3DH5 | 2402 | 79 | >=15 | PASS | Report No.: SZEM170200117301 Page: 78 of 101 Report No.: SZEM170200117301 Page: 79 of 101 Report No.: SZEM170200117301 Page: 80 of 101 #### 6.Band-edge for RF Conducted Emissions | Test
Mode | Test
Channel | Hopping | Carrier Max. Spurious Le
Power[dBm] [dBm] | | Limit[dBm | Verdict | |--------------|-----------------|---------|--|---------|-----------|---------| | DH5 | 2402 | Off | -5.910 | -63.635 | <-25.91 | PASS | | DH5 | 2480 | Off | -3.750 | -60.080 | <-23.75 | PASS | | 2DH5 | 2402 | Off | -10.300 | -65.840 | <-30.3 | PASS | | 2DH5 | 2480 | Off | -7.210 | -63.582 | <-27.21 | PASS | | 3DH5 | 2402 | Off | -9.080 | -65.014 | <-29.08 | PASS | | 3DH5 | 2480 | Off | -6.910 | -63.028 | <-26.91 | PASS | | DH5 | 2402 | On | -8.350 | -53.477 | <-28.35 | PASS | | DH5 | 2480 | On | -4.380 | -57.203 | <-24.38 | PASS | | 2DH5 | 2402 | On | -10.290 | -63.635 | <-30.29 | PASS | | 2DH5 | 2480 | On | -7.000 | -61.043 | <-27 | PASS | | 3DH5 | 2402 | On | -11.460 | -63.425 | <-31.46 | PASS | | 3DH5 | 2480 | On | -7.520 | -59.803 | <-27.52 | PASS | Report No.: SZEM170200117301 Page: 81 of 101 Report No.: SZEM170200117301 Page: 82 of 101 Report No.: SZEM170200117301 Page: 83 of 101 Report No.: SZEM170200117301 Page: 84 of 101 Report No.: SZEM170200117301 Page: 85 of 101 Report No.: SZEM170200117301 Page: 86 of 101 Report No.: SZEM170200117301 Page: 87 of 101 #### 7.RF Conducted Spurious Emissions | Test Mode | Test
Channel | StartFre
[MHz] | StopFre
[MHz] | RBW
[kHz] | VBW
[kHz] | Pref[dBm
] | Max.
Level
[dBm] | Limit
[dBm] | Verdic
t | |-----------|-----------------|-------------------|------------------|--------------|--------------|---------------|------------------------|----------------|-------------| | DH5 | 2402 | 30 | 10000 | 1000 | 3000 | -5.6 | -53.450 | <-25.6 | PASS | | DH5 | 2402 | 10000 | 25000 | 1000 | 3000 | -5.6 | -60.110 | <-25.6 | PASS | | DH5 | 2441 | 30 | 10000 | 1000 | 3000 | -3.56 | -53.170 | <-
23.56 | PASS | | DH5 | 2441 | 10000 | 25000 | 1000 | 3000 | -3.56 | -57.150 | <-
23.56 | PASS | | DH5 | 2480 | 30 | 10000 | 1000 | 3000 | -3.52 | -52.090 | <-
23.52 | PASS | | DH5 | 2480 | 10000 | 25000 | 1000 | 3000 | -3.52 | -59.700 | <-
23.52 | PASS | | 2DH5 | 2402 | 30 | 10000 | 1000 | 3000 | -9.78 | -55.600 | <-
29.78 | PASS | | 2DH5 | 2402 | 10000 | 25000 | 1000 | 3000 | -9.78 | -60.140 | <-
29.78 | PASS | | 2DH5 | 2441 | 30 | 10000 | 1000 | 3000 | -6.47 | -54.880 | <-
26.47 | PASS | | 2DH5 | 2441 | 10000 | 25000 | 1000 | 3000 | -6.47 | -60.200 | <-
26.47 | PASS | | 2DH5 | 2480 | 30 | 10000 | 1000 | 3000 | -6.54 | -54.300 | <-
26.54 | PASS | | 2DH5 | 2480 | 10000 | 25000 | 1000 | 3000 | -6.54 | -59.170 | <-
26.54 | PASS | | 3DH5 | 2402 | 30 | 10000 | 1000 | 3000 | -8.91 | -54.640 | <-
28.91 | PASS | | 3DH5 | 2402 | 10000 | 25000 | 1000 | 3000 | -8.91 | -59.770 | <-
28.91 | PASS | | 3DH5 | 2441 | 30 | 10000 | 1000 | 3000 | -6.47 | -33.200 | <-
26.47 | PASS | | 3DH5 | 2441 | 10000 | 25000 | 1000 | 3000 | -6.47 | -60.190 | <-
26.47 | PASS | | 3DH5 | 2480 | 30 | 10000 | 1000 | 3000 | -6.48 | -54.500 | <-
26.48 | PASS | | 3DH5 | 2480 | 10000 | 25000 | 1000 | 3000 | -6.48 | -59.510 | <-
26.48 | PASS | Report No.: SZEM170200117301 Page: 88 of 101 Report No.: SZEM170200117301 Page: 89 of 101 Report No.: SZEM170200117301 Page: 90 of 101 Report No.: SZEM170200117301 Page: 91 of 101 Report No.: SZEM170200117301 Page: 92 of 101 Report No.: SZEM170200117301 Page: 93 of 101 Report No.: SZEM170200117301 Page: 94 of 101 Report No.: SZEM170200117301 Page: 95 of 101 Report No.: SZEM170200117301 Page: 96 of 101 Report No.: SZEM170200117301 Page: 97 of 101 Report No.: SZEM170200117301 Page: 98 of 101 Report No.: SZEM170200117301 Page: 99 of 101 Report No.: SZEM170200117301 Page: 100 of 101 Report No.: SZEM170200117301 Page: 101 of 101