

TEST REPORT

Report No.	CISRR24120200702	
Project No.	CISR241202007	
FCC ID	2BMKC-ZX-R08S	
Applicant	Shenzhen Ruilangjie Electronic Technology Co., Ltd	
Address	Room 302, Building 2, Weifeng Building, Pinglong West Road 77-10 Shanxia Community, Pinghu Street, Longgang District, Shenzhen, China	
Manufacturer	Shenzhen Ruilangjie Electronic Technology Co., Ltd	
Address	Room 302, Building 2, Weifeng Building, Pinglong West Road 77-10 Shanxia Community, Pinghu Street, Longgang District, Shenzhen, China	
Product Name	WiFi repeater	
Trade Mark	N/A	
Model/Type reference	ZX-R08S	
Listed Model(s)	ZX-R01S, ZX-R02S, ZX-R03S, ZX-R04S, ZX-R05S, ZX-R06S, ZX-R07S ZX-R09S, ZX-R10S, ZX-R11S, ZX-R12S, ZX-R13S, ZX-R14S, ZX-R15S ZX-R16S, ZX-R17S, ZX-R18S, ZX-R19S, ZX-R20S	
Standard	47 CFR Part 15E	
Test date	December 5, 2024 to December 14, 2024	
Issue date	December 17, 2024	
Test result	Complied	

Edward Wang

Prepared by: Edward Wang

GenryLong

Approved by: Genry Long

The test results relate only to the tested samples.

The test report should not be reproduced except in full without the written approval of Shenzhen Bangce Testing Technology Co., Ltd.

Contents

1. REPORT VERSION	3
2. TEST DESCRIPTION	4
3. SUMMARY	5
3.1. Product Description *	5
3.2. Radio Specification Description *	
3.3. Modification of EUT3.4. Deviation from standards	
3.5. Testing Site	
	•
4. TEST CONFIGURATION	7
4.1. Test frequency list	7
4.2. Descriptions of test mode	
4.3. Test sample information	
4.4. Environmental conditions4.5. Equipment Used during the Test	
4.0. Equipment osed during the rest	
5. TEST RESULTS	
5.1. Evaluation Results (Evaluation)	10
5.1.1. Antenna Requirement	10
5.2. Radio Spectrum Matter Test Results (RF)	
5.2.1. Conducted Emission at AC power line	
5.2.2. Duty Cycle	
5.2.3. Emission bandwidth and occupied bandwidth	
5.2.4. Maximum conducted output power	17
5.2.5. Power spectral density	
5.2.6. Band edge emissions (Conducted)	
5.2.7. Band edge emissions (Radiated)	
5.2.8. Undesirable emission limits (below 1GHz)	
5.2.9. Undesirable emission limits (above 1GHz)	
6. TEST SETUP PHOTOS	

1. <u>REPORT VERSION</u>

Version No.	Issue date	Description
00	December 17, 2024	Original

2. TEST DESCRIPTION

No.	Test Item	Standard Requirement	Result
1	Conducted Emission at AC power line	47 CFR Part 15.207(a)	Pass
2	Duty Cycle		Pass
3	Emission bandwidth and occupied bandwidth	47 CFR Part 15.407(e)	Pass
4	Maximum conducted output power	47 CFR Part 15.407(a)(3)(i)	Pass
5	Power spectral density	47 CFR Part 15.407(a)(3)(i)	Pass
6	Band edge emissions (Conducted)	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
7	Band edge emissions (Radiated)	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
8	Undesirable emission limits (below 1GHz)	47 CFR Part 15.407(b)(9)	Pass
9	Undesirable emission limits (above 1GHz)	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

Note:

- The measurement uncertainty is not included in the test result.

3. SUMMARY

3.1. Product Description *

Main unit information:		
Product Name:	WiFi repeater	
Trade Mark:	N/A	
Model No.:	ZX-R08S	
Listed Model(s):	ZX-R01S, ZX-R02S, ZX-R03S, ZX-R04S, ZX-R05S, ZX-R06S, ZX-R07S, ZX-R09S, ZX-R10S, ZX-R11S, ZX-R12S, ZX-R13S, ZX-R14S, ZX-R15S, ZX-R16S, ZX-R17S, ZX-R18S, ZX-R19S, ZX-R20S	
Power supply:	AC100-240V∼, 50/60Hz, 1A	
Hardware version:	V1.0	
Software version:	V1.0	
Accessory unit information:		
Battery information:	N/A	

3.2. Radio Specification Description *

Modulation type:	802.11a/n: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);	
Operation frequency:	802.11a/n(HT20)/ac(HT20):5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40): 5755MHz to 5795MHz; 802.11ac(HT80)): 5775MHz	
Channel number:	802.11a/n(HT20)/ac(HT20):5; 802.11n(HT40)/ac(HT40):2; 802.11ac(HT80):1	
Channel separation:	802.11a/n(HT20)/ac(HT20): 20MHz 802.11n(HT40)/ac(HT40): 40MHz 802.11ac(HT80): 80MHz	
Antenna type:	External Antenna	
Antenna gain:	1.34dBi	

Note:

 *: Since the above information is provided by the applicant relevant results or conclusions of this report are only made for these information, Bangce is not responsible for the authenticity, integrity and results of the information and/or the validity of the conclusion.

2) Operation frequency list as follow:

U-NII Band 3

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795	/	/
157	5785	/	/	/	/
161	5805	1	1	1	/

165	5825	/	/	/	/

3.3. Modification of EUT

No modifications are made to the EUT during all test items.

3.4. Deviation from standards

None

3.5. Testing Site

Laboratory Name	Shenzhen Bangce Testing Technology Co., Ltd.	
Laboratory Location	101, building 10, Yunli Intelligent Park, Shutianpu community, Matian Street, Guangming District, Shenzhen, Guangdong, China	
Contact information	Tel: 86-755-2319 6848, email: <u>service@cis-cn.net</u> Website: <u>http://www.cis-cn.net/</u>	
FCC registration number	736346	
FCC designation number	CN1372	

4. TEST CONFIGURATION

4.1. Test frequency list

	Lowest Channel (LCH) (MHz)	Middle Channel (MCH) (MHz)	Highest Channel (HCH) (MHz)
802.11a/n/ac(HT20)	5745	5785	5825
802.11n/ac(HT40)	5755	1	5795
802.11ac(HT80)	1	5775	/

4.2. Descriptions of test mode

No	Test mode	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type at lowest, middle and highest channel. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type at lowest, middle and highest channel. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМЗ	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type at lowest, middle and highest channel. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

4.3. Test sample information

Туре	Sample No.
Engineer sample	CISR241202007-S01
Normal sample	CISR241202007-S02

4.4. Environmental conditions

Туре	Requirement
Temperature:	15~35°C
Relative Humidity:	25~75%
Air Pressure:	860~1060mbar

4.5. Equipment Used during the Test

Condu	Conducted Emission at AC power line					
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2024-01-08	2025-01-07
2	Artificial power network	Schwarzbeck	NSLK812 7	8127-01096	2024-01-08	2025-01-07
3	8-wire Impedance Stabilization Network	Schwarzbeck	NTFM 8158	8158-00337	2024-01-08	2025-01-07
4	Artificial power network	Schwarzbeck	ENV216	1	2024-01-08	2025-01-07

Duty Cycle Emission bandwidth and occupied bandwidth Maximum conducted output power Power spectral density Band edge emissions (Conducted)						
Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	MXG RF Signal Generator	Agilent	N5181A	MY50145362	2024-01-08	2025-01-07
2	Spectrum analyzer	R&S	FSV-40N	102130	2024-01-08	2025-01-07
3	Vector Signal Generator	Agilent	N5182A	MY50142364	2024-06-14	2025-06-13
4	Power Meter	WCS	WCS-PM	WCSPM23040 5A	2024-01-08	2025-01-07

Band edge emissions (Radiated)
Undesirable emission limits (below 1GHz)
Undesirable emission limits (above 1GHz)

Item	Equipment name	Manufacturer	Model	Serial No.	Calibration date	Due date
1	EMI Test Receiver	Rohde&schwarz	ESCI7	100853	2024-01-08	2025-01-07
2	Amplifier	Tonscend	TAP9K3G 40	AP23A806027 0	2024-01-08	2025-01-07
3	Prime amplifier	Tonscend	TAP0101 8050	AP23A806028 0	2024-01-08	2025-01-07
4	9*6*6 anechoic chamber	SKET	9.3*6.3*6	N/A	2024-09-02	2027-09-01
5	Spectrum analyzer	Agilent	N9020A	MY50530263	2024-01-08	2025-01-07
6	Spectrum analyzer	R&S	FSV-40N	102130	2024-01-08	2025-01-07
7	Bilog Antenna	Schwarzbeck	VULB 9163	1463	2023-01-09	2025-01-08
8	Horn Antenna	SCHWARZBECK	BBHA 9120 D	2487	2023-01-09	2025-01-08

	1					,1
9	Active Loop Antenna	SCHWARZBECK	FMZB 1519B	1	2023-01-09	2025-01-08
10	RF Cable	Tonscend	Cable 1	/	2024-01-08	2025-01-07
11	RF Cable	Tonscend	Cable 2	1	2024-01-08	2025-01-07
12	RF Cable	SKET	Cable 3	1	2024-01-08	2025-01-07
13	L.I.S.N.#1	Schwarzbeck	NSLK812 7	1	2024-01-08	2025-01-07
14	L.I.S.N.#2	ROHDE&SCHWA RZ	ENV216	1	2024-01-08	2025-01-07
15	Horn Antenna	SCHWARZBECK	BBHA917 0	1130	2023-01-09	2025-01-08
16	Preamplifier	Tonscend	TAP1804 0048	AP21C806126	2024-01-08	2025-01-07
17	Variable-frequency power source	Pinhong	PH1110	/	2024-01-08	2025-01-07
18	6dB Attenuator	SKET	DC-6G	1	/	/
19	Antenna tower	SKT	Bk-4AT- BS	AT202104010 1-V1	2024-06-14	2025-06-13

5. TEST RESULTS

5.1. Evaluation Results (Evaluation)

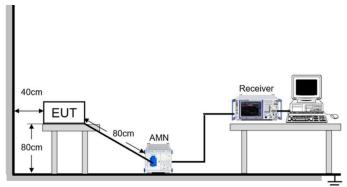
5.1.1. Antenna Requirement

5.1.1.1. Test Result

Pass

5.1.1.2. Conclusion:

The EUT antenna is External Antenna(1.34dBi), the directional gain of the antenna less than 6dBi. It comply with the standard requirement. In case of replacement of broken antenna the same antenna type must be used. Antenna structure please refer to the EUT internal photographs antenna photo.

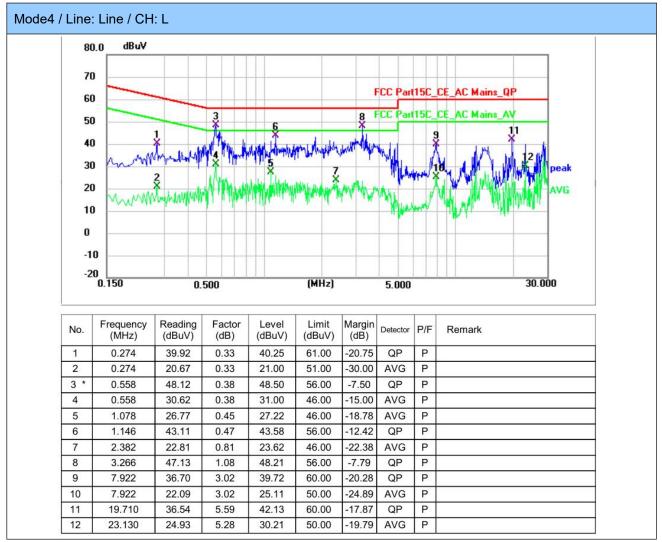

5.2. Radio Spectrum Matter Test Results (RF) 5.2.1. Conducted Emission at AC power line

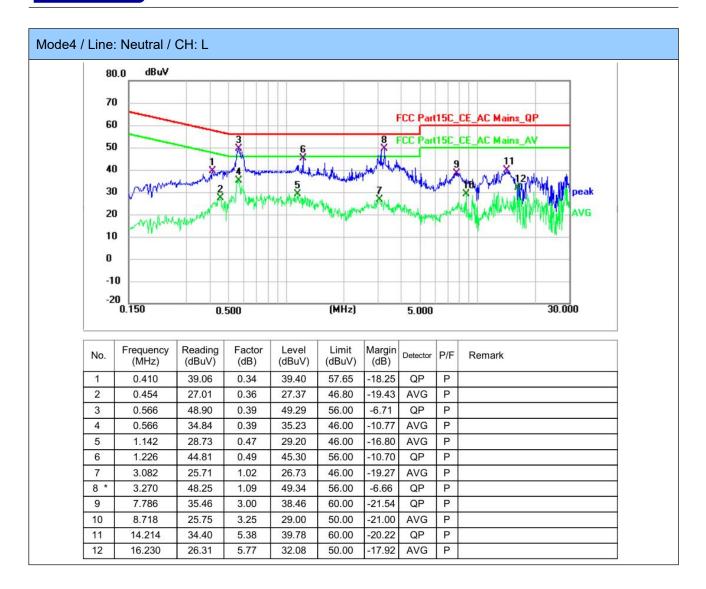
Test Requirement:	47 CFR Part 15.207(a)		
Test Limit:	Frequency of emission (MHz)	Conducted limit (dE	3μV)
		Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of t	he frequency.	
Test Method:	ANSI C63.10-2020 section 6.2		

5.2.1.1. E.U.T. Operation

Operating Environment:						
Temperature:	23.4 °C	C Humidity:	56.1 %	Atmospheric Pressure:	102 kPa	
Pre test mode:	mode: TM1, TM2, TM3, TM4					
Final test mode	9:	All of the listed pre-test channel were tested, only the data of the worst channel CH1(ANT1 TM1) is recorded in the report.				

5.2.1.2. Test Setup Diagram




5.2.1.3. Test Result

Pass

5.2.1.4. Test Data

5.2.2. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

5.2.2.1. E.U.T. Operation

Operating Environment:					
Temperature:	22.9 °C	Humidity:	55.8 %	Atmospheric Pressure:	103 kPa
Pre test mode: TN		TM1, TM2, TM3			
Final test mode:		TM1, TM2, TM3			

5.2.2.2. Test Setup Diagram

5.2.2.3. Test Result

Pass

5.2.2.4. Test Data

5.2.3. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5 KDB 789033 D02, Clause C.2
Procedure:	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points are recovered and directly summed in linear power terms. The recovered amplitude data points, are recovered and directly summed in linear power terms. The recovered amplitude data points, are recovered and directly summed in linear power terms. The recovered amplitude data points, are recovered and directly summed in linear power terms. The recovered amplitude data points, are recovered and directly summed in linear power terms. The recovered amplitude data points, are recovered and directly summed in linear power terms. The recovered amplitude data points, are recovered and directly summed in linear power terms. The recovered amplitude data points, are recovered and directly summed in linear power terms. The recovered amplitude data points, are the maximum width of the emission shall be clearly labeled. Tabular data ma

the fundamental emission.

5.2.3.1. E.U.T. Operation

Operating Environment:						
Temperature:	Temperature:22.9 °CHumidity:55.8 %Atmospheric Pressure:103 kPa				103 kPa	
Pre test mode: TM1, TM2, TM3						
Final test mode: TM1, TM2, TM3						

5.2.3.2. Test Setup Diagram

5.2.3.3. Test Result

Pass

5.2.3.4. Test Data

5.2.4. Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(3)(i)
Test Limit:	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

5.2.4.1. E.U.T. Operation

Operating Environment:							
Temperature:	22.9 °C	;	Humidity:	55.8 %	Atmospheric Pressure:	103 kPa	
Pre test mode: TM1, TM2, 1			1, TM2, TM3				
Final test mode: TM1, TM2, TM3							

5.2.4.2. Test Setup Diagram

5.2.4.3. Test Result

Pass

5.2.4.4. Test Data

5.2.5. Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(3)(i)
Test Limit:	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to- point operations.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

5.2.5.1. E.U.T. Operation

Operating Environment:							
Temperature:	22.9 °C	Humidity:	55.8 %	Atmospheric Pressure:	103 kPa		
Pre test mode: TM1, TM2, TM3							
Final test mode: TM1, TM2, TM3							

5.2.5.2. Test Setup Diagram

5.2.5.3. Test Result

Pass

5.2.5.4. Test Data

5.2.6. Band edge emissions (Conducted)

Test Requirement:	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)					
	For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.					
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4		
	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
Test Limit:	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
	12.29-12.293					
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5		
			3345.8-3358 3600-4400	36.43-36.5 (²)		
	12.51975-12.52025 12.57675-12.57725 13.36-13.41	240-285 322-335.4	3600-4400	(2)		
	12.51975-12.52025 12.57675-12.57725 13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6 The field strength of emexceed the limits shown MHz, compliance with t measurement instrume 1000 MHz, compliance based on the average of	240-285 322-335.4 9, this restricted band s hissions appearing with n in § 15.209. At freque the limits in § 15.209sh ntation employing a CI with the emission limit value of the measured of	3600-4400 hall be 0.490-0.4 in these frequer encies equal to o all be demonstra SPR quasi-peak s in § 15.209sha	(²) 510 MHz. by bands shall not or less than 1000 ated using t detector. Above all be demonstrated		
	12.51975-12.52025 12.57675-12.57725 13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6 The field strength of emexceed the limits shown MHz, compliance with t measurement instrume 1000 MHz, compliance based on the average of 15.35apply to these measurement Except as provided else	240-285 322-335.4 9, this restricted band s hissions appearing with n in § 15.209. At freque the limits in § 15.209sh ntation employing a Cl with the emission limit value of the measured easurements.	3600-4400 hall be 0.490-0.4 in these frequer encies equal to o all be demonstra SPR quasi-peak s in § 15.209sha emissions. The p the emissions fr	(²) 510 MHz. 510 MH		
	12.51975-12.52025 12.57675-12.57725 13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6 The field strength of emexceed the limits shown MHz, compliance with t measurement instrume 1000 MHz, compliance based on the average w 15.35apply to these me	240-285 322-335.4 9, this restricted band s hissions appearing with n in § 15.209. At freque the limits in § 15.209sh ntation employing a Cl with the emission limit value of the measured easurements.	3600-4400 hall be 0.490-0.4 in these frequer encies equal to o all be demonstra SPR quasi-peak s in § 15.209sha emissions. The p the emissions fr els specified in t	(²) 510 MHz. 510 MH		
	12.51975-12.52025 12.57675-12.57725 13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6 The field strength of emexceed the limits shown MHz, compliance with t measurement instrume 1000 MHz, compliance based on the average of 15.35apply to these measure Except as provided else radiator shall not exceed	240-285 322-335.4 b, this restricted band s hissions appearing with n in § 15.209. At freque the limits in § 15.209sh ntation employing a CI with the emission limit value of the measured easurements. ewhere in this subpart, ed the field strength leve Field strength	3600-4400 hall be 0.490-0.4 in these frequer encies equal to o all be demonstra SPR quasi-peak s in § 15.209sha emissions. The p the emissions fr els specified in t	(²) 510 MHz. 510 MH		
	12.51975-12.52025 12.57675-12.57725 13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6 The field strength of emexceed the limits shown MHz, compliance with t measurement instrume 1000 MHz, compliance based on the average w 15.35apply to these me Except as provided else radiator shall not exceed Frequency (MHz)	240-285 322-335.4 9, this restricted band s ninssions appearing with n in § 15.209. At freque the limits in § 15.209sh ntation employing a CI- with the emission limit value of the measured of easurements. ewhere in this subpart, ed the field strength leve Field strength (microvolts/mete)	3600-4400 hall be 0.490-0.4 in these frequer encies equal to o all be demonstra SPR quasi-peak s in § 15.209sha emissions. The p the emissions fr els specified in t	(²) 510 MHz. 510 MH		

	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
		agraph (g), fundamental emissior				
	radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation withi these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kH 110–490 kHz and above 1000 MHz. Radiated emission limits in these three band are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.6, 12.7.7				
Procedure:	above the ground at a 3 met degrees to determine the po b. The EUT was set 3 meters was mounted on the top of a c. The antenna height is vari determine the maximum valu polarizations of the antenna d. For each suspected emiss the antenna was tuned to he of below 30MHz, the antenna was turned from 0 degrees t e. The test-receiver system of Bandwidth with Maximum He f. If the emission level of the specified, then testing could reported. Otherwise the emiss tested one by one using pea a data sheet. g. Test the EUT in the lowes h. The radiation measureme Transmitting mode, and four i. Repeat above procedures Remark: 1. Level= Read Level+ Cable 2. Scan from 18GHz to 40GI points marked on above plot testing, so only above points emissions from the radiator need not be reported. 3. As shown in this section, f based on average limits. How exceed the maximum permit under any condition of modu than the average limit, only t 4. The disturbance above 18	was placed on the top of a rotati er fully-anechoic chamber. The ta sition of the highest radiation. s away from the interference-rece variable-height antenna tower. ed from one meter to four meters ue of the field strength. Both horiz are set to make the measuremer sion, the EUT was arranged to its ights from 1 meter to 4 meters (for a was tuned to heights 1 meter) a o 360 degrees to find the maximu was set to Peak Detect Function a old Mode. EUT in peak mode was 10dB low be stopped and the peak values assions that did not have 10dB mark k or average method as specified t channel, the middle channel, the nts are performed in X, Y, Z axis and the X axis positioning which it if until all frequencies measured was a Loss+ Antenna Factor- Preamp Hz, the disturbance above 18GHz s are the highest emissions could had been displayed. The amplitut which are attenuated more than 2 for frequencies above 1GHz, the wever, the peak field strength of a ted average limits specified abov lation. For the emissions whose p he peak measurement is shown is GHz were very low and the harm when testing, so only the above	able was rotated 360 eiving antenna, which a above the ground to contal and vertical it. worst case and then or the test frequency and the rotatable table im reading. and Specified wer than the limit of the EUT would be regin would be re- d and then reported in the Highest channel. positioning for s the worst case. as complete. Factor z was very low. The d be found when ude of spurious 20dB below the limit field strength limits are any emission shall not e by more than 20 dB peak level is lower in the report. nonics were the			

5.2.6.1. E.U.T. Operation

Operating Environment:					
Temperature:	22.9 °C	Humidity:	55.8 %	Atmospheric Pressure:	103 kPa

Pre test mode:	TM1, TM2, TM3
Final test mode:	TM1, TM2, TM3

5.2.6.2. Test Setup Diagram

5.2.6.3. Test Result

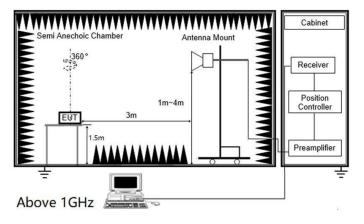
Pass

5.2.6.4. Test Data

5.2.7. Band edge emissions (Radiated)

Test Requirement:		(4)					
		47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)					
	All emissions shall be li or below the band edge below the band edge, a linearly to a level of 15.	For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.					
	MHz	MHz	MHz	GHz			
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
	10.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4			
	6.31175-6.31225	123-138	2200-2300	14.47-14.5			
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4			
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
est Limit:	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
	12.57675-12.57725	322-335.4	3600-4400	(2)			
	12.57075-12.57725						
	13.36-13.41						
	13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6The field strength of en exceed the limits show MHz, compliance with the measurement instrume 1000 MHz, compliance based on the average of the	nissions appearing with n in § 15.209. At freque the limits in § 15.209sh intation employing a CI with the emission limit value of the measured	in these frequer ncies equal to c all be demonstra SPR quasi-peak s in § 15.209sha	ncy bands shall not or less than 1000 ated using a detector. Above all be demonstrated			
	13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6The field strength of enexceed the limits shown MHz, compliance with the measurement instrume 1000 MHz, compliance based on the average of 15.35apply to these measurement as provided elseExcept as provided else	nissions appearing with n in § 15.209. At freque the limits in § 15.209sh Intation employing a CI with the emission limit value of the measured easurements.	in these frequer encies equal to c all be demonstra SPR quasi-peak s in § 15.209sha emissions. The p the emissions fi	ncy bands shall not or less than 1000 ated using a detector. Above all be demonstrated provisions in §			
	13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6 The field strength of en exceed the limits shown MHz, compliance with 1 measurement instrume 1000 MHz, compliance based on the average of 15.35apply to these me	nissions appearing with n in § 15.209. At freque the limits in § 15.209sh Intation employing a CI with the emission limit value of the measured easurements.	in these frequer encies equal to c all be demonstra SPR quasi-peak s in § 15.209sha emissions. The the emissions fi els specified in t	ncy bands shall not or less than 1000 ated using a detector. Above all be demonstrated provisions in §			
	13.36-13.41 ¹ Until February 1, 1998 ² Above 38.6 The field strength of energy exceed the limits shown MHz, compliance with the measurement instrume 1000 MHz, compliance based on the average of 15.35apply to these measure Except as provided else radiator shall not exceed	nissions appearing with n in § 15.209. At freque the limits in § 15.209sh intation employing a CI with the emission limit value of the measured easurements. ewhere in this subpart, ad the field strength leve Field strength	in these frequer encies equal to c all be demonstra SPR quasi-peak s in § 15.209sha emissions. The the emissions fi els specified in t	ncy bands shall not or less than 1000 ated using a detector. Above all be demonstrated provisions in § rom an intentional he following table: Measurement distance			
	13.36-13.41 ¹ Until February 1, 1998 ² Above 38.6 The field strength of enexceed the limits shown MHz, compliance with the measurement instrume 1000 MHz, compliance based on the average with the second on the average with the second on the average with the second on	nissions appearing with n in § 15.209. At freque the limits in § 15.209sh entation employing a CI with the emission limit value of the measured easurements. ewhere in this subpart, ed the field strength leve Field strength (microvolts/mete	in these frequer encies equal to c all be demonstra SPR quasi-peak s in § 15.209sha emissions. The the emissions fi els specified in t	ncy bands shall not or less than 1000 ated using a detector. Above all be demonstrated provisions in § rom an intentional he following table: Measurement distance (meters)			

	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
		agraph (g), fundamental emissior				
	 radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation withit these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kH 110–490 kHz and above 1000 MHz. Radiated emission limits in these three band are based on measurements employing an average detector. 					
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.6, 12.7.7				
Procedure:	above the ground at a 3 met degrees to determine the po b. The EUT was set 3 meters was mounted on the top of a c. The antenna height is vari determine the maximum valu polarizations of the antenna d. For each suspected emiss the antenna was tuned to he of below 30MHz, the antenna was turned from 0 degrees t e. The test-receiver system of Bandwidth with Maximum He f. If the emission level of the specified, then testing could reported. Otherwise the emiss tested one by one using pea a data sheet. g. Test the EUT in the lowes h. The radiation measureme Transmitting mode, and four i. Repeat above procedures Remark: 1. Level= Read Level+ Cable 2. Scan from 18GHz to 40GI points marked on above plot testing, so only above points emissions from the radiator need not be reported. 3. As shown in this section, f based on average limits. How exceed the maximum permit under any condition of modu than the average limit, only t 4. The disturbance above 18	was placed on the top of a rotati er fully-anechoic chamber. The ta sition of the highest radiation. s away from the interference-rece variable-height antenna tower. ed from one meter to four meters ue of the field strength. Both horiz are set to make the measuremer sion, the EUT was arranged to its ights from 1 meter to 4 meters (for a was tuned to heights 1 meter) a o 360 degrees to find the maximu was set to Peak Detect Function a old Mode. EUT in peak mode was 10dB low be stopped and the peak values assions that did not have 10dB ma k or average method as specified t channel, the middle channel, the nts are performed in X, Y, Z axis and the X axis positioning which it if until all frequencies measured wa e Loss+ Antenna Factor- Preamp Hz, the disturbance above 18GHz s are the highest emissions could had been displayed. The amplitu which are attenuated more than 2 for frequencies above 1GHz, the for wever, the peak field strength of a ted average limits specified abov lation. For the emissions whose p he peak measurement is shown is GHz were very low and the harm when testing, so only the above	able was rotated 360 eiving antenna, which a above the ground to contal and vertical at. worst case and then or the test frequency and the rotatable table im reading. and Specified wer than the limit of the EUT would be regin would be re- d and then reported in the Highest channel. positioning for s the worst case. as complete. Factor z was very low. The d be found when ude of spurious 20dB below the limit field strength limits are any emission shall not e by more than 20 dB peak level is lower in the report. nonics were the			


5.2.7.1. E.U.T. Operation

Operating Environment:					
Temperature:	23.4 °C	Humidity:	57 %	Atmospheric Pressure:	102 kPa

Pre test mode:	TM1, TM2, TM3
Final test mode:	TM1, TM2, TM3

5.2.7.2. Test Setup Diagram

5.2.7.3. Test Result

Pass

5.2.7.4. Test Data

ANT0

Test channel:CH149

1000 onun										
Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity
5725.00	70.01	28.62	4.08	38.62	-5.92	64.09	74	9.91	Peak	Horizontal
5725.00	51.65	28.62	4.08	38.62	-5.92	45.73	54	8.27	Average	Horizontal
5725.00	68.67	28.62	4.08	38.62	-5.92	62.75	74	11.25	Peak	Vertical
5725.00	49.81	28.62	4.08	38.62	-5.92	43.89	54	10.11	Average	Vertical

Test chan	nel:CH163	_								
Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity
5850.00	70.16	29.45	3.91	40.17	-6.81	63.35	74	10.65	Peak	Horizontal
5850.00	49.41	29.45	3.91	40.17	-6.81	42.60	54	11.40	Average	Horizontal
5850.00	67.76	29.45	3.91	40.17	-6.81	60.95	74	13.05	Peak	Vertical
5850.00	51.33	29.45	3.91	40.17	-6.81	44.52	54	9.48	Average	Vertical

ANT1

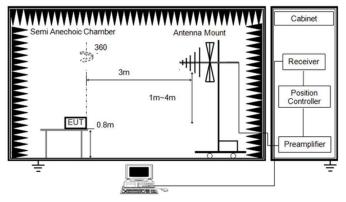
Test channel:CH149

Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity
5725.00	70.50	28.62	4.08	38.62	-5.92	64.58	74	9.42	Peak	Horizontal
5725.00	51.53	28.62	4.08	38.62	-5.92	45.61	54	8.39	Average	Horizontal
5725.00	69.21	28.62	4.08	38.62	-5.92	63.29	74	10.71	Peak	Vertical
5725.00	49.71	28.62	4.08	38.62	-5.92	43.79	54	10.21	Average	Vertical

Test chan	nel:CH163									
Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity
5850.00	69.62	29.45	3.91	40.17	-6.81	62.81	74	11.19	Peak	Horizontal
5850.00	50.35	29.45	3.91	40.17	-6.81	43.54	54	10.46	Average	Horizontal
5850.00	68.05	29.45	3.91	40.17	-6.81	61.24	74	12.76	Peak	Vertical
5850.00	50.44	29.45	3.91	40.17	-6.81	43.63	54	10.37	Average	Vertical

5.2.8. Undesirable emission limits (below 1GHz)

Toot Dominant	47 CEP Dort 15 407(b)(0)							
Test Requirement:	47 CFR Part 15.407(b)(9)							
	limits set forth in § 15.209.	1 GHz must comply with the gen	-					
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:							
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
Test Limit:	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
		graph (g), fundamental emission	-					
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.5						
Procedure:	above the ground at a 3 met degrees to determine the po b. The EUT was set 3 or 10 which was mounted on the to c. The antenna height is vari determine the maximum valu polarizations of the antenna d. For each suspected emiss the antenna was tuned to he of below 30MHz, the antenn was turned from 0 degrees t e. The test-receiver system v Bandwidth with Maximum He f. If the emission level of the specified, then testing could reported. Otherwise the emiss tested one by one using qua data sheet. g. Test the EUT in the lowes: h. The radiation measureme Transmitting mode, and four	 a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using quasi-peak method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. 						

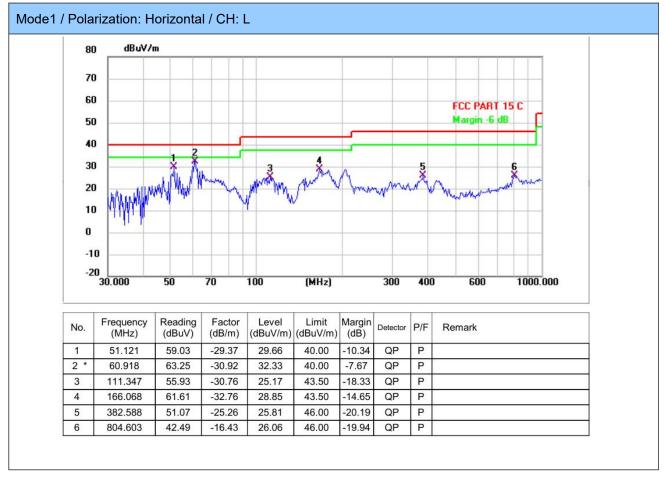


testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.
 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
 i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

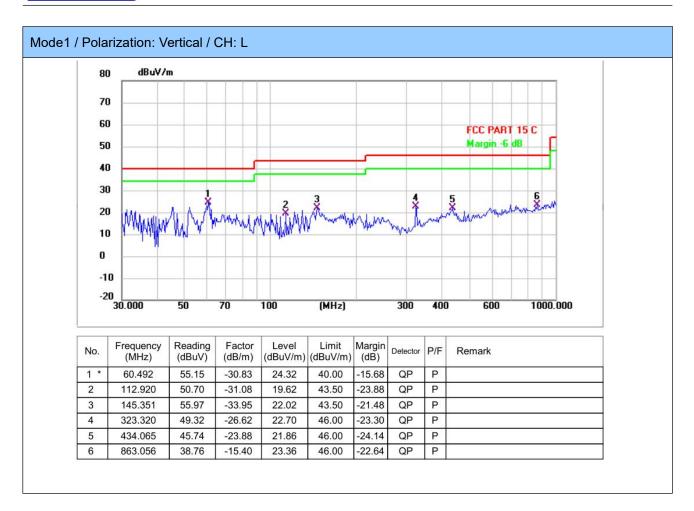
5.2.8.1. E.U.T. Operation

Operating Environment:						
Temperature:	23.4 °C		Humidity:	57 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1				
Final test mode	e:	TM1				

5.2.8.2. Test Setup Diagram


Below 1 GHz and above 30 MHz

5.2.8.3. Test Result

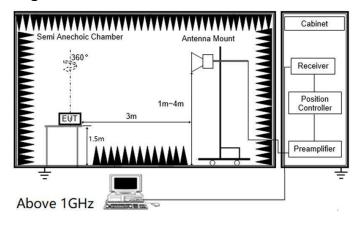

Pass

5.2.8.4. Test Data

5.2.9. Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)					
	For transmitters operati All emissions shall be li or below the band edge below the band edge, a linearly to a level of 15. from 5 MHz above or be dBm/MHz at the band edge	mited to a level of -27 e increasing linearly to and from 25 MHz above 6 dBm/MHz at 5 MHz a elow the band edge inc	dBm/MHz at 75 10 dBm/MHz at or below the ba above or below t	MHz or more above 25 MHz above or and edge increasing he band edge, and		
	MHz	MHz	MHz	GHz		
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4		
	6.31175-6.31225	123-138	2200-2300	14.47-14.5		
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4		
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12		
Test Limit:	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8		
		040.005	3345.8-3358	36.43-36.5		
	12.51975-12.52025	240-285	0010100000	00.10 00.0		
	12.51975-12.52025 12.57675-12.57725	322-335.4	3600-4400	(²)		
	12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(2)		
	12.57675-12.57725 13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6 The field strength of emexceed the limits shown MHz, compliance with t measurement instrume 1000 MHz, compliance based on the average w	322-335.4 b, this restricted band s nissions appearing with n in § 15.209. At freque the limits in § 15.209sh ntation employing a Cl with the emission limit value of the measured of	3600-4400 hall be 0.490-0.4 in these frequer encies equal to o all be demonstra SPR quasi-peak s in § 15.209sha	(²) 510 MHz. by bands shall not or less than 1000 ated using t detector. Above all be demonstrated		
	12.57675-12.57725 13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6 The field strength of emexceed the limits shown MHz, compliance with t measurement instrume 1000 MHz, compliance based on the average w 15.35apply to these me Except as provided else	322-335.4 a, this restricted band s hissions appearing with in in § 15.209. At freque the limits in § 15.209sh ntation employing a CI with the emission limit value of the measured easurements.	3600-4400 hall be 0.490-0.4 in these frequer encies equal to o all be demonstra SPR quasi-peak s in § 15.209sha emissions. The p the emissions fr	(²) 510 MHz. 510 MH		
	12.57675-12.57725 13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6 The field strength of emexceed the limits shown MHz, compliance with t measurement instrume 1000 MHz, compliance based on the average w 15.35apply to these me	322-335.4 a, this restricted band s hissions appearing with in in § 15.209. At freque the limits in § 15.209sh ntation employing a CI with the emission limit value of the measured easurements.	3600-4400 hall be 0.490-0.4 in these frequer encies equal to o all be demonstra SPR quasi-peak s in § 15.209sha emissions. The p the emissions fr els specified in t	(²) 510 MHz. 510 MH		
	12.57675-12.57725 13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6 The field strength of emexceed the limits shown MHz, compliance with to measurement instrume 1000 MHz, compliance based on the average with the 15.35apply to these measurement Except as provided else radiator shall not exceed	322-335.4 a, this restricted band s hissions appearing with n in § 15.209. At freque the limits in § 15.209sh ntation employing a Cli- with the emission limit value of the measured of easurements. ewhere in this subpart, ed the field strength leve Field strength	3600-4400 hall be 0.490-0.4 in these frequer encies equal to o all be demonstra SPR quasi-peak s in § 15.209sha emissions. The p the emissions fr els specified in t	(²) 510 MHz. 510 MH		
	12.57675-12.57725 13.36-13.41 ¹ Until February 1, 1999 ² Above 38.6 The field strength of emexceed the limits shown MHz, compliance with t measurement instrume 1000 MHz, compliance based on the average w 15.35apply to these measurement Except as provided else radiator shall not exceed Frequency (MHz)	322-335.4 a), this restricted band s hissions appearing with h in § 15.209. At freque the limits in § 15.209sh ntation employing a CI with the emission limit value of the measured of easurements. ewhere in this subpart, ed the field strength leve Field strength (microvolts/meter)	3600-4400 hall be 0.490-0.4 in these frequer encies equal to o all be demonstra SPR quasi-peak s in § 15.209sha emissions. The p the emissions fr els specified in t	(²) 510 MHz. 510 MH		

	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
		** Except as provided in paragraph (g), fundamental emissions from					
	54-72 MHz, 76-88 MHz, 174 these frequency bands is pe 15.231 and 15.241. In the emission table above, The emission limits shown ir employing a CISPR quasi-pe 110–490 kHz and above 100	s section shall not be located in t -216 MHz or 470-806 MHz. Howe rmitted under other sections of th the tighter limit applies at the bar the above table are based on m eak detector except for the freque 00 MHz. Radiated emission limits a employing an average detector.	ever, operation within is part, e.g., §§ nd edges. easurements ency bands 9–90 kHz, in these three bands				
Test Method:	ANSI C63.10-2020, section	12.7.4, 12.7.6, 12.7.7					
Procedure:	above the ground at a 3 met degrees to determine the po b. The EUT was set 3 meters was mounted on the top of a c. The antenna height is vari determine the maximum valu polarizations of the antenna d. For each suspected emiss the antenna was tuned to he of below 30MHz, the antenna was turned from 0 degrees t e. The test-receiver system of Bandwidth with Maximum He f. If the emission level of the specified, then testing could reported. Otherwise the emiss tested one by one using pea a data sheet. g. Test the EUT in the lowes h. The radiation measureme Transmitting mode, and four i. Repeat above procedures Remark: 1. Level= Read Level+ Cable 2. Scan from 18GHz to 40GI points marked on above plot testing, so only above points emissions from the radiator need not be reported. 3. As shown in this section, f based on average limits. How exceed the maximum permit under any condition of modu than the average limit, only t 4. The disturbance above 18	was placed on the top of a rotati er fully-anechoic chamber. The ta sition of the highest radiation. s away from the interference-rece variable-height antenna tower. ed from one meter to four meters ue of the field strength. Both horiz are set to make the measuremer sion, the EUT was arranged to its ights from 1 meter to 4 meters (for a was tuned to heights 1 meter) a o 360 degrees to find the maximu was set to Peak Detect Function a old Mode. EUT in peak mode was 10dB low be stopped and the peak values assions that did not have 10dB ma k or average method as specified t channel, the middle channel, the nts are performed in X, Y, Z axis and the X axis positioning which it if until all frequencies measured wa e Loss+ Antenna Factor- Preamp Hz, the disturbance above 18GHz s are the highest emissions could had been displayed. The amplitu which are attenuated more than 2 for frequencies above 1GHz, the for wever, the peak field strength of a ted average limits specified abov lation. For the emissions whose p he peak measurement is shown is GHz were very low and the harm when testing, so only the above	able was rotated 360 eiving antenna, which a above the ground to contal and vertical at. worst case and then or the test frequency and the rotatable table im reading. and Specified wer than the limit of the EUT would be regin would be re- d and then reported in the Highest channel. positioning for s the worst case. as complete. Factor z was very low. The d be found when ude of spurious 20dB below the limit field strength limits are any emission shall not e by more than 20 dB peak level is lower in the report. nonics were the				


5.2.9.1. E.U.T. Operation

Operating Envi	ronment:				
Temperature:	23.4 °C	Humidity:	57 %	Atmospheric Pressure:	102 kPa

Pre test mode:	TM1, TM2, TM3
Final test mode:	TM1, TM2, TM3

5.2.9.2. Test Setup Diagram

5.2.9.3. Test Result

Pass

5.2.9.4. Test Data

For 1 GHz ~ 40 GHz

Have pre-scan all test channel, found 11a mode which it was worst case, so only show the worst case's data on this report.

ANT0

Test chan	Test channel:CH149											
Freq. (GHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity		
11.49	69.11	31.33	4.23	38.62	-3.06	66.05	74	7.95	Peak	Horizontal		
11.49	48.89	31.33	4.23	38.62	-3.06	45.83	54	8.17	Average	Horizontal		
11.49	65.24	31.33	4.23	38.62	-3.06	62.18	74	11.82	Peak	Vertical		
11.49	51.61	31.33	4.23	38.62	-3.06	48.55	54	5.45	Average	Vertical		

Test chan	Test channel:CH157											
Freq. (GHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity		
11.57	70.50	30.26	4.09	38.29	-3.94	66.56	74	7.44	Peak	Horizontal		
11.57	50.15	30.26	4.09	38.29	-3.94	46.21	54	7.79	Average	Horizontal		
11.57	67.06	30.26	4.09	38.29	-3.94	63.12	74	10.88	Peak	Vertical		
11.57	50.82	30.26	4.09	38.29	-3.94	46.88	54	7.12	Average	Vertical		

Test chan	Test channel:CH163											
Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity		
11.65	63.91	31.97	4.11	38.47	-2.39	61.52	74	12.48	Peak	Horizontal		
11.65	50.69	31.97	4.11	38.47	-2.39	48.30	54	5.70	Average	Horizontal		
11.65	67.50	31.97	4.11	38.47	-2.39	65.11	74	8.89	Peak	Vertical		
11.65	50.93	31.97	4.11	38.47	-2.39	48.54	54	5.46	Average	Vertical		

ANT1

Test chan	Test channel:CH149											
Freq. (GHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity		
11.49	69.60	31.33	4.23	38.62	-3.06	66.54	74	7.46	Peak	Horizontal		
11.49	49.27	31.33	4.23	38.62	-3.06	46.21	54	7.79	Average	Horizontal		
11.49	65.06	31.33	4.23	38.62	-3.06	62.00	74	12.00	Peak	Vertical		
11.49	51.21	31.33	4.23	38.62	-3.06	48.15	54	5.85	Average	Vertical		

Test chan	Test channel:CH157											
Freq. (GHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity		
11.57	70.74	30.26	4.09	38.29	-3.94	66.80	74	7.20	Peak	Horizontal		
11.57	50.87	30.26	4.09	38.29	-3.94	46.93	54	7.07	Average	Horizontal		
11.57	67.09	30.26	4.09	38.29	-3.94	63.15	74	10.85	Peak	Vertical		
11.57	50.54	30.26	4.09	38.29	-3.94	46.60	54	7.40	Average	Vertical		

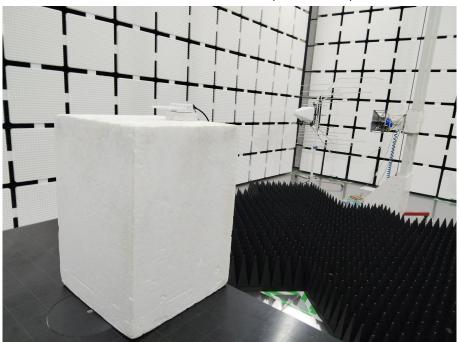
Test chan	Test channel:CH163										
Freq. (MHz)	Reading (dBuv)	Ant. Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correc tion Factor (dB/m)	Level (dBuv)	Limit (dBu V/m)	Margin (dB)	Remark	Polarity	
11.65	64.57	31.97	4.11	38.47	-2.39	62.18	74	11.82	Peak	Horizontal	
11.65	50.48	31.97	4.11	38.47	-2.39	48.09	54	5.91	Average	Horizontal	
11.65	67.77	31.97	4.11	38.47	-2.39	65.38	74	8.62	Peak	Vertical	
11.65	51.13	31.97	4.11	38.47	-2.39	48.74	54	5.26	Average	Vertical	

Notes:

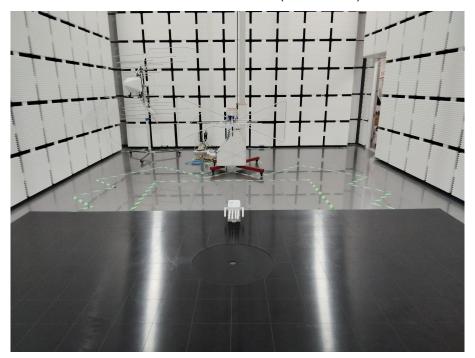
1). Measuring frequencies from 9 KHz ~ 40GHz, emissions are attenuated more than 20dB below the permissible limits generated frequency to 30MHz.

2). Radiated emissions measured in frequency range from 9 KHz ~ 40GHz were made with an instrument using Peak detector mode.

3). 18~40GHz at least have 20dB margin. No recording in the test report.



6. TEST SETUP PHOTOS



Conducted Emission at AC power line

Band edge emissions (Radiated) Undesirable emission limits (above 1GHz)

Undesirable emission limits (below 1GHz)