Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2504 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.2 ± 6 % | 1.42 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 1.2-2 | | ### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.97 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.7 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.08 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.3 W/kg ± 18.7 % (k=2) | Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.2Ω+ 7.76jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 21.4dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.106 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data Certificate No: Z21-60336 | lanufactured by | SPEAG | | |-----------------|-------|--| Page 4 of 6 ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d159 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.416$ S/m; $\varepsilon_r = 40.23$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7517; ConvF(7.81, 7.81, 7.81) @ 1900 MHz; Calibrated: 2021-02-03 Date: 09.16.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.85 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 19.4 W/kg SAR(1 g) = 9.97 W/kg; SAR(10 g) = 5.08 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 51.3% Maximum value of SAR (measured) = 15.9 W/kg 0 dB = 15.9 W/kg = 12.01 dBW/kg Certificate No: Z21-60336 Page 5 of 6 ### Impedance Measurement Plot for Head TSL ### D1900V2 - SN: 5d159 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | | D190 | 0V2 - SN: 5d15 | 9 | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------| | | | | 1900 Head | | | | | Date of
Measurement | Return-loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 2021.09.16 | -21.4 | | 54.2 | | 7.8 | | | 2022.09.16 | -21.7 | -1.4 | 53.3 | -0.9 | 7.8 | 0 | | | | | | | | | | | | | | | | | #### <Justification of the extended calibration> The return loss is <-20dB, within 20% of prior calibration, and the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ### <Dipole Verification Data> ### Head 1900MHz _2022.09.16 In Collaboration with # S D E a g Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Client B.V.ADT Certificate No: Z21-60337 ## **CALIBRATION CERTIFICATE** Object D2300V2 - SN: 1053 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 22, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |------------|---|---| | 106277 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | 104291 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | 106277
104291
SN 7517
SN 1556
ID#
MY49071430 | 106277 23-Sep-20 (CTTL, No.J20X08336) 104291 23-Sep-20 (CTTL, No.J20X08336) SN 7517 03-Feb-21(CTTL-SPEAG,No.Z21-60001) SN 1556 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) ID # Cal Date (Calibrated by, Certificate No.) MY49071430 01-Feb-21 (CTTL, No.J21X00593) | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 27, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60337 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard
uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60337 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 V52.10.4 | | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2300 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.5 | 1.67 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.9 ± 6 % | 1.68 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.3 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 49.1 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.74 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 18.7 % (k=2) | Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.0Ω- 3.99jΩ | |--------------------------------------|---------------| | Return Loss | - 26.8dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.075 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | SPEAG | |-------| | | | | Certificate No: Z21-60337 Page 4 of 6 ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2300 MHz; Type: D2300V2; Serial: D2300V2 - SN: 1053 Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2300 MHz; $\sigma = 1.683$ S/m; $\epsilon_r = 39.91$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7517; ConvF(7.58, 7.58, 7.58) @ 2300 MHz; Calibrated: 2021-02-03 Date: 09.22.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 25.6 W/kg SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.74 W/kg Smallest distance from peaks to all points 3 dB below = 9.5 mm Ratio of SAR at M2 to SAR at M1 = 48% Maximum value of SAR (measured) = 20.6 W/kg 0 dB = 20.6 W/kg = 13.14 dBW/kg Certificate No: Z21-60337 Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Impedance Measurement Plot for Head TSL ### D2300V2 - SN: 1053 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | D2300V2 - SN: 1053 | | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------|--|--| | 2300 Head | | | | | | | | | | Date of
Measurement | Return-loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | | | 2021.09.22 | -26.8 | | 48.0 | | -4.0 | | | | | 2022.09.22 | -26.1 | 2.6 | 45.4 | -2.6 | -1.0 | 3.0 | #### <Justification of the extended calibration> The return loss is <-20dB, within 20% of prior calibration, and the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ### <Dipole Verification Data> ### Head 2300MHz _2022.09.22 In Collaboration with Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Client **B.V.ADT** Certificate No: Z21-60338 ## **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 893 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 18, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards ID # | | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | |-----------------------------------|------------|---|-----------------------|--| | Power Meter NRP2 | 106277 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | | Power sensor NRP8S | 104291 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | | Reference Probe EX3DV4 | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | | DAE4 SN 1556 | | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | | NetworkAnalyzer E5071C MY46110673 | | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | | | Reviewed by: | Lin Hao | SAR Test Engineer | MAR | | Approved by: | Qi Dianyuan | SAR Project Leader | | Issued: September 26, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60338 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. ### In Collaboration with # S P E A G CALIBRATION
LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.79 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 7- | | ### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | | |--|--------------------|--------------------------|--| | SAR measured | 250 mW input power | 13.4 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 53.6 W/kg ± 18.8 % (k=2 | | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | January III | | | SAR measured | 250 mW input power | 6.10 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 18.7 % (k=2) | | ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.0Ω+ 6.26jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 22.4dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.069 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | PEAG | |------| | | | | Certificate No: Z21-60338 ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 893 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.79$ S/m; $\epsilon_r = 38.85$; $\rho = 1000$ kg/m³ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7517; ConvF(7.34, 7.34, 7.34) @ 2450 MHz; Calibrated: 2021-02-03 Date: 09.18.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.0 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.1 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 46.9% Maximum value of SAR (measured) = 22.7 W/kg 0 dB = 22.7 W/kg = 13.56 dBW/kg Certificate No: Z21-60338 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com ### Impedance Measurement Plot for Head TSL ### D2450V2 - SN: 893 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D2450V2 - SN: 893 | | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------|--| | 2450 Head | | | | | | | | | Date of
Measurement | Return-loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | | 2021.09.18 | -22.6 | | 55.0 | | 6.3 | | | | 2022.09.18 | -22.6 | 0.0 | 53.7 | -1.3 | 6.7 | 0.4 | #### <Justification of the extended calibration> The return loss is <-20dB, within 20% of prior calibration, and the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ### <Dipole Verification Data> ### Head 2450MHz _2022.09.18 B.V.ADT Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Fax: +86-10-62304633-2504 http://www.chinattl.cn Certificate No: Z21-60339 ## **CALIBRATION CERTIFICATE** Object D2600V2 - SN: 1110 Calibration Procedure(s) Client FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 16, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |------------|---|---| | 106277 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | 104291 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | 106277
104291
SN 7517
SN 1556
ID#
MY49071430 | 106277 23-Sep-20 (CTTL, No.J20X08336) 104291 23-Sep-20 (CTTL, No.J20X08336) SN 7517 03-Feb-21(CTTL-SPEAG,No.Z21-60001) SN 1556 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) ID # Cal Date (Calibrated by, Certificate No.) MY49071430 01-Feb-21 (CTTL, No.J21X00593) | | | Name | Function | Signature | |----------------|-------------|--------------------|--| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是是 | | Reviewed by: | Lin Hao | SAR Test Engineer | THE STATE OF S | | Approved by: | Qí Dianyuan | SAR Project Leader | | Issued: September 21, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE
Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60339 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.95 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | **** | 122 | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13,9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.8 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.6 W/kg ± 18.7 % (k=2) | ### Appendix(Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.1Ω- 5.12jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.7dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.058 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data C | Manufactured by | SPEAG | | |-----------------|-------|--| | | | | | | | | | 1 | ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1110 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.949 \text{ S/m}$; $\varepsilon_r = 39.04$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7517; ConvF(7.1, 7.1, 7.1) @ 2600 MHz; Calibrated: 2021-02-03 Date: 09.16.2021 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 105.3 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.13 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 45.2% Maximum value of SAR (measured) = 24.1 W/kg 0 dB = 24.1 W/kg = 13.82 dBW/kg Certificate No: Z21-60339 Page 5 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Impedance Measurement Plot for Head TSL ### D2600V2 - SN: 1110 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | | D260 | 00V2 - SN: 1110 |) | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------| | | 2600 Head | | | | | | | Date of
Measurement | Return-loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 2021.09.16 | -25.7 | | 51.1 | | -5.1 | | | 2022.09.16 | -26.3 | 2.7 | 54.2 | 3.1 | -2.8 | 2.3 | | | | | | | | | | | | | | | | | #### <Justification of the extended calibration> The return loss is <-20dB, within 20% of prior calibration, and the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. ### <Dipole Verification Data> ### Head 2600MHz _2022.09.16 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com In Collaboration with # CALIBRATION LABORATORY Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191, Chi Fax: +86-10-62304633-2504 http://www.chinattl.cn Client 7layers Certificate No: Z21-60426 ### CALIBRATION CERTIFICATE Object D3500V2 - SN: 1111 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 21 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | ReferenceProbe EX3DV4 | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzerE5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是" | | Reviewed by: | Lin Hao | SAR Test Engineer | 林北 | | Approved by: | Qi Dianyuan | SAR Project Leader | 30/ | Issued: October 27 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60426 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement
procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60426 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52.10.4 | |------------------------------|----------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | Head TSL parameters at 3500MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.7 ± 6 % | 2.86 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 7444 | | ### SAR result with Head TSL at 3500MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.53 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.5 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.47 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.7 W/kg ± 24.2 % (k=2) | Certificate No: Z21-60426 Page 3 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL at 3500MHz | Impedance, transformed to feed point | 50.3Ω + 1.89jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 34,4dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.043 ns | | |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z21-60426 Page 4 of 6 ### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole D3500V2; Type: D3500V2; Serial: D3500V2 - SN: 1111 Communication System: CW; Frequency: 3500 MHz, Medium parameters used: f = 3500 MHz; $\sigma = 2.857$ S/m; $\epsilon_r = 37.72$; $\rho = 1000$ Date: 10.21.2021 kg/m³ Phantom section: Right Section **DASY5** Configuration: Probe: EX3DV4 - SN7517; ConvF(6.65, 6.65, 6.65) @ 3500 MHz; Calibrated: 2021-02-03 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) ### Dipole Calibration /Pin=100mW, d=10mm, f=3500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.53 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 17.4 W/kg ### SAR(1 g) = 6.53 W/kg; SAR(10 g) = 2.47 W/kg Smallest distance from peaks to all points 3 dB below = 8.8 mm Ratio of SAR at M2 to SAR at M1 = 75.5% Maximum value of SAR (measured) = 12.4 W/kg 0 dB = 12.4 W/kg = 10.93 dBW/kg Certificate No: Z21-60426 Page 5 of 6 ### Impedance Measurement Plot for Head TSL ### D3500V2 - SN: 1111 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D3500V2 - SN: 1111 | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------| | | 3500MHz Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.21.2021 | -34.4 | | 50.3 | | 1.89 | | | 10.20.2022 | -34.1 | -1.02 | 49.2 | -1.06 | 1.8 | -0.07 | | | | | | | | | | | | | | | | | ### < Justification of the extended calibration > The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. <Dipole Verification Data> Head 3500MHz _2022.10.20 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Client 7layers Certificate No: Z21-60427 ## **CALIBRATION CERTIFICATE** Object D3700V2 - SN: 1082 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 20, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | ReferenceProbe EX3DV4 | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzerE5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | 5. S. | Name | Function | Signature | |---|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 发 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林况 | | Approved by: | Qi Dianyuan | SAR Project Leader | 20 | Issued: October 27, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60427 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz
to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60427 Page 2 of 6 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52.10.4 | |------------------------------|----------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.6 ± 6 % | 3.11 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.68 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.8 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 W/kg ± 24.2 % (k=2) | Certificate No: Z21-60427 Page 3 of 6 # Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 45.9Ω + 0.96jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 27.2dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.045 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z21-60427 Page 4 of 6 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole D3700V2; Type: D3700V2; Serial: D3700V2 - SN: 1082 Communication System: CW; Frequency: 3700 MHz, Frequency: 3800 MHz, Medium parameters used: f = 3700 MHz; $\sigma = 3.105$ S/m; $\epsilon_r = 37.6$; $\rho = 1000$ kg/m³. Date: 10.20.2021 Phantom section: Right Section DASY5 Configuration: - Probe: EX3DV4 SN7517; ConvF(6.4, 6.4, 6.4) @ 3700 MHz; Calibrated: 2021-02-03 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) Dipole Calibration /Pin=100mW, d=10mm, f=3700 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.16 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 6.68 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 8.4 mm Ratio of SAR at M2 to SAR at M1 = 73.7% Maximum value of SAR (measured) = 13.0 W/kg 0 dB = 13.0 W/kg = 11.14 dBW/kg Certificate No: Z21-60427 Page 5 of 6 ## Impedance Measurement Plot for Head TSL # D3700V2 - SN: 1082 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D3700V2 - SN: 1082 | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------| | 3700MHz Head | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.20.2021 | -27.2 | | 45.9 | | 0.96 | | | 10.19.2022 | -27.8 | 2.10 | 46.2 | 0.33 | 0.9 | -0.06 | | | | | | | | | | | | | | | | | #### < Justification of the extended calibration > The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. <Dipole Verification Data> Head 3700MHz _2022.10.19 Client 7layers Certificate No: Z21-60428 # **CALIBRATION CERTIFICATE** Object D3900V2 - SN: 1055 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 25, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | |-------------------------|------------|--|-----------------------|--| | Power Meter NRP2 | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | | Power sensor NRP8S | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | | ReferenceProbe EX3DV4 | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | | DAE4 SN 1556 | | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | | NetworkAnalyzerE5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: October 31, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z21-60428 Page 1 of 6 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end
of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60428 Page 2 of 6 ## Measurement Conditions DASY system configuration, as far as not given on page 1 | DASY Version | DASY52 | V52.10.4 | | |------------------------------|----------------------------|----------------------------------|--| | Extrapolation | Advanced Extrapolation | | | | Phantom | Triple Flat Phantom 5.1C | | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | | Frequency | 3900 MHz ± 1 MHz | | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.1 ± 6 % | 3.31 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | (444) | - | ## SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | | |--|--------------------|--------------------------|--| | SAR measured | 100 mW input power | 6.80 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 67.9 W/kg ± 24.4 % (k=2 | | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | | SAR measured | 100 mW input power | 2.38 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 24.2 % (k=2) | | # Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.9Ω - 6.11jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 24.3dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.013 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: Z21-60428 Page 4 of 6 #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole D3900V2; Type: D3900V2; Serial: D3900V2 - SN: 1055 Communication System: CW; Frequency: 3900 MHz Medium parameters used: f = 3900 MHz; $\sigma = 3.31 \text{ S/m}$; $\epsilon_r = 37.12$; $\rho = 1000 \text{ kg/m}^3$ Date: 10.25.2021 Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7517; ConvF(6.36, 6.36, 6.36) @ 3900 MHz; Calibrated: 2021-02-03 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501) Dipole Calibration /Pin=100mW, d=10mm, f=3900 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.07 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 20.0 W/kg SAR(1 g) = 6.8 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 8.4 mm Ratio of SAR at M2 to SAR at M1 = 72.6% Maximum value of SAR (measured) = 13.7 W/kg 0 dB = 13.7 W/kg = 11.37 dBW/kg Certificate No: Z21-60428 Page 5 of 6 # Impedance Measurement Plot for Head TSL # D3900V2 - SN: 1055 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | D3900V2 - SN: 1055 | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------| | | 3900MHz Head | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 10.25.2021 | -24.3 | | 49.9 | | -6.11 | | | 10.24.2022 | -24.5 | 0.82 | 48.4 | -1.46 | -5.7 | 0.45 | | | | | | | | | | | | | | | | | #### < Justification of the extended calibration > The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. <Dipole Verification Data> Head 3900MHz _2022.10.24 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Fax: +86-10-62304633-2504 http://www.chinattl.cn Client **B.V.ADT** Certificate No: Z21-60340 # CALIBRATION CERTIFICATE Object D5GHzV2 - SN: 1133 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: September 14, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|---|-----------------------| | Power Meter NRP2 | 106277 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | Power sensor NRP8S | 104291 | 23-Sep-20 (CTTL, No.J20X08336) | Sep-21 | | ReferenceProbe EX3DV4 | SN 7517 | 03-Feb-21(CTTL-SPEAG,No.Z21-60001) | Feb-22 | | DAE4 | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | NetworkAnalyzerE5071C | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | L. L. | | Reviewed by: | Lin Hao | SAR Test Engineer | HA36 | | Approved by: | Qi Dianyuan | SAR Project Leader | 26 | Issued: September 20, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is
transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60340 Page 2 of 8 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | ## Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.2 ± 6 % | 4.65 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.72 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 76.9 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.1 W/kg ± 24.2 % (k=2) | Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 5.03 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | # SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.2 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 24.2 % (k=2) | ## Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 5.23 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.84 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.0 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.1 W/kg ± 24.2 % (k=2) | ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 49.8Ω - 6.16jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 24.2dB | | ## Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.6Ω - $0.22j\Omega$ | | |--------------------------------------|------------------------------|--| | Return Loss | - 29.2dB | | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 54.5Ω - 2.58jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 26.1dB | | ## General Antenna Parameters and Design | Electrical Delay (one direction) | 1.111 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |----------------------------|-------| | Notice to testing any one. | | DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1133 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Date: 09.14.2021 Frequency: 5800 MHz, Medium parameters used: f = 5250 MHz; σ = 4.654 S/m; ϵ_r = 35.2; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.03 S/m; ϵ_r = 34.61; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.225 S/m; ϵ_r = 34.35; ρ = 1000 kg/m³. Phantom section: Right Section DASY5 Configuration: Probe: EX3DV4 - SN7517; ConvF(5.42, 5.42, 5.42) @ 5250 MHz; ConvF(4.75, 4.75, 4.75) @ 5600 MHz; ConvF(4.82, 4.82, 4.82) @ 5800 MHz; Calibrated: 2021-02-03 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.21 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 18.3 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.99 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 34.5 W/kg SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.6 mm Ratio of SAR at M2 to SAR at M1 = 63.6% Maximum value of SAR (measured) = 19.9 W/kg Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Dipole Calibration /Pin=100mW, d=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.20 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 34.9 W/kg SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.6 mm Ratio of SAR at M2 to SAR at M1 = 62.1% Maximum value of SAR (measured) = 19.5 W/kg 0 dB = 19.5 W/kg = 12.90 dBW/kg Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn # Impedance Measurement Plot for Head TSL # D5GV2 - SN: 1133 Extended Dipole Calibrations Referring to KDB 865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | | D50 | SV2 - SN: 1133 | | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------| | | | | 5250 Head | | | | | Date of
Measurement | Return-loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 2021.09.14 | -24.2 | | 49.8 | | -6.2 | | | 2022.09.14 | -23.8 | 1.7 | 48.2 | -1.6 | -6.1 | 0.1 | | | | | | | | | | D5GV2 - SN: 1133 | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------| | 5600 Head | | | | | | | | Date of
Measurement | Return-loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) |
Delta
(ohm) | | 2021.09.14 | -29.2 | | 53.6 | | -0.2 | | | 2022.09.14 | -30.3 | -3.8 | 51.5 | -2.1 | -2.7 | -2.5 | | | | | | | | | | | | | | | | | | D5GV2 - SN: 1133 | | | | | | | |------------------------|---------------------|-----------|----------------------------|----------------|---------------------------------|----------------| | 5800 Head | | | | | | | | Date of
Measurement | Return-loss
(dB) | Delta (%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary
Impedance
(ohm) | Delta
(ohm) | | 2021.09.14 | -26.1 | | 54.5 | | -2.6 | | | 2022.09.14 | -23.3 | 11.0 | 55.0 | 0.5 | -5.3 | -2.7 | | | | | | | | | | | | | | | | | #### <Justification of the extended calibration> The return loss is <-20dB, within 20% of prior calibration, and the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. #### <Dipole Verification Data> #### Head 5250-5800MHz_2022.09.16 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Client : B.V.ADT Certificate No: Z22-60514 # **CALIBRATION CERTIFICATE** Object DAE4 - SN: 1389 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: November 09, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |---------|--|-----------------------| | 1971018 | 14-Jun-22 (CTTL, No.J22X04180) | Jun-23 | | | | | Name Function Signature Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: November 11, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60514 Calibrated by: Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z22-60514 Page 2 of 3