

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC/ISED Test Report

Prepared for: Garmin International, Inc.

Address:

1200 E. 151st Street Olathe, Kansas, 66062, USA

Product:

A05007

Test Report No:

R20240212-00-E2 Rev: A

Approved by:

1. Lane

Fox Lane, EMC Test Engineer

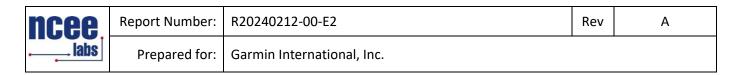
DATE:

January 13, 2025

Total Pages:

27

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

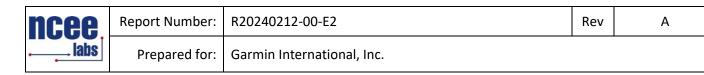

ncee,	Report Number:	R20240212-00-E2	Rev	А
labs	Prepared for:	Garmin International, Inc.		

REVISION PAGE

Rev. No.	Date	Description		
		Issued by FLane		
0	31 December 2024	Reviewed by FLane		
		Prepared by Flane / ESchmidt		
٨	12 January 2025	Updated Duty cycle declaration and calculations		
A	13 January 2025	Updated support equipment – FL		

CONTENTS

Revi	sion Pag	ge2
1.0	Sum	nmary of test results4
2.0	EUT	Description5
	2.1	Equipment under test5
	2.2	Description of test modes5
	2.3	EUT Setup5
	2.4	Description of support units5
3.0	Lab	oratory and General Test Description6
	3.1	Laboratory description
	3.2	Test personnel
	3.3	Test equipment7
	3.4	General Test Procedure and Setup for Radio Measurements
4.0	Res	ults10
	4.1	Bandwidth
	4.2	Duty Cycle11
	4.3	Radiated Emissions
	4.4	Conducted Spurious Emissions17
	4.5	Band Edges
Арр	endix A	: Sample Calculation21
Арр	endix B	- Measurement Uncertainty
Арр	endix C	– Graphs and Tables
REP		ID27


1.0 SUMMARY OF TEST RESULTS

The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section:

The EUT has been tested according to the following specifications:

- (1) US Code of Federal Regulations, Title 47, Part 15.249
- (2) ISED RSS-Gen, Issue 5
- (3) ISED RSS-210, Issue 11

APPLIED STANDARDS AND REGULATIONS						
Standard Section	Test Type	Result				
FCC Part 15.35 RSS Gen, Issue 5, Section 6.10	Duty Cycle	Pass				
Informational purposes only	Bandwidth	NA				
FCC Part 15.209 RSS-Gen Issue 5, Section 7.3	Receiver Radiated Emissions	Pass				
FCC Part 15.209 FCC 15.249(a) RSS-210 Issue 11, Annex B.10(a)(b) RSS-Gen Issue 5, Section 6.13	Transmitter Radiated Emissions	Pass				
FCC Part 15.209, 15.249(d) RSS-210 Issue 11 Annex B.10(b) RSS-Gen Issue 5, Section 6.13	Band Edge Measurement	Pass				

2.0 EUT DESCRIPTION

2.1 Equipment under test

Summary and Operating Condition:

EUT	A05007
IC	1792A-05007
FCC ID	IPH-05007
EUT Received	25 November 2024
EUT Tested 4 December 2024- 13 December 2024	
Serial No.8PR000042 (Radiated Measurements) 8PR000027 (Conducted Measurements)	
Operating Band 2400 – 2483.5 MHz	
Device Type	□ GMSK Ø GFSK □ BT BR □ BT EDR 2MB □ BT EDR 3MB □ 802.11x
Power Supply / Voltage	12VDC external battery: EWI(ASIA) GROUP LTD model 320-01372-00 car charger

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 Description of test modes

The operating range of the EUT is dependent on the device type found in section 2.1:

GFSK Transmissions				
Channel Frequency				
Low	2402 MHz			
Mid	2441 MHz			
High	2480 MHz			

These are the only representative channels tested in the frequency range according to FCC Part 15.31 and RSS-Gen Table A1. See the operational description for a list of all channel frequency and designations.

2.3 EUT Setup

Device was powered by a car charger which was powered by a 12VDC external battery and connected to a Garmin Navigator, M/N: A04856, FCC ID: IPH-04856. VHF Antenna port was connected to 50ohm load for all radiated emissions testing.

2.4 Description of support units

A Garmin Navigator, M/N: A04856, FCC ID: IPH-04856.

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 Laboratory description

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs)4740 Discovery DriveLincoln, NE 68521A2LA Certificate Number:1953.01FCC Accredited Test Site Designation No:US1060Industry Canada Test Site Registration No:4294ANCC CAB Identification No:US0177

Environmental conditions varied slightly throughout the tests:

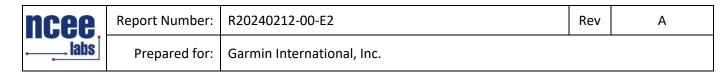
Relative humidity of $35 \pm 4\%$ Temperature of $22 \pm 3^{\circ}$ Celsius

3.2 Test personnel

·	100								
	No.	PERSONNEL	TITLE	ROLE					
	1	Fox Lane	Test Engineer	Testing and Report					
	2	Blake Winter	Test Engineer	Testing					
	3	Ethan Schmidt	Test Engineer	Testing and Report					
	4	Karthik Vepuri	Technical Manager	Review					

Notes: All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

11666,	Report Number:	R20240212-00-E2	Rev	А
labs	Prepared for:	Garmin International, Inc.		


3.3 Test equipment

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)	N9038A	MY59050109	July 17, 2024	July 18, 2026
Keysight MXE Signal Analyzer (26.5GHz)	N9038A	MY56400083	July 17, 2024	July 18, 2026
SunAR RF Motion	JB1	A082918-1	July 17, 2024	July 17, 2025
EMCO Horn Antenna	3117	29616	June 12, 2024	June 12, 2025
Agilent Preamp*	87405A	3207A01475	May 2, 2024	May 2, 2026
ETS Red Preamplifier (Orange)*	3115-PA	00218576	January 22, 2024	January 22, 2026
Trilithic High Pass Filter*	6HC330	23042	June 5, 2023	June 5, 2025
ETS – Lindgren- VSWR on 10m Chamber	10m Semi- anechoic chamber- VSWR	4740 Discovery Drive	May 15, 2024	May 15, 2027
NCEE Labs-NSA on 10m Chamber*	10m Semi- anechoic chamber-NSA	NCEE-001	May 22, 2024	May 22, 2026
RF Cables (3m Ant. to Control room Bulkhead)	MFR-57500	1E3874	June 5, 2023	June 5, 2025
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	June 5, 2023	June 5, 2025
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3874	June 5, 2023	June 5, 2025
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	June 5, 2023	June 5, 2025
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	June 5, 2023	June 5, 2025
N connector bulkhead (control room)*	PE9128	NCEEBH2	June 5, 2023	June 5, 2025
TDK Emissions Lab Software	V11.25	700307	NA	NA

*Internal Characterization

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

3.4 General Test Procedure and Setup for Radio Measurements

Measurement type presented in this report (Please see the checked box below):

Conducted \boxtimes

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Figure 1 - Bandwidth Measurements Test Setup

Radiated 🛛

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

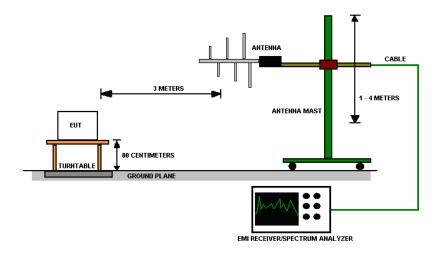


Figure 2 - Radiated Emissions Test Setup

ncee.	Report Number:	R20240212-00-E2	Rev	А
	Prepared for:	Garmin International, Inc.		

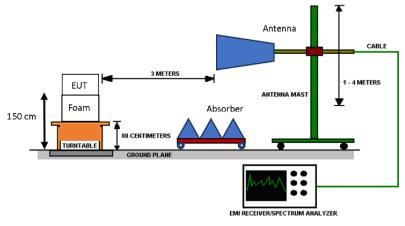
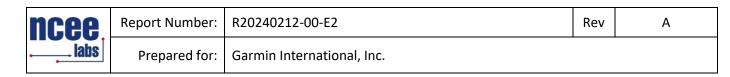



Figure 3 - Radiated Emissions Test Setup, >1GHz

4.0 RESULTS

	Peak Restricted Band-Edge										
СН	CH Mode Band edge /Measurement Frequency (MHz)		Highest out of band level (dBuV/m @ 3m)	Detector	Limit (dBuV/m @ 3m)	Margin	Result				
Low	ANT GFSK	2390.00	56.378	Peak	73.98	17.54	PASS				
High	ANT GFSK	2483.50	57.696	Peak	73.98	16.28	PASS				
*Limit s	hown is the ave	erage limit taken fro	*Limit shown is the average limit taken from FCC Part 15.209								

	Average Restricted Band-Edge									
СН	Mode			Corrected Out of band level (dBuV/m @ 3m)	Limit (dBuV/m @ 3m)	Margin	Result			
Low	ANT GFSK	2390.00	56.378	17.20	39.178	53.98	14.802	PASS		
High	ANT GFSK	2483.50	57.696	17.20	40.496	53.98	13.484	PASS		
	Corrected out of band level = Peak out of band level – DCCF(declard) for Emissions *Limit shown is the average limit taken from FCC Part 15.209									

			Unrestricte	d Band-Edge			
СН	H Mode /Measurement H Frequency		Relative Highest out of band Ievel (dBm)	Relative Fundamental (dBm)	Delta (dB)	Min Delta (dB)	Result
Low	ANT GFSK	2400.00	109.732	54.663	55.07	50.00	PASS
High	ANT GFSK	2483.50	109.493	48.643	60.85	50.00	PASS

	DTS Radio Measurements								
CHANNEL	Transmitter	Occupied Bandwidth (kHz)	Result						
Low	ANT GFSK	846.88	PASS						
Mid	ANT GFSK	834.53	PASS						
High	ANT GFSK	842.52	PASS						
Occupied Ba	ndwidth = N/A; 6	dB Bandwidth Lin	nit = N/A						

4.1 Bandwidth

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of bandwidth measurements:

N/A, for FCC/ISED reporting purposes only.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the bandwidth plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. Tabulated data is listed in section 4.0.

4.2 Duty Cycle

ncee.	Report Number:	R20240212-00-E2	Rev	А
labs	Prepared for:	Garmin International, Inc.		

Keysight Spectrum Analyzer - Swept SA								
RF PRESEL 50 Ω AC			SENSE:INT	<u>∧</u> A	LIGN OFF			5 PM Dec 13, 202
/larker 3		PNO: Fast +++	Trig: Free F Atten: 10 d		Avg Type:	Voltage		TYPE WWWWW DET PNNNN
IO dB/div Ref 0.00 dBm							ΔMkr3	3.910 m 0.02 dl
- og -10.0								
20.0			. 1				3∆1	
40.0			<u> </u>					
50.0								
70.0			2Δ1					
80.0 <mark>1/141-141 - 1/1414/14/14/14/14/14/14/14/14/14/14/14/</mark>	nghadhhandhatha	Malaunapharan	yanan Kadale	Magnaraffatintan	rlffal/turallevelja	ruspingsturblyndyng	ahadn l <mark>a</mark> farfrax	anter a construction of the second
Center 2.402000000 GHz tes BW (CISPR) 1 MHz		VBW	/ 50 MHz			Sweep	o 10.00 ms	Span 0 H (1001 pts
	< 4.450 ms	۲ -39.19	FUNC	TION FUNC	TION WIDTH	FI	JNCTION VALUE	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170.0 µs 3.910 ms	(Δ) -41.2	25 dB 02 dB					
4 5 6								
7								
9								
10 11								

Figure 4 – Duty Cycle, GFSK, Measured

The following duty cycle and duty cycle correction factors (DCCF) were used where applicable.

Duty Cycle = ON Time / Period Duty Cycle correction factor (for emissions) = 20 * log(1 / Duty cycle) Duty Cycle correction factor (for power) = 10*log(1 / Duty Cycle)

Duty Cycle for GFSK:0.0435Duty Cycle correction factor (for emissions) for GFSK:27.23dBDuty Cycle correction factor (for power) for GFSK:13.62dB

For testing purposes, the duty cycle was 4.35%. However, in actual use, the maximum duty cycle will be 13.8% Garmin declares worst case duty cycle is 13.8%

Duty Cycle for GFSK(Declared): 0.138

Duty Cycle correction factor (Declared) (For Emissions) for GFSK:	17.20dB
Duty Cycle correction factor (Declared) (For Power) for GFSK:	8.60dB

4.3 Radiated Emissions

Test Method:

ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (μV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 * log * Emission level (μ V/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

4. Intermodulation was investigated and found to be below system noise floor

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

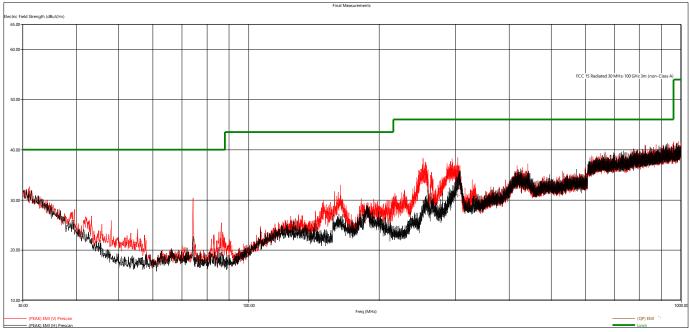
g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

NOTE:

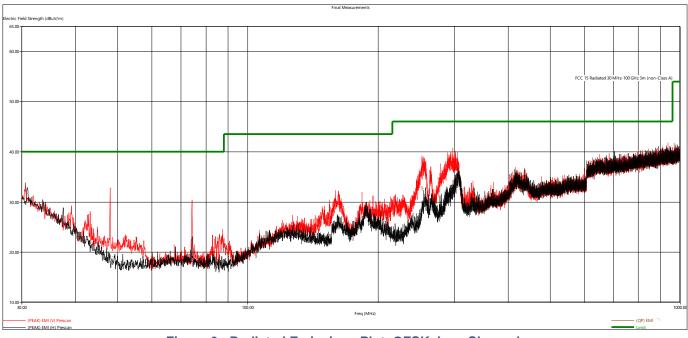
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

2. The resolution bandwidth 1 MHz for all measurements and at frequencies above 1GHz, A peak detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

Deviations from test standard:


No deviation.

EUT operating conditions


Details can be found in section 2.1 of this report.

ncee.	Report Number:	R20240212-00-E2	Rev	А
labs	Prepared for:	Garmin International, Inc.		

Test results:

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission level

The Nebraska Center for Excellence in Electronics 4740 Discovery Drive Lincoln, NE 68521

Page 15 of 27

ncee	Report Number:	R20240212-00-E2
labs		Garmin Internatio

rnational, Inc.

	Quasi-Peak Measurements, GFSK								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation	
MHz	dBµV/m	dBµV/m	dB	cm.	deg.				
47.779440	19.04	40.00	20.96	106.73	213.25	V	Low GFSK		
252.746400	32.71	46.02	13.31	107.20	303.50	V	Low	GFSK	
297.897840	33.83	46.02	12.19	238.01	245.00	V	Low	GFSK	
252.919920	29.46	46.02	16.56	105.29	274.50	V		RX	
304.186560	30.87	46.02	15.15	201.65	96.50	V		RX	

Rev

А

The EUT was maximized in all 3 orthogonal axes. The worst-case is shown in the plot and table above. All other measurements were found to be at least 6 dB below the limit.

	Peak Measurements, GFSK								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation	
MHz	dBµV/m	dBµV/m	dB	cm.	deg.				
2402.00	105.05	114.00	8.95	200.00	0.00	Н	Low	GFSK	
2440.00	104.49	114.00	9.51	200.00	0.00	Н	Mid	GFSK	
2480.00	103.00	114.00	11.00	200.00	0.00	Н	High	GFSK	
4803.418	47.59	73.98	26.39	348.94	60.75	Н	Low	GFSK	
7320.246	54.37	73.98	19.61	275.86	147.75	Н	Mid	GFSK	
7441.210	46.20	73.98	27.78	296.10	143.50	Н	High	GFSK	

The EUT was maximized in all 3 orthogonal axes. The worst-case is shown in the table(s) above. All other measurements were found to be at least 6 dB below the limit.

	Average Measurements, GFSK								
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel	Modulation	
MHz	dBµV/m	dBµV/m	dB	cm.	deg.				
2402.00	87.85	94.00	6.15	200.00	0.00	Н	Low	GFSK	
2440.00	87.29	94.00	6.71	200.00	0.00	Н	Mid	GFSK	
2480.00	85.80	94.00	8.20	200.00	0.00	Н	High	GFSK	
4803.418	30.39	53.98	23.59	348.94	60.75	Н	Low	GFSK	
7320.246	37.17	53.98	16.81	275.86	147.75	Н	Mid	GFSK	
7441.210	29.00	53.98	24.98	296.10	143.50	Н	High	GFSK	

Average Level = Peak Level - DCCF (Declared) (for emissions), see section 4.2 for more info on DCCF The EUT was maximized in all 3 orthogonal axes. The worst-case is shown in the table(s) above All other measurements were found to be at least 6 dB below the applicable limit.

А

Rev

4.4 Conducted Spurious Emissions

Test Method:

ANSI C63.10-2020, Section 6.7

Limits of spurious emissions:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Test procedures:

The highest emissions level was measured and recorded. All spurious measurements were evaluated to 30dB below the fundamental. More details can be found in section 3.4 of this report.

Deviations from test standard:

None.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Note that the line shown on the plot(s) is not a limit line. It is a line for reference.

Rev

А

Prepared for: Garmin International, Inc.

rker 1 811.2		PNC):Fast 🖵	Trig: Free Ru #Atten: 20 dB		Avg Hold	:>100/100		TYPE DET	P S N
akTable		IFGa	III.LOW	witten. 20 di	-			Mkr1	811.2	4 M
Freq (GHz)	dBm	∆Limit1(dB)	10 dB/div	Ref 10.00	0 dBm				67.47	
			0.00							
			10.0							
			-10.0							
			-20.0							-20.00
			-20.0							
			-30.0							
			-40.0							
			-50.0							
			-60.0						â 1	
			-70.0 -70.0	a papalati na na panja na panjan na panja					And a shelf the second	
			-80.0							
			Start 0.0	0300 GHz				Si ep 4.000	top 1.00	000 G

Figure 7 - Conducted Spurious emissions, GFSK, 30MHz – 1GHz, Mid

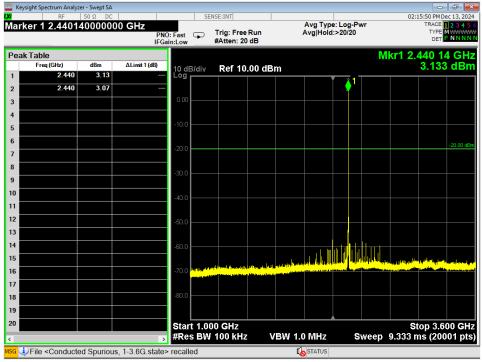


Figure 8 - Conducted Spurious emissions, GFSK, 1GHz – 3.6GHz, Mid

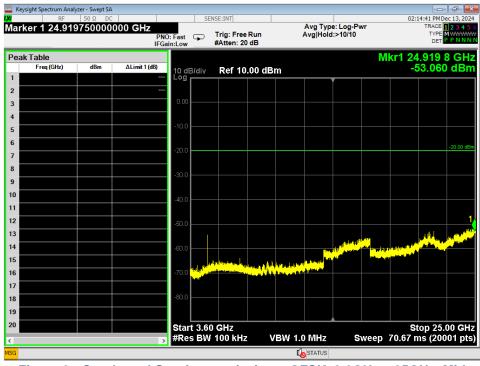


Figure 9 - Conducted Spurious emissions, GFSK, 3.6GHz – 25GHz, Mid

4.5 Band Edges

Test Method:

All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of band-edge measurements:

For FCC Part 15.249 Device:

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

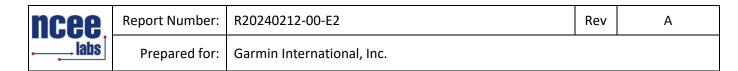
Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:


Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the band edge plots can be found in Appendix C.
- 2. If the device falls under FCC Part 15.249 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing compliance with 15.209.
- 3. The restricted band edge compliance is shown by comparing to the general limit defined in Part 15.209.
- 4. Tabulated data is listed in section 4.0.

APPENDIX A: SAMPLE CALCULATION

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF - (-CF + AG) + AV

where FS = Field Strength

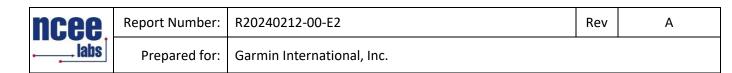
RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain AV = Averaging Factor (if applicable)

Assume a receiver reading of 55 dB μ V is obtained. The Antenna Factor of 12 and a Cable Factor of 1.1 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.1 dB μ V/m.

 $FS = 55 + 12 - (-1.1 + 20) + 0 = 48.1 \text{ dB}\mu\text{V/m}$

The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.

Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

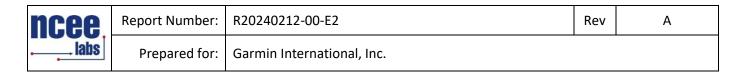

AV is calculated by taking the $20^{100}(T_{on}/100)$ where T_{on} is the maximum transmission time in any 100ms window.

EIRP Calculations

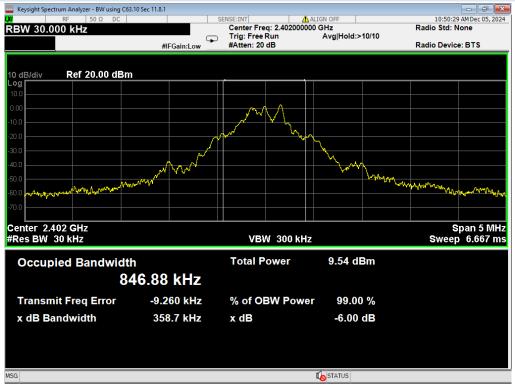
In cases where direct antenna port measurement is not possible or would be inaccurate, output power is measured in EIRP. The maximum field strength is measured at a specified distance and the EIRP is calculated using the following equation;

EIRP (Watts) = [Field Strength (V/m) x antenna distance (m)]² / 30 Power (watts) = $10^{Power} (dBm)/10$] / 1000 Voltage (dB μ V) = Power (dBm) + 107 (for 50Ω measurement systems) Field Strength (V/m) = 10^{Field} Strength (dB μ V/m) / 20] / 10^6 Gain = 1 (numeric gain for isotropic radiator) Conversion from 3m field strength to EIRP (d=3):

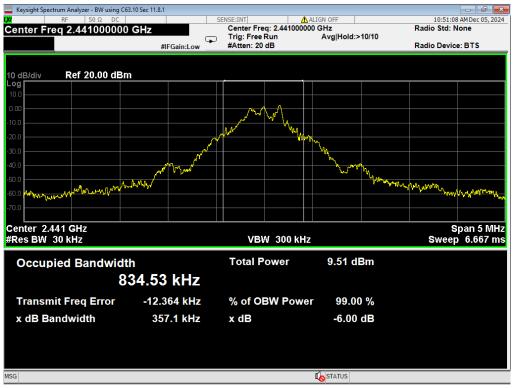
 $EIRP = [FS(V/m) \times d^2]/30 = FS [0.3]$ for d = 3 $EIRP(dBm) = FS(dB\mu V/m) - 10(log 10^9) + 10log[0.3] = FS(dB\mu V/m) - 95.23$ $10log(10^9)$ is the conversion from micro to milli


APPENDIX B – MEASUREMENT UNCERTAINTY

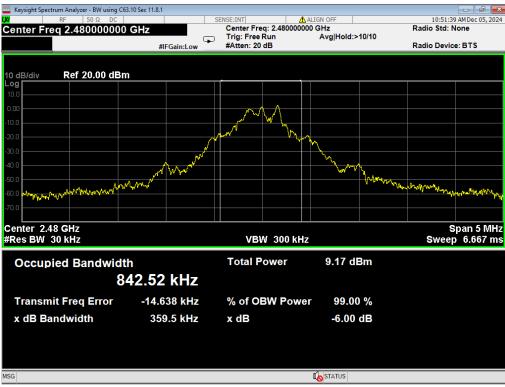
NCEE Labs does not add uncertainty to measurement levels


Where relevant, the following measurement uncertainty levels have been for tests performed in this test report:

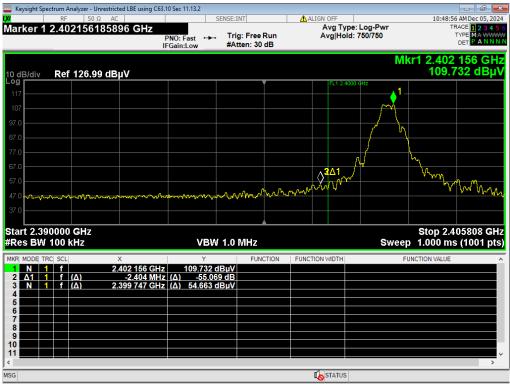
Test	Frequency Range	Uncertainty Value (dB)
Radiated Emissions, 3m	30MHz - 1GHz	±4.31
Radiated Emissions, 3m	1GHz - 18GHz	±5.08
Emissions limits, conducted	30MHz – 18GHz	±3.03


Expanded uncertainty values are calculated to a confidence level of 95%.

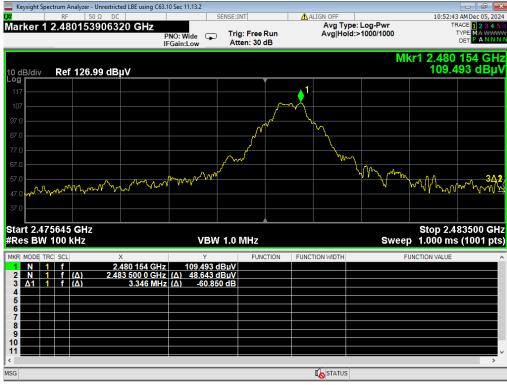
APPENDIX C – GRAPHS AND TABLES

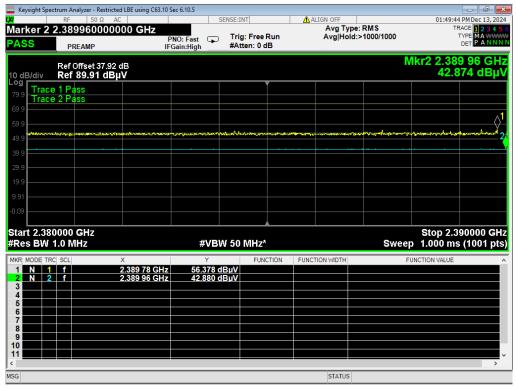


01 Occupied BW, GFSK, Low



02 Occupied BW, GFSK, Mid





04 LBE Unrestricted, GFSK

05 HBE Unrestricted, GFSK

06 LBE Restricted, GFSK

		estricted HBE C63.10 Se	6.10.5							- đ ×
LXI	RF 50 \$	AC AC		SENSE:	INT		ALIGN OFF			PM Dec 13, 2024
Marker 1	2.4836320	00000 GHz						pe: RMS		ACE 1 2 3 4 5 (
			PNO: Fast		g: Free R		Avg Ho	ld:>1000/1000		YPE MA WWW
PASS	PREAMP		IFGain:High	* #A	tten: 0 dE	3			1	DETPANNN
	Ref Offset 3							Mkr	1 2.483 63	2 0 GHz
10 dB/div	Ref 90.28								57.6	96 dBµV
	e 1 Pass				Ť					
^{80.3} Trace	e 2 Pass									
70.3										
60.3										
50.3	And a state of the	and a superior of the second second	**************************************	manne				**************************************		a second a second s
40.3										
30.3										
20.3										
10.3										
0.280										
0.200										
Center 2.4	91750 GHz	2							Span	16.50 MHz
#Res BW ′	1.0 MHz		VE	SW 50	MHz*			Swee	o 1.000 ms	(1001 pts)
MKR MODE TRO	C SCL	Х	Y		FUNCT	TION	FUNCTION WIDTH	F	UNCTION VALUE	^
1 N 1	f	2.483 632 0 GH		6 dBµV						
2 N 2	f	2.493 565 0 GH	z 43.50	7 dBµV						
3										
4										
5										
6										
6 7										
6 7 8										
6 7 8 9										
6 7 8 9 10										
6 7 8 9 10 11										`~
6 7 8 9 10							STATUS			> ×

07 HBE Restricted, GFSK

ncee labs	Report Number:	R20240212-00-E2	Rev	А
	Prepared for:	Garmin International, Inc.		

REPORT END