

Industrial Internet Innovation Center (Shanghai) Co.,Ltd.

SRD TEST REPORT

PRODUCT	Smart POS System
BRAND	SUNMI
MODEL	Т6831
APPLICANT	Shanghai Sunmi Technology Co.,Ltd.
FCC ID	2AH25T6831
ISSUE DATE	June 6, 2024
STANDARD(S)	FCC Part15E

Prepared by: Tao Lingyan

Reviewed by: Yang Fan

Approved by: Zhang Min

调破艳

杨帆

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No: 24T04I300065-048

CONTENTS

1.1 TEST STANDARD(\$) 3 1.2 REFERENCE DOCUMENTS 3 1.3 SUMMARY OF TEST RESULTS 3 1.4 DATA PROVIDED BY APPLICANT 4 2. GENERAL INFORMATION OF THE LABORATORY 5 2.1 TESTING LABORATORY 5 2.2 LABORATORY ENVIRONMENTAL REQUIREMENTS 5 2.3 PROJECT INFORMATION 5 3. GENERAL INFORMATION OF THE CUSTOMER 6 3.1 APPLICANT 6 3.2 MANUFACTURER 6 3.1 APPLICANT 7 4.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 7 4.2 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 7 4.3 ADDITIONAL INFORMATION 8 5 TEST CONFIGURATION INFORMATION 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.2 TEST CONFIGURATION INFORMATION 9 5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 <t< th=""><th>1. SL</th><th>JMMARY OF TEST REPORT</th><th>3</th></t<>	1. SL	JMMARY OF TEST REPORT	3
1.2 REFERENCE DOCUMENTS 3 1.3 SUMMARY OF TEST RESULTS 3 1.4 DATA PROVIDED BY APPLICANT 4 2. GENERAL INFORMATION OF THE LABORATORY 5 2.1 TESTING LABORATORY 5 2.2 LABORATORY ENVIRONMENTAL REQUIREMENTS 5 2.3 PROJECT INFORMATION OF THE CUSTOMER 6 3.1 APPLICANT 6 3.2 MANUFACTURER 6 3.1 APPLICANT 6 3.2 MANUFACTURER 6 4.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 7 4.2 INTERNAL IDENTIFICATION OF THE PRODUCT. 7 4.3 ADDITIONAL INFORMATION 8 5 TEST CONFIGURATION INFORMATION 8 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.3 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.2 MAXIMUM AVERAGE OUTPUT POWER 15 6.3 PEAK POWER SPECTRAL DENSITY 16	1.1	Test Standard(s)	
1.4 DATA PROVIDED BY APPLICANT 4 2. GENERAL INFORMATION OF THE LABORATORY 5 2.1 TESTING LABORATORY 5 2.2 LABORATORY ENVIRONMENTAL REQUIREMENTS 5 2.3 PROJECT INFORMATION OF THE CUSTOMER 6 3.1 APPLICANT 6 3.2 MANUFACTURER 6 4. GENERAL INFORMATION OF THE PRODUCT. 7 4.1 PROJECT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 7 4.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 7 4.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 7 4.2 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 7 4.3 ADDITIONAL INFORMATION 8 5 TEST CONFIGURATION INFORMATION 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 68 & 260B OCCUPIED BANDWIDTH. 12	1.2		
2. GENERAL INFORMATION OF THE LABORATORY 5 2.1 TESTING LABORATORY 5 2.2 LABORATORY ENVIRONMENTAL REQUIREMENTS 5 2.3 PROJECT INFORMATION 5 3. GENERAL INFORMATION OF THE CUSTOMER 6 3.1 APPLICANT 6 3.2 MANUFACTURER 6 4. GENERAL INFORMATION OF THE PRODUCT. 7 4.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT). 7 4.2 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST. 7 4.3 ADDITIONAL INFORMATION 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 GBB & 260B OCCUPIED BANDWIDTH 19 6.5 99% OCCUPIED BANDWIDTH 23 6.6 FREQUENCY STAB	1.3	SUMMARY OF TEST RESULTS	
2.1 TESTING LABORATORY 5 2.2 LABORATORY ENVIRONMENTAL REQUIREMENTS 5 2.3 PROJECT INFORMATION 5 3. GENERAL INFORMATION OF THE CUSTOMER 6 3.1 APPLICANT 6 3.2 MANUFACTURER 6 4. GENERAL INFORMATION OF THE PRODUCT. 7 4.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT). 7 4.2 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST. 7 4.3 ADDITIONAL INFORMATION 8 5 TEST CONFIGURATION INFORMATION 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.2 TEST EQUIPMENTS UTILIZED 9 5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.2 MAXIMUM AVERAGE OUTPUT POWER 15 6.3 PEAR POWER SPECTRAL DENSITY 16 6.4 GDB & 260B OCCUPIED BANDWIDTH 21 6.5 99% OCCUPIED BANDWIDTH 23 6.6 FREQUENCY STABILITY 23 </td <td>1.4</td> <td>DATA PROVIDED BY APPLICANT</td> <td>4</td>	1.4	DATA PROVIDED BY APPLICANT	4
2.2 LABORATORY ENVIRONMENTAL REQUIREMENTS 5 2.3 PROJECT INFORMATION 5 3. GENERAL INFORMATION OF THE CUSTOMER 6 3.1 APPLICANT 6 3.2 MANUFACTURER 6 4. GENERAL INFORMATION OF THE PRODUCT. 7 4.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 7 4.2 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 7 4.3 ADDITIONAL INFORMATION 8 5 TEST CONFIGURATION INFORMATION 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.2 TEST EQUIPMENTS UTILIZED 9 5.3 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.2 MAXIMUM AVERAGE OUTPUT POWER 15 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 60B & 260B OCCUPIED BANDWIDTH 19 6.5 9% OCCUPIED BANDWIDTH 21 6.6 FREQUENCY STABILITY 23 6.7 TRANSMITTER SPURIOUS EMISSION 24 6.8 BAND EDGES COMPLIANCE (RADIATED)	2. GI	ENERAL INFORMATION OF THE LABORATORY	5
2.3 PROJECT INFORMATION 5 3. GENERAL INFORMATION OF THE CUSTOMER 6 3.1 APPLICANT 6 3.2 MANUFACTURER 6 4. GENERAL INFORMATION OF THE PRODUCT. 7 4.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT). 7 4.2 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 7 4.3 ADDITIONAL INFORMATION 8 5 TEST CONFIGURATION INFORMATION 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.2 TEST EQUIPMENTS UTILIZED 9 5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.2 MAXIMUM AVERAGE OUTPUT POWER 15 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 60B & 260B OCCUPIED BANDWIDTH 19 6.5 9% OCCUPIED BANDWIDTH 21 6.6 FREQUENCY STABILITY 23 6.7 TRANSMITTER SPURIOUS EMISSION 24 6.8 BAND EDGES COMPULANCE (RADIATED) <t< td=""><td>2.1</td><td>Testing Laboratory</td><td></td></t<>	2.1	Testing Laboratory	
3. GENERAL INFORMATION OF THE CUSTOMER 6 3.1 APPLICANT 6 3.2 MANUFACTURER 6 4. GENERAL INFORMATION OF THE PRODUCT. 7 4.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 7 4.2 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST. 7 4.3 ADDITIONAL INFORMATION 8 5 TEST CONFIGURATION INFORMATION 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.2 TEST EQUIPMENTS UTILIZED 9 5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 GDB & 26DB OCCUPIED BANDWIDTH 19 6.5 99% OCCUPIED BANDWIDTH 21 6.6 FREQUENCY STABILITY 23 6.7 TRANSMITER SPURIOUS EMISSION 24 6.8 BAND EDGES COMPLIANCE (RADIATED) 22 6.9 AC POWERLINE CONDUCTED EMISSION 47 ANNEX A: REVISED HISTORY 50	2.2		
3.1 APPLICANT 6 3.2 MANUFACTURER 6 4. GENERAL INFORMATION OF THE PRODUCT 7 4.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 7 4.2 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST 7 4.3 ADDITIONAL INFORMATION 8 5 TEST CONFIGURATION INFORMATION 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS. 9 5.2 TEST EQUIPMENTS UTILIZED. 9 5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.2 MAXIMUM AVERAGE OUTPUT POWER 15 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 60B & 260B OCCUPIED BANDWIDTH 19 9.5 99 OCCUPIED BANDWIDTH 21 6.6 FREQUENCY STABILITY 23 6.7 TRANSMITTER SPURIOUS EMISSION 24 6.8 BAND EDGES COMPLIANCE (RADIATED) 42 6.9 AC POWERLINE CONDUCTED EMISSION 47 ANNEX A: REVISED HISTORY 50 <	2.3	Project Information	5
3.2 MANUFACTURER 6 4. GENERAL INFORMATION OF THE PRODUCT	3. GI	ENERAL INFORMATION OF THE CUSTOMER	6
4. GENERAL INFORMATION OF THE PRODUCT	3.1	Applicant	6
4.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT) 7 4.2 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST. 7 4.3 ADDITIONAL INFORMATION 8 5 TEST CONFIGURATION INFORMATION 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS. 9 5.2 TEST EQUIPMENTS UTILIZED 9 5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE. 13 6.2 MAXIMUM AVERAGE OUTPUT POWER 15 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 GDB & 26DB OCCUPIED BANDWIDTH 19 6.5 9% OCCUPIED BANDWIDTH 21 6.6 FREQUENCY STABILITY 23 6.7 TRANSMITTER SPURIOUS EMISSION 24 6.8 BAND EDGES COMPLIANCE (RADIATED) 42 6.9 AC POWERLINE CONDUCTED EMISSION 47 ANNEX A: REVISED HISTORY 50	3.2		
4.2 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST. 7 4.3 ADDITIONAL INFORMATION 8 5 TEST CONFIGURATION INFORMATION 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.2 TEST EQUIPMENTS UTILIZED 9 5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.2 MAXIMUM AVERAGE OUTPUT POWER 15 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 6DB & 26DB OCCUPIED BANDWIDTH 19 6.5 99% OCCUPIED BANDWIDTH 21 6.6 FREQUENCY STABILITY 23 6.7 TRANSMITTER SPURIOUS EMISSION 24 6.8 BAND EDGES COMPLIANCE (RADIATED) 42 6.9 AC POWERLINE CONDUCTED EMISSION 47 ANNEX A: REVISED HISTORY 50	4. GI	ENERAL INFORMATION OF THE PRODUCT	7
4.2 INTERNAL IDENTIFICATION OF AE USED DURING THE TEST. 7 4.3 ADDITIONAL INFORMATION 8 5 TEST CONFIGURATION INFORMATION 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.2 TEST EQUIPMENTS UTILIZED 9 5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.2 MAXIMUM AVERAGE OUTPUT POWER 15 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 6DB & 26DB OCCUPIED BANDWIDTH 19 6.5 99% OCCUPIED BANDWIDTH 21 6.6 FREQUENCY STABILITY 23 6.7 TRANSMITTER SPURIOUS EMISSION 24 6.8 BAND EDGES COMPLIANCE (RADIATED) 42 6.9 AC POWERLINE CONDUCTED EMISSION 47 ANNEX A: REVISED HISTORY 50	4.1	PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	7
5 TEST CONFIGURATION INFORMATION 9 5.1 LABORATORY ENVIRONMENTAL CONDITIONS. 9 5.2 TEST EQUIPMENTS UTILIZED. 9 5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.2 MAXIMUM AVERAGE OUTPUT POWER 15 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 6DB & 26DB OCCUPIED BANDWIDTH. 19 6.5 99% OCCUPIED BANDWIDTH. 21 6.6 FREQUENCY STABILITY 23 6.7 TRANSMITTER SPURIOUS EMISSION 24 6.8 BAND EDGES COMPLIANCE (RADIATED) 42 6.9 AC POWERLINE CONDUCTED EMISSION 47 ANNEX A: REVISED HISTORY 50	4.2		
5.1 LABORATORY ENVIRONMENTAL CONDITIONS 9 5.2 TEST EQUIPMENTS UTILIZED 9 5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.2 MAXIMUM AVERAGE OUTPUT POWER 15 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 6DB & 26DB OCCUPIED BANDWIDTH 19 6.5 99% OCCUPIED BANDWIDTH 21 6.6 FREQUENCY STABILITY 23 6.7 TRANSMITTER SPURIOUS EMISSION 24 6.8 BAND EDGES COMPLIANCE (RADIATED) 42 6.9 AC POWERLINE CONDUCTED EMISSION 47 ANNEX A: REVISED HISTORY 50	4.3	Additional Information	
5.2 TEST EQUIPMENTS UTILIZED	5 ТЕ	EST CONFIGURATION INFORMATION	9
5.3 MEASUREMENT UNCERTAINTY 11 6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.2 MAXIMUM AVERAGE OUTPUT POWER 15 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 6DB & 26DB OCCUPIED BANDWIDTH 19 6.5 99% OCCUPIED BANDWIDTH 21 6.6 FREQUENCY STABILITY 23 6.7 TRANSMITTER SPURIOUS EMISSION 24 6.8 BAND EDGES COMPLIANCE (RADIATED) 42 6.9 AC POWERLINE CONDUCTED EMISSION 47 ANNEX A: REVISED HISTORY 50	5.1	LABORATORY ENVIRONMENTAL CONDITIONS	9
6 MEASUREMENT RESULTS 13 6.1 DUTY CYCLE 13 6.2 MAXIMUM AVERAGE OUTPUT POWER 15 6.3 PEAK POWER SPECTRAL DENSITY 16 6.4 6DB & 26DB OCCUPIED BANDWIDTH 19 6.5 99% OCCUPIED BANDWIDTH 21 6.6 FREQUENCY STABILITY 23 6.7 TRANSMITTER SPURIOUS EMISSION 24 6.8 BAND EDGES COMPLIANCE (RADIATED) 42 6.9 AC POWERLINE CONDUCTED EMISSION 47 ANNEX A: REVISED HISTORY 50	5.2	Test Equipments Utilized	
6.1DUTY CYCLE136.2MAXIMUM AVERAGE OUTPUT POWER156.3PEAK POWER SPECTRAL DENSITY166.46DB & 26DB OCCUPIED BANDWIDTH196.599% OCCUPIED BANDWIDTH216.6FREQUENCY STABILITY236.7TRANSMITTER SPURIOUS EMISSION246.8BAND EDGES COMPLIANCE (RADIATED)426.9AC POWERLINE CONDUCTED EMISSION47ANNEX A: REVISED HISTORY50	5.3	MEASUREMENT UNCERTAINTY	
6.2MAXIMUM AVERAGE OUTPUT POWER156.3PEAK POWER SPECTRAL DENSITY166.46DB & 26DB OCCUPIED BANDWIDTH196.599% OCCUPIED BANDWIDTH216.6FREQUENCY STABILITY236.7TRANSMITTER SPURIOUS EMISSION246.8BAND EDGES COMPLIANCE (RADIATED)426.9AC POWERLINE CONDUCTED EMISSION47ANNEX A: REVISED HISTORY	6 M	IEASUREMENT RESULTS	
6.2MAXIMUM AVERAGE OUTPUT POWER156.3PEAK POWER SPECTRAL DENSITY166.46DB & 26DB OCCUPIED BANDWIDTH196.599% OCCUPIED BANDWIDTH216.6FREQUENCY STABILITY236.7TRANSMITTER SPURIOUS EMISSION246.8BAND EDGES COMPLIANCE (RADIATED)426.9AC POWERLINE CONDUCTED EMISSION47ANNEX A: REVISED HISTORY	6.1	DUTY CYCLE	
6.46DB & 26DB OCCUPIED BANDWIDTH196.599% OCCUPIED BANDWIDTH216.6FREQUENCY STABILITY236.7TRANSMITTER SPURIOUS EMISSION246.8BAND EDGES COMPLIANCE (RADIATED)426.9AC POWERLINE CONDUCTED EMISSION47ANNEX A: REVISED HISTORY50	6.2	Maximum Average Output Power	
6.599% Occupied Bandwidth	6.3	PEAK POWER SPECTRAL DENSITY	
6.6FREQUENCY STABILITY236.7TRANSMITTER SPURIOUS EMISSION.246.8BAND EDGES COMPLIANCE (RADIATED)426.9AC POWERLINE CONDUCTED EMISSION47ANNEX A: REVISED HISTORY50	6.4	6DB &26DB Occupied Bandwidth	
6.7 TRANSMITTER SPURIOUS EMISSION. 24 6.8 BAND EDGES COMPLIANCE (RADIATED) 42 6.9 AC POWERLINE CONDUCTED EMISSION 47 ANNEX A: REVISED HISTORY 50	6.5	99% Occupied Bandwidth	
6.8 BAND EDGES COMPLIANCE (RADIATED) .42 6.9 AC POWERLINE CONDUCTED EMISSION .47 ANNEX A: REVISED HISTORY .50	6.6	Frequency Stability	
6.9 AC POWERLINE CONDUCTED EMISSION	6.7	TRANSMITTER SPURIOUS EMISSION	
ANNEX A: REVISED HISTORY	6.8	Band Edges Compliance (Radiated)	
	6.9		
	ANNEX	A: REVISED HISTORY	
ANNEX B: ACCREDITATION CERTIFICATE	ANNEX		

Report No: 24T04I300065-048

1. Summary of Test Report

1.1 Test Standard(s)

No.	Test Standard	Title	Version
1	FCC Part15E	Title 47 of the Code of Federal Regulations; Chapter I Part 15 - Radio frequency devices	

1.2 Reference Documents

No.	Test Standard	Title	Version
1	ANSI 63.10	Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	2013
2	KDB 789033 D02 General UNII Test Procedures New Rules v02r01	Guidelines For Compliance Testing Of Unlicensed National Information Infrastructure (U-Nii) Devices (Part 15, Subpart E)	Mar - S
3	KDB 484596 D01 Referencing Test Data v02r03	Test Reductions Via Data Referencing	and h

1.3 Summary of Test Results

	y of rest nesults		
No.	Measurement Items	FCC Rules	Verdict
1	Maximum Output Power	15.407(a)	Pass (Note 3)
2	Power Spectral Density	15.407(a)	Pass (Note 4)
3	6dB Occupied Bandwidth	15.407(e)	Pass (Note 4)
4	99% Occupied Bandwidth	N/A	Pass (Note 4)
5	Band edge compliance	15.407(b)	Pass
6	Transmitter Spurious Emission-Conducted	15.407	Pass (Note 4)
7	Transmitter Spurious Emission - Radiated	15.407,15.205,15.209	Pass
8	AC Powerline Conducted Emission	15.207	Pass
9	Antenna requirement	15.203	Pass (Note 2)

Note 1:

The T6831 manufactured by Shanghai Sunmi Technology Co.,Ltd. is a variant product for testing. This project is a variant project based on the original report 23T04I30131-SRD01-V01. We verified the conduction data and tested radiated spurious emission,AC Powerline Conducted Emission in the original report, and the test radiated spurious emission,AC Powerline Conducted Emission data was recorded in this report.

There are three configurations S10aa (Mainly Supply),S12aa (Secondary Supply) and S16aa (Thirdly supply) in this project. We mainly tested the S10aa(Mainly Supply), the S12aa (Secondary Supply) and

S16aa (Thirdly supply) tested the worst mode of the mainly supply, and recorded the test results of the worst mode respectively in the report.

The description of the differences between S10aa (Mainly Supply),S12aa (Secondary Supply) and S16aa (Thirdly supply) are as follows:

Type of Service	Model Name	Scanner	Rear Camera	Flash Lamp	LCD (Just different manufacturers)
Original	T6F10	Yes	5M AF+flash	Yes	SHENZHEN DJN PHOTOELECTRIC TECHNOLOGY CO., LTD (9A-3R067-7026A)
Variant T6831			NO	SHENZHEN DJN PHOTOELECTRIC TECHNOLOGY CO., LTD (98-31050-7084A) S10aa (Mainly Supply)	
	NO	NO 2M FF		SHENZHEN DJN PHOTOELECTRIC TECHNOLOGY CO., LTD (98-31050-7084A-H) S12aa (Secondary Supply)	
			Y Street	GUANGDONG SUPERVIEW OPTOELECTRONICS CO.,LTD. (G499BHA085A0) S16aa (Thirdly supply)	

Industrial Internet Innovation Center (Shanghai) Co., Ltd. only performed test cases which identified with Pass/Fail/Inc result in section 1.3.

Industrial Internet Innovation Center (Shanghai) Co., Ltd. has verified that the compliance of the tested device specified in section 4 of this test report is successfully evaluated according to the procedure and test methods as defined in type certification requirement listed in section 1 of this test report. Note 2:

Bluetooth used a FPC antenna with max Gain 2.6 dBi that complied with 15.203 Requirements. Note 3:

The test data refer to the original report, and the data in this report is spot check data, The verification datameets the KDB484596 reauirements within 3dB.

Note 4:

The test data refer to the original report, and the data in this report is spot check data.

1.4 Data Provided by Applicant

No.	Item(s)	Data
1	Antenna gain of EUT	2.6 dBi

Note: The data of antenna gain is provided by the Antenna specification may affect the validity of the test results in this report, and the impact and consequences of this shall be undertaken by the customer.

2. General Information of The Laboratory

2.1 Testing Laboratory

Lab Name	Industrial Internet Innovation Center (Shanghai) Co., Ltd.
Address	Building 4, No. 766, Jingang Road, Pudong, Shanghai, China
Telephone	021-68866880
FCC Registration No.	708870
FCC Designation No.	CN1364

2.2 Laboratory Environmental Requirements

Temperature	15℃~35℃
Relative Humidity	25%RH~75%RH
Atmospheric Pressure	86kPa~106kPa

2.3 Project Information

Project Manager	Gao Hongning
Test Date	April 15, 2024 to May 31, 2024

3. General Information of The Customer

3.1 Applicant

Company	Shanghai Sunmi Technology Co.,Ltd.
Address	Room 505, No.388,Song Hu Road, Yang Pu District, Shanghai, China
Telephone	18826519551

3.2 Manufacturer

Company	Shanghai Sunmi Technology Co.,Ltd.
Address	Room 505, No.388,Song Hu Road, Yang Pu District, Shanghai, China
Telephone	18826519551

4. General Information of The Product

Product Name Smart POS System Model name T6831 April 15, 2024 Date of Receipt EUT ID* S03aa/S10aa/S12aa/S16aa S03aa: 860104070000327'860104070005326 S10aa:860104070000897'860104070005896 SN/IMEI S12aa:860104070001424'86010407006423 S16aa:860104070002166'86010407007165 GSM850/GSM900/GSM1800/GSM1900 WCDMA Band I/II/IV/V/VI/VIII/XIX LTE Band 1/2/3/4/5/7/8/18/19/20/26/28/34/38/39/40/41 Supported Radio BT 5.0 BR/EDR/BLE **Technology and Bands** WLAN 802.11b,g,n WLAN 802.11a,n,ac GPS/Galileo/GLONASS/BDS NFC Hardware Version V1.0 Software Version V3.0.4 FCC ID 2AH25T6831 NOTE1: EUT ID is the internal identification code of the laboratory.

4.1 Product Description for Equipment under Test (EUT)

NOTE1: EUT ID is the internal identification code of the laboratory. NOTE2: Samples in the test report are provided by the customer. The test results are only applicable to the samples received by the laboratory.

4.2 Internal Identification of AE used during the test

CAR D			
AE ID*	Description	Model	SN/Remark
CA01	Adapter	TPA- 141A050200UU01	N/A
CDO1	Adapter	UC13US	N/A
UA02	AC Cable	N/A	N/A
BA10	Battery	НРРА	Guangdong Highpower New Energy Technology Co., Ltd.

NOTE1: AE ID is the internal identification code of the laboratory. NOTE2: By verifying that CA01+BA10 is the worst battery and adapter combination, this battery and adapter are used in all tests.

4.3 Additional Information

WLAN Frequency	UNII 3: 5725MHz-5850MHz
Occupied Channel Bandwidth	20 MHz for Wi-Fi (802.11 a/n/ac) 40 MHz for Wi-Fi (802.11 ac)
Bandwidth	80 MHz for Wi-Fi(802.11 ac)
WLAN type of modulation	OFDM

Channel	149	153	157	161	165
Freq. (MHz)	5745	5765	5785	5805	5825
Channel	1	151 159		59	
Freq. (MHz)	57	'55	57	95	
Channel	155			S S	
Freq. (MHz)	in a	57	75	X_{2}	
	Freq. (MHz) Channel Freq. (MHz) Channel	Freq. (MHz)5745Channel1Freq. (MHz)57Channel1	Freq. (MHz) 5745 5765 Channel 151 Freq. (MHz) 5755 Channel 1	Freq. (MHz) 5745 5765 5785 Channel 151 15 15 Freq. (MHz) 5755 57 Channel 151 15 Channel 157 57 Channel 157 57	Freq. (MHz) 5745 5765 5785 5805 Channel 151 159 Freq. (MHz) 5755 5785 5805 Channel 151 159 5785 Channel 5755 5795 5795 Channel 155 5795 5795

Note: "/" Represents empty

Note: This report is for WLAN UNII-3 only.

5 Test Configuration Information

5.1 Laboratory Environmental Conditions

5.1.1 Permanent Facilities

Relative Humidity	Min. = 45 %, Max. = 55 %				
Atmospheric Pressure	101kPa				
	Normal	Minimum	Maximum		
Temperature –	25℃	-10°C	50° ℃		
	Normal	Minimum	Maximum		
Working Voltage of EUT	7.7V	6.0V	8.8V		

5.2 Test Equipments Utilized

5.2.1 Conducted Test System

No.	Name	Model	S/N	SW Version	HW Version	Manuf acturer	Cal. Date	Cal. Interva
1	Test Software	TS1120	10727	V3.2.22	N/A	Tonsce nd	N/A	N/A
2	Automatic control unit	JS0806-2	2218060623	N/A	N/A	Tonsce nd	2024- 03-25	1 Year
3	Wireless communication comprehensive tester	CMW50 0	164865	V3.8.12	N/A	R&S	2023- 07-26	1 Year
4	Spectrum Analy zer	FSQ40	200063	V4.75	N/A	R&S	2023- 10-16	1 Year
5	Analog Signal Generator	SMF	104770	V3.0.13.0- 2.20.530.1 5.4	N/A	R&S	2023- 10-16	1 year
6	Vector Signal Generator	SMCV10 0B	103691	V5.00.122 .24	N/A	R&S	2023- 07-27	1 Year
7	Programmable Power Supply	Keithley 2303	4039070	N/A	N/A	Keithle y	2023- 06-23	1 Year
8	Temperature box	B-TF- 107C	BTF107C- 201804107	N/A	N/A	Воуі	2023- 06-28	1 Year
9	Network test unit AP	GT- AXE1100 0	N2IG0X401 637KWF	V3.0.0.4.3 86_45940	N/A	ASUS	N/A	N/A
10	Vector Signal Generator	SMBV10 0A	257904	V4.15.125 .49	N/A	R&S	2023- 10-16	1 Year

5.2.2 Radiated Emission Test System

No	Name	Model	S/N	SW Version	HW Version	Manufac turer	Cal. Date	Cal. Interva I
1	Universal Radio Communication Tester	CMU200	123126	V5.2.1	B12	R&S	2023- 10-16	1 Year
2	Universal Radio Communication Tester	CMW500	104178	V3.7.20	1206.06 00.00	R&S	2023- 10-16	1 Year
3	EMI Test Receiver	ESU40	100307	V5.1-24- 3	01	R&S	2023- 12-19	1 Year
4	Trilog Antenna	VULB9162	00426	N/A	N/A	Schwarz beck	2023- 07-18	1 year
5	Double Ridged Guide Antenna	ETS-3117	0013588 5	N/A	N/A	ETS	2023- 03-23	2 years
6	EMI Test Software	EMC32 V10.35.02	N/A	N/A	N/A	R&S	N/A	N/A
े7	Horn Antenna	3160-09	LM6321	N/A	N/A	R&S	2023- 07-16	1 Year
8	Horn Antenna	3160-10	LM5942	N/A	N/A	R&S	2023- 07-16	1 Year
9	Loop Antenna	AL-130R	121083	N/A	N/A	COM- POWER	2023- 9-13	1 Year
10	Preamplifier	SCU08F1	8320024	N/A	N/A	R&S	2023- 10-16	1 Year
11	Preamplifier	SCU18	10155	N/A	N/A	R&S	2023- 10-16	1 Year
12	Preamplifier	SCU26	10025	N/A	N/A	R&S	2023- 10-16	1 Year
13	Preamplifier	SCU40	10020	N/A	N/A	R&S	2023- 10-16	1 Year
14	2-Line V-Network	ENV216	101380	N/A	N/A	R&S	2023- 12-19	1 Year
15	EMI Test Software	EMC32 V10.35.02	N/A	N/A	N/A	R&S	N/A	N/A
16	Test Receiver	ESCI	101235	V5.1-24- 3	0	R&S	2023- 12-19	1 Year
17	Antenna Tower	TPMDC-LF	N/A	N/A	N/A	Top Precision	N/A	N/A
18	Antenna Tower	TPMDC- HF	N/A	N/A	N/A	Top Precision	N/A	N/A

Report No: 24T04I300065-048

5.2.3 Test Environment

Shielding Room1 (6.0 meters×3.0 meters×2.7 meters) did not exceed following limits along the conducted RF performance testing:

Temperature	Min. = 15 $^\circ C$, Max. = 35 $^\circ C$
Relative humidity	Min. = 20 %, Max. = 75 %
Shielding effectiveness	> 100 dB
Ground system resistance	< 0.5 Ω
Temperature	Min. = 15 °C, Max. = 35 °C

Control room did not exceed following limits along the EMC testing:

Temperature	Min. = 15 $^{\circ}$ C, Max. = 35 $^{\circ}$ C		
Relative humidity	Min. =30 %, Max. = 60 %		
Shielding effectiveness	> 100 dB		
Electrical insulation	> 10 kΩ		
Ground system resistance	< 0.5 Ω		

Fully-anechoic chamber1 (9.8 meters×6.7 meters×6.7 meters) did not exceed following limits along the EMC testing:

Temperature	Min. = 15 $^\circ C$, Max. = 35 $^\circ C$		
Relative humidity	Min. = 25 %, Max. = 75 %		
Shielding effectiveness	> 100 dB		
Electrical insulation	> 10 kΩ		
Ground system resistance	< 0.5 Ω		
VSWR	Between 0 and 6 dB, from 1GHz to 18GHz		
Site Attenuation Deviation	Between -4 and 4 dB,30MHz to 1GHz		

5.3 Measurement Uncertainty

Measurement Uncertainty of Conduction test

Measurement Items	Range	Confidence Level	Calculated Uncertainty
Emission Bandwidth	5150-5850MHz	95%	±1.9%
Maximum Conduct Output Power	5150-5850MHz	95%	± 1.18 dB
Power Spectral Density	5150-5850MHz	95%	±0.98 dB
Band Edge Measurements	5150-5850MHz	95%	±1.21dB

Unwanted Emissions Measurement	9kHz-40GHz	95%	Report No: 24T04I300065-048 9kHz-7GHz:±1.21dB 7GHz-40GHz: ±3.31dB
Frequency Stability	5150-5850MHz	95%	±1.9%

Measurement Uncertainty of Radiation test

Measurement Items	Uncertainty(dB)		
Radiated Emission 30MHz-1000MHz	±5.10		
Radiated Emission 1000MHz-18000MHz	±5.66		
Radiated Emission 18000MHz-40000MHz	±5.22		
AC Powerline Conducted Emission	±4.38		

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

6 Measurement Results

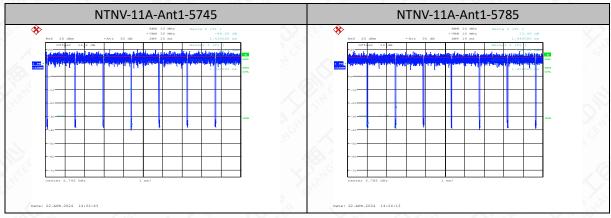
6.1 Duty cycle

6.2.1 Measurement Limit and Method

Standard	Limit (dBm)
FCC CRF Part 15.407(a)	N/A

6.2.2 Test Procedure

The measurement method is made according to KDB 789033 B


Measurements of duty cycle and transmission duration shall be performed using one of thefollowing techniques:

- a) A diode detector and an oscilloscope that together have sufficiently short response time topermit accurate measurements of the on and off times of the transmitted signal.
- b) The zero-span mode on a spectrum analyzer or EMI receiver, if the response time andspacing between bins on the sweep are sufficient to permit accurate measurements of the onand off times of the transmitted signal. Set the center frequency of the instrument to thecenter frequency of the transmission, Set RBW> EBW if possible: otherwise. set RBW tothe largest available value. Set VBW > RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T. where 7is defined in II.B.1.a), and the number of sweep points across duration Texceeds 100. (Forexample. if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuringduty cycle shall not be used if 7 < 16.7 microseconds.)</p>

TestMode	Antenna	Frequency[MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
11A	Ant1	5745	1.39	1.43	97.20
11A	Ant1	5785	1.40	1.44	97.22
11A	Ant1	5825	1.39	1.44	96.53

6.2.3 Measurement Results

Test Graphs

Report No: 24T04I300065-048

6.2 Maximum Average Output Power

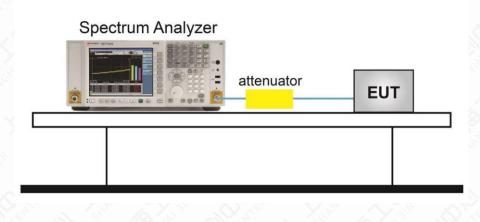
6.2.1 Measurement Limit and Method

Standard	Limit (dBm)
FCC CRF Part 15.407(a)	< 30

6.2.2 Test Procedure

The measurement method SA-2 is made according to KDB 789033 E

Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).


- 1. Measure the duty cycle, x, of the transmitter output signal as described in II.B.
- 2. Set span to encompass the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- 3. Set RBW = 1 MHz. (iv) Set VBW \geq 3 MHz.
- 4. Number of points in sweep $\ge 2 \times \text{span} / \text{RBW}$. (This ensures that bin-to-bin spacing is $\le \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- 5. Sweep time = auto.
- 6. Detector = power averaging (rms), if available. Otherwise, use sample detector mode.
- 7. Do not use sweep triggering. Allow the sweep to "free run."

8. Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed to ensure that the average accurately represents the true average over the on and off periods of the transmitter.

9. Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal.

10. Add 10 log (1/x), where x is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add 10 log (1/0.25) = 6 dB if the duty cycle is 25%

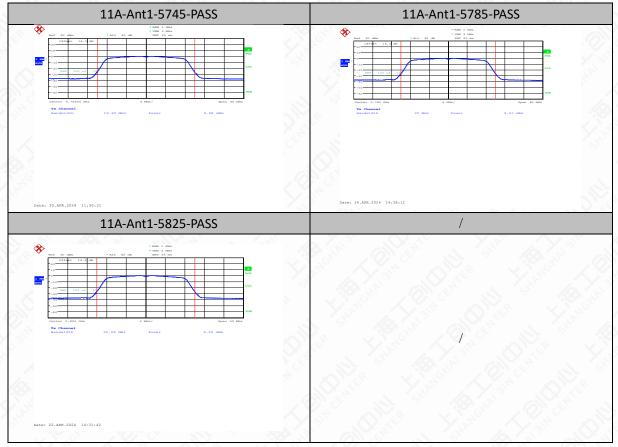
6.2.3 Test setup

Report No: 24T04I300065-048

6.2.4 Measurement Results

Test Mode	Frequency [MHz]	Set Power	Duty Cycle [%]	DC Factor [dBm]	Original Power [dBm]	Validation Power [dBm]	d _{dB} ^{Note5}	Limit [dBm]	Gain [dBi]	EIRP [dBm]
11A	5745	15.5	97.20	0.12	9.63	9.98	-0.35	≤30.00	2.60	12.58
11A	5785	15.5	97.22	0.12	9.08	9.91	-0.83	≤30.00	2.60	12.51
11A	5825	15.5	96.53	0.15	9.07	9.94	-0.87	≤30.00	2.60	12.54

Note 1: The Duty Cycle Factor is compensated in the graph.


Note 2: In the graph, the Center frequency = (Low frequency of 26dB OBW + High frequency of 26dB OBW) /2.

Note 3:The 11a data rate 6Mbps is selected as worse condition.

Note4:The verified power is still in the tune-up power range and meets the requirements of KDB484596 D01 data reference. The power listed in the original certificate still applies to this case.

Note5: d_{dB} =|Verified_{dB}-original_{dB}|

Test Graphs channel power

6.3 Peak Power Spectral Density

6.2.1 Measurement Limit

Standard	Limit			

Report No: 24T04I300065-048

FCC 47	CFR	Part	15	407	a	١
	CLIV	i ait	тэ.	-0/1	u,	,

< 30 dBm/500 kHz

6.2.2 Test Procedure

The measurement method is made according to KDB 789033 F

1. Create an average power spectrum for the EUT operating mode being tested by following the instructions in II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (SA-1, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...." (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)

2. Use the peak search function on the instrument to find the peak of the spectrum and record its value.

3. Make the following adjustments to the peak value of the spectrum, if applicable:

a) If Method SA-2 or SA-2 Alternative was used, add 10 log (1/x), where x is the duty cycle, to the peak of the spectrum.

b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

4. The result is the Maximum PSD over 1 MHz reference bandwidth.

5. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in Section 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:

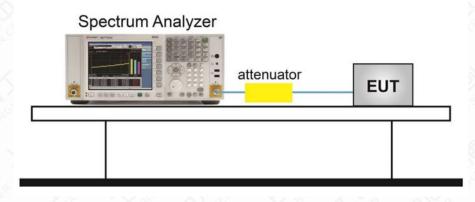
a) Set RBW $\geq 1/T$, where T is defined in II.B.I.a).

b) Set VBW \geq 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10 log (500 kHz/RBW) to the measured result, whereas RBW (<500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10 log (1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

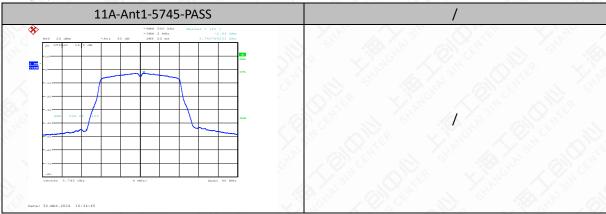
e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.


Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for steps 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

6.2.3 Test setup

<u>CAICT</u>中国信通院

Report No: 24T04I300065-048


6.2.4 Measurement Results

	TestMode	Antenna	Frequency[MHz]	Result [dBm/MHz]	Limit[dBm/MHz]	Verdict
2°	11A	Ant1	5745	-2.93	≤30.00	PASS

Note: 1.The Result and Limit Unit is dBm/500 kHz in the band 5.725–5.85 GHz.

2. The Duty Cycle Factor is compensated in the graph.

Test graphs as below:

CAICT 中国信通院 Report No: 24T04I300065-048

6.4 6dB & 26dB Occupied Bandwidth

6.4.1 Measurement Limt

Standard	Limit(KHz)
FCC 47 CFR Part 15.407(e)	≥500

6.4.2 Test Procedure

The measurement is made according to KDB 789033 C

Section 15.407(e) specifies the minimum 6 dBemission bandwidth of at least 500 kHz for the band5.725-5.85GHz. The following procedure shall be used for measuring this bandwidth:

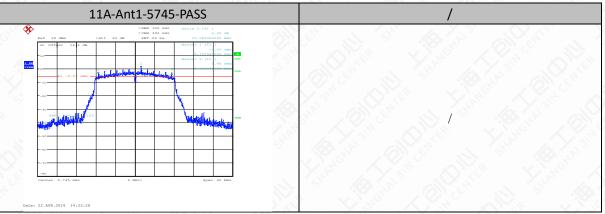
- a) Set RBW= 100 kHz.
- b) Set the video bandwidth (VBW)≥3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by6 dB and 26dB relative to the maximum level measured in the fundamental emission.

6.4.3 Test Setup

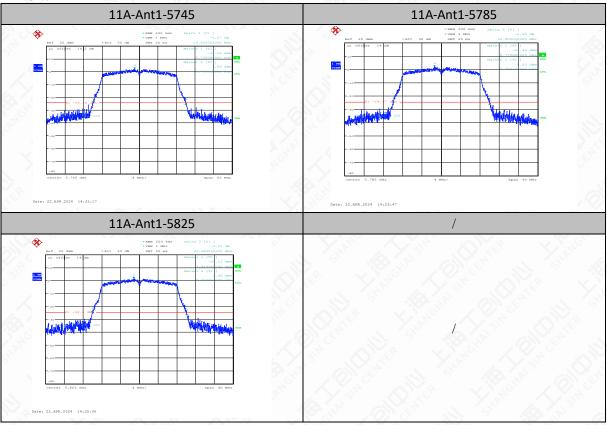
Spectrum Analyzer

6.4.4 Measurement Result


6dB Occupied Bandwidth Measurement Results

>	TestMode	Antenna	Frequency[MHz]	6db EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	11A	Ant1	5745	15.08	5737.44	5752.52	0.5	PASS

Report No: 24T04I300065-048


Test graphs as below:

26dB Occupied Bandwidth Measurement Results

TestMode	Antenna	Frequency[MHz]	26db EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
11A	Ant1	5745	19.92	5735.08	5755.00	<u></u>	<u>.</u>
11A	Ant1	5785	20.00	5775.00	5795.00	8 d	<u> </u>
11A	Ant1	5825	20.08	5814.96	5835.04	S To Y	·

Test graphs as below:

CAICT 中国信通院 Report No: 24T04I300065-048

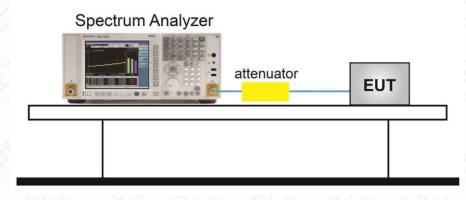
6.5 99% Occupied Bandwidth

6.5.1 Measurement Limit

Standard	Limit(KHz)				
FCC 47 Part 15.247(e)	N/A				

6.5.2 The measurement is made according to KDB 789033

The measurement method is made according to KDB 789033 D

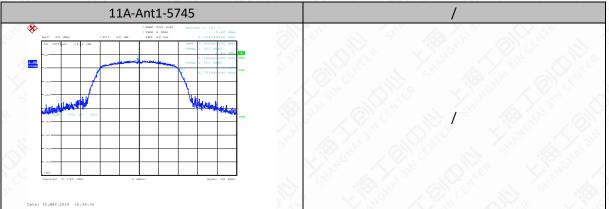

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW $\geq 3 \cdot RBW$

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

6. Use the 99 % power bandwidth function of the instrument (if available).

7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

6.5.3 Test Setup


6.5.4 Measurement Result

TestMode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
11A	Ant1	5745	17.32	5736.3200	5753.6400		

Report No: 24T04I300065-048

Test graphs as below

6.6 Frequency Stability

Manufacturers ensured the EUT meet the requirement of frequency stability, such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.(According to15.407(g) and RSS-Gen 8.11)

6.7 Transmitter Spurious Emission

6.7.1 Measurement Limit

Below 1G:

Frequency of emission (MHz)	Field strength(dBµV/m)	Measurement distance(m) 3	
0.009-0.490	129-94		
0.490-1.705	74-63	3	
1.705-30	70	3	
30-88	40.0		
88-216	43.5	3	
216-960	46.0	3	
Above 960	54.0	3	

Note: for frequency range below 960MHz, the limit in 15.209 is defined in 10m test distance. The limit used above is calculated from 10m to 3m

Above 1G, non-restricted band:

Standard	Limit		
15.407(b)	EIRP <-27dBm/MHz		

Above 1G, Restricted band:

Standard	Limit EIRP <-27dBm/MHz		
15.407(b)			
15.209	Peak	74dBμV/m	
	Average	54dBμV/m	

 $EIRP[dBm] = E[dB\mu V/m] + 20 \log (d[m]) - 104.7$ $E[dB\mu V/m] = EIRP[dBm] - 20 \log (d[m]) + 104.7$

 $E[dB\mu V/m] = EIRP[dBm] + 95.2 = 68.2$, for d = 3m

6.7.2 Test procedures

The measurement is made according to KDB 789033

Set the spectrum analyzer in the following:

Procedure for Unwanted Emissions Measurements below 1000 MHz:

- a) Follow the requirements in II.G.3. "General Requirements for Unwanted Emissions Measurements."
- b) Compliance shall be demonstrated using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.

Detector: Peak and Quasi-Peak

RBW=100kHz / VBW=300kHz / Sweep=AUTO

Procedure for Unwanted Maximum Emissions Measurements above 1000 MHz:

- a) Follow the requirements in II.G.3, "General Requirements for Unwanted Emissions Measurements."
- b) Maximum emission levels are measured by setting the analyzer as follows:

- (i) RBW = 1 MHz.
- (ii) VBW ≥ 3 MHz.
- (iii) Detector = Peak.
- (iv) Sweep time = auto.
- (v) Trace mode = max hold.

(vi) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, the time required for the trace to stabilize will increase by a factor of approximately 1/x, where x is the duty cycle. For example, at 50% duty cycle, the measurement time will increase by a factor of two relative to measurement time for continuous transmission.

Procedures for Average Unwanted Emissions Measurements above 1000 MHz:

a) Follow the requirements in section II.G.3., "General Requirements for Unwanted Emissions Measurements."

- b) Average emission levels shall be measured using one of the following two methods.
- c) Method AD (Average Detection): Primary method
- (i) RBW = 1 MHz.
- (ii) VBW ≥ 3 MHz.

(iii) Detector = power averaging (rms), if span/(# of points in sweep) \leq RBW/2. Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, the detector mode shall be set to peak.

(iv) Averaging type = power averaging (rms)

As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.

(v) Sweep time = auto.

(vi) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, the number of traces shall be increased by a factor of 1/x, where x is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—rather than turning on and off with the transmit cycle, at least 100 traces shall be averaged.)

(vii) If tests are performed with the EUT transmitting at a duty cycle less than 98%, a correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

If power averaging (rms) mode was used in step (iv) above, the correction factor is 10 log (1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB must be added to the measured emission levels.

If linear voltage averaging mode was used in step (iv) above, the correction factor is 20 log (1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB must be added to the measured emission levels.

If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning on and off with the transmit cycle, no duty cycle correction is required for that emission.

Portable, small, lightweight, or modular devices that may be handheld, worn on the body, or placed on a table during operation shall be positioned on a non-conducting platform, the top of which is 80 cm above

Report No: 24T04I300065-048

the reference ground plane. The preferred area occupied by the EUT arrangement is 1 m by 1.5 m, For emissions testing at or below 1 GHz, the table height shall be 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m. but it may be larger or smaller to accommodate various sized EUTs. For testing purposes, ceiling- and wall-mounted devices also shall be positioned on a tabletop (see also ANSI C63.10-2013 section 6.3.4 and 6.3.5). In making any tests involving handheld, body-worn, or ceiling-mounted equipment, it is essential to recognize that the measured levels may be dependent on the orientation (attitude) of the three orthogonal axes of the EUT. Thus, exploratory tests as specified in 8.3.1 shall be carried out for various axes orientations to determine the attitude having maximum or near-maximum emission level.

The EUT was placed on a non-conductive table. Below 18GHz , the measurement antenna was placed at a distance of 3 meters from the EUT. Above 18GHz , the measurement antenna was placed at a distance of 1 meter from the EUT. During the tests, the antenna height varied from 1m to 4m and the EUT azimuth were varied from 0° to 360° in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations. Remark:

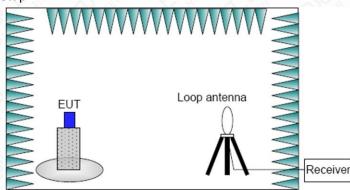
1. Factor= Antenna Factor + Cable Loss (-Amplifier, is employed)

2. Measured level= Original Receiver Reading + Factor

3. Margin = Limit – Measured level

4. If the PK measured level is lower than AV limit, the AV test can be elided Note:

1. The out-of- limit signal in the picture is the main frequency signal.

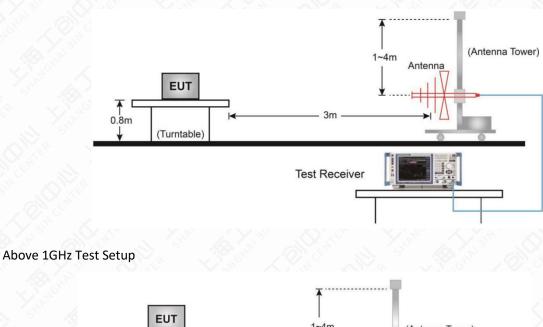

2. Only data in worst mode is provided.

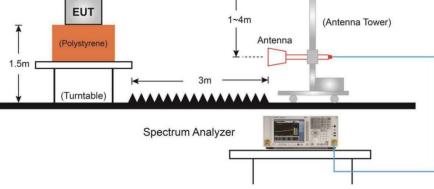
3. The test data below 30MHz is more than 20dB lower than the limit value, so it is not provided in the report.

4. Horizontal and vertical polarity is all have been tested, the result of them is synthesized in the above data diagram.

6.7.3 Test Setup

Below 30MHz Test Setup



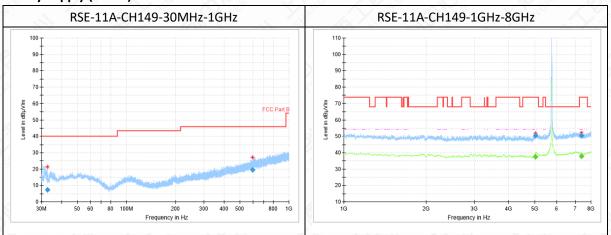

Industrial Internet Innovation Center (Shanghai) Co., Ltd.

Report No: 24T04I300065-048

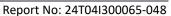
Below 1GHz Test Setup

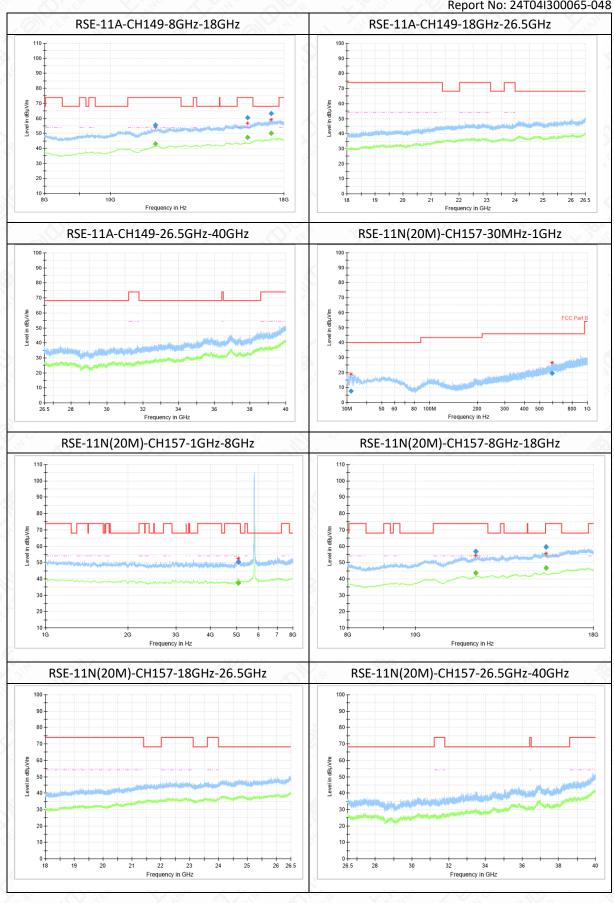
6.7.4 Measurement Results

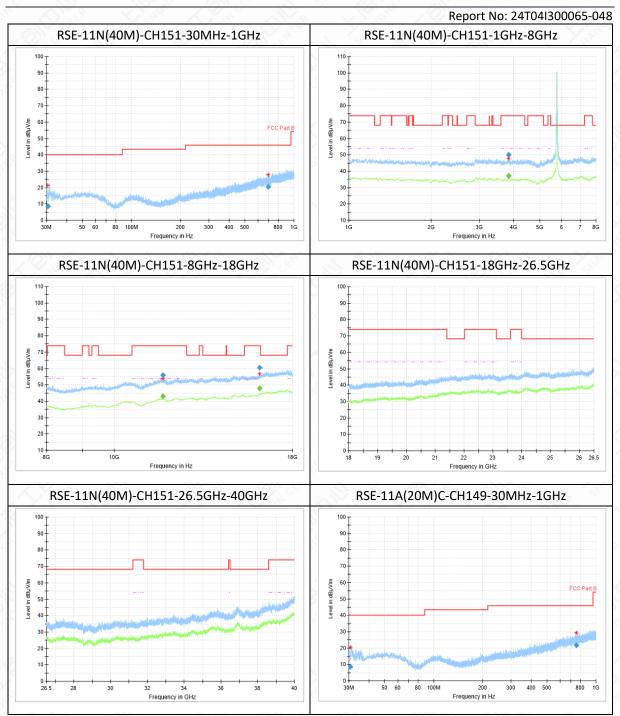
Mode	Channel	Frequency Range	Conclusion
11A		30 MHz ~1 GHz	Р
	149(5745MHz)	1 GHz ~ 8 GHz	Р
		8 GHz ~ 18 GHz	Р
		18 GHz ~ 26.5 GHz	Р
AN LONG	A CARLEN AND CHARLEN	26.5 GHz~ 40 GHz	Р
11N20 SISO	157(5785MHz)	30 MHz ~1 GHz	Р
		1 GHz ~ 8 GHz	Р
		8 GHz ~ 18 GHz	Р
		18 GHz ~ 26.5 GHz	Р
		26.5 GHz~ 40 GHz	Р
11N40 SISO	159(5795MHz)	30 MHz ~1 GHz	Р

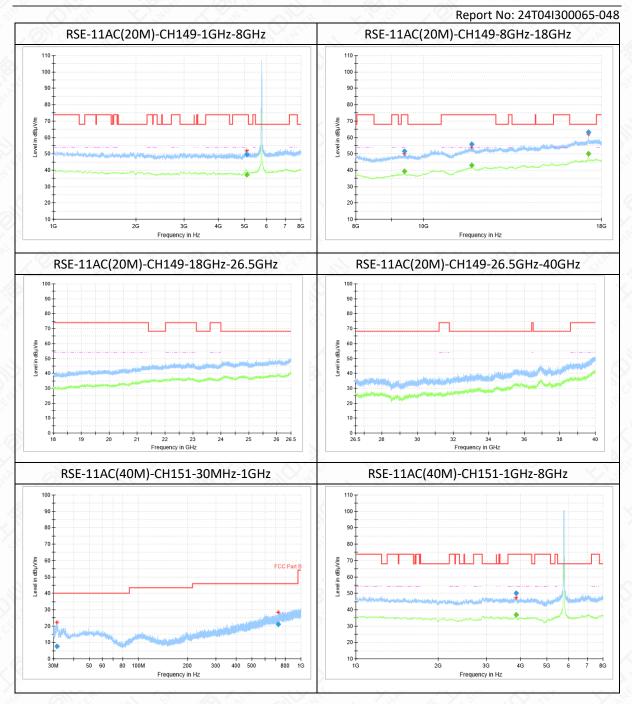


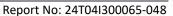
Report No: 24T04I300065		
GHz ~ 8 GHz	Р	

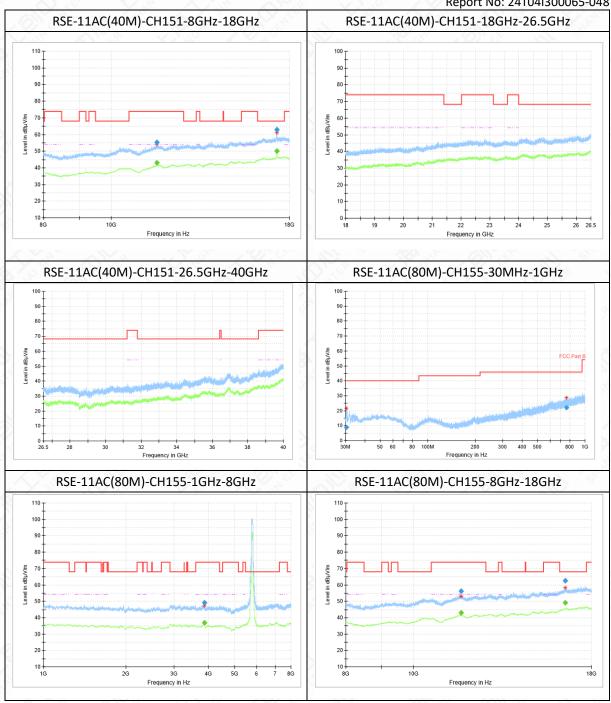

		1 GHz ~ 8 GHz	Р
M Charles		8 GHz ~ 18 GHz	Р
A ST A		18 GHz ~ 26.5 GHz	Р
		26.5 GHz~ 40 GHz	Р
N North K		30 MHz ~1 GHz	Р
		1 GHz ~ 8 GHz	Р
11AC20 SISO	165(5825MHz)	8 GHz ~ 18 GHz	Р
		18 GHz ~ 26.5 GHz	Р
		26.5 GHz~ 40 GHz	Р
	151(5755MHz)	30 MHz ~1 GHz	Р
A LON AND		1 GHz ~ 8 GHz	Р
11AC40 SISO		8 GHz ~ 18 GHz	Р
Y March		18 GHz ~ 26.5 GHz	Р
		26.5 GHz~ 40 GHz	Р
11AC80 SISO	155(5775MHz)	30 MHz ~1 GHz	Р
		1 GHz ~ 8 GHz	P
		8 GHz ~ 18 GHz	Р
		18 GHz ~ 26.5 GHz	Р
		26.5 GHz~ 40 GHz	Р

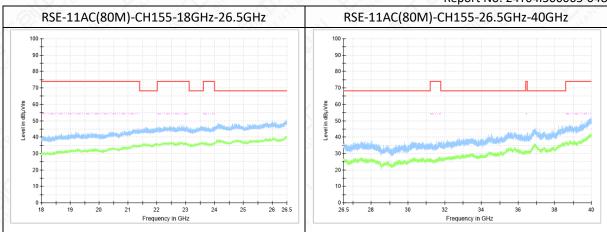

Test graphs as below

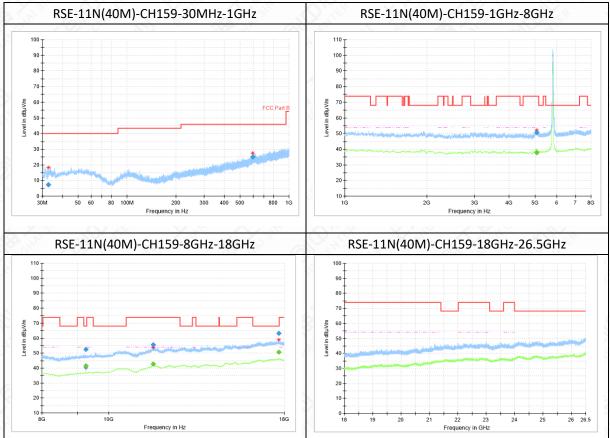


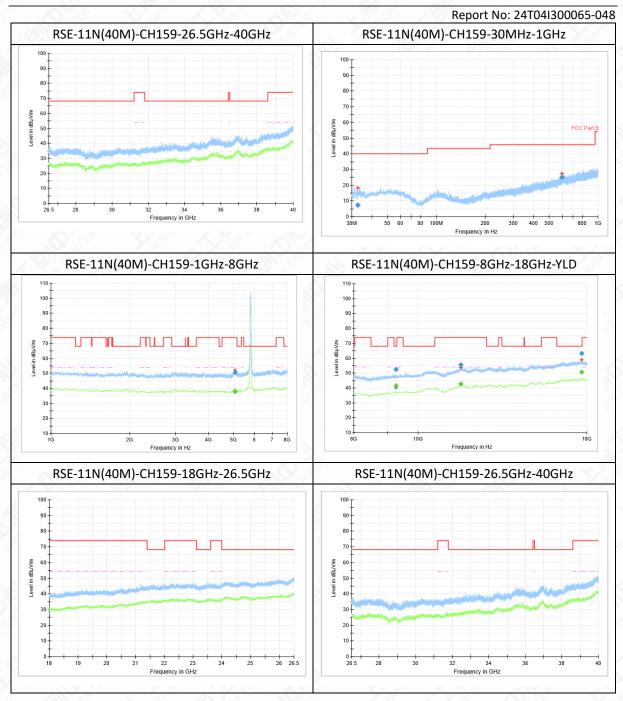




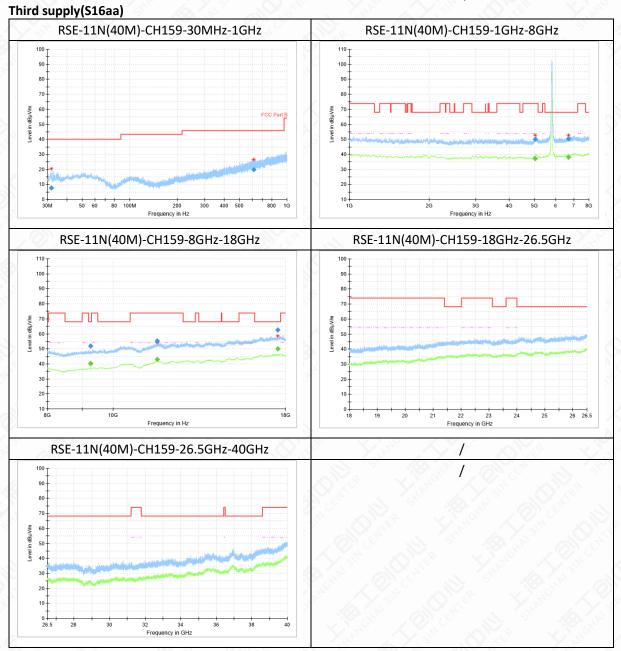







Report No: 24T04I300065-048

Secondary supply (S12aa)



Report No: 24T04I300065-048

Note:

1. The out-of- limit signal in the picture is the main frequency signal.

2. Only data in worst mode is provided.

3. The test data below 30MHz is more than 20dB lower than the limit value, so it is not provided in the report.

Report No: 24T04I300065-048

Mainly Supply (S10aa)

RSE-11A-CH149-30MHz-1GHz

Frequency (MHz)	QuasiPeak(dBµV/m)	ARpl (dB)	PMea (dBμV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
32.6	7.35	-16	23.35	32.65	40.00	Н
595.5	19.52	-3	22.52	26.48	46.00	Н
RSE-11A-CH1	49-1GHz-8GHz	Stores Stores	No In	De 18	Star Y Star	
Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
5009.4	50.23	5	45.23	23.77	74.00	н
7368.2	50.33	4	46.33	23.67	74.00	, N H
RSE-11A-CH1	49-1GHz-8GHz	Sec. Child	O E	D. S.		J .
Frequency (MHz)	Average(dBμV/m)	ARpl (dB)	PMea (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
5009.4	37.41	5	32.41	16.59	54.00	н
7368.2	37.8	4	33.8	16.20	54.00	Н
RSE-11A-CH1	49-8GHz-18GHz		Y.		N.S.	N. S. S.
Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
11642.2	55.66	10	45.66	18.34	74.00	v
15905.0	60.4	15	45.4	13.60	74.00	Н
17244.2	63.11	18	45.11	5.09	68.20	v
RSE-11A-CH1	49-8GHz-18GHz	ALS AN	10 3	all all	Y 18th	Y 3N
Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
11642.2	43.04	10	33.04	10.96	54.00	V
15905.0	47.37	15	32.37	6.64	54.00	, Н
17244.2	50.13	18	32.13	<u> </u>	and	v
RSE-11N(20M	1)-CH157-30MHz-1GHz	1. 6.	6	IL SH	10 5	O'T.
Frequency (MHz)	QuasiPeak(dBµV/m)	ARpl (dB)	PMea (dBμV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
31.7	7.62	-16	23.62	32.38	40.00	Н
594.9	19.5	-3	22.5	26.50	46.00	Н

RSE-11N(20M)-CH157-1GHz-8GHz

Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
5048.2	50.39	5	45.39	23.61	74.00	Н
RSE-11N(20N	I)-CH157-1GHz-8GHz	V.S.		No.		Q S
Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
5048.2	37.67	5	32.67	16.33	54.00	ЮН
RSE-11N(20N	l)-CH157-8GHz-18GHz	ON E	IN SHE	100 5		Y IN I
Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
12194.5	56.81	11	45.81	17.19	74.00	Н
15380.2	59.45	14	45.45	14.55	74.00	H
RSE-11N(20N	l)-CH157-8GHz-18GHz		19.			05
Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
12194.5	43.76	11	32.76	10.24	54.00	н
15380.2	46.62	14	32.62	7.38	54.00	н
RSE-11N(40N	I)-CH151-30MHz-1GH	z	S ^{ra}	Y.r. A		
Frequency (MHz)	QuasiPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
30.7	8.49	-15	23.49	31.51	40.00	́н,
	20.40	-2	22.48	25.52	46.00	H
694.2	20.48					
	20.48 I)-CH151-1GHz-8GHz				N 8 10	N. H.
		ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
RSE-11N(40N Frequency	I)-CH151-1GHz-8GHz		9	Margin(dB) 23.99	Limit(dBµV/m) 74.00	Polarity H
RSE-11N(40M Frequency (MHz) 3834.0	l)-CH151-1GHz-8GHz MaxPeak(dBµV/m)	ARpl (dB)	(dBµV/m)			
RSE-11N(40M Frequency (MHz) 3834.0	I)-CH151-1GHz-8GHz MaxPeak(dBµV/m) 50.01	ARpl (dB)	(dBµV/m)			H
RSE-11N(40M Frequency (MHz) 3834.0 RSE-11N(40M Frequency	I)-CH151-1GHz-8GHz MaxPeak(dBµV/m) 50.01 I)-CH151-1GHz-8GHz	ARpl (dB)	(dBµV/m) 48.01 РМеа	23.99	74.00	
RSE-11N(40M Frequency (MHz) 3834.0 RSE-11N(40M Frequency (MHz) 3834.0	I)-CH151-1GHz-8GHz MaxPeak(dBµV/m) 50.01 I)-CH151-1GHz-8GHz Average(dBµV/m)	ARpl (dB) 2 ARpl (dB) 2	(dBµV/m) 48.01 РМеа (dBµV/m)	23.99 Margin(dB)	74.00 Limit(dBµV/m)	H Polarity
RSE-11N(40M Frequency (MHz) 3834.0 RSE-11N(40M Frequency (MHz) 3834.0	I)-CH151-1GHz-8GHz MaxPeak(dBµV/m) 50.01 I)-CH151-1GHz-8GHz Average(dBµV/m) 37.28	ARpl (dB) 2 ARpl (dB) 2	(dBµV/m) 48.01 РМеа (dBµV/m)	23.99 Margin(dB)	74.00 Limit(dBµV/m)	H Polarity H
RSE-11N(40M Frequency (MHz) 3834.0 RSE-11N(40M Frequency (MHz) 3834.0 RSE-11N(40M Frequency	I)-CH151-1GHz-8GHz MaxPeak(dBµV/m) 50.01 I)-CH151-1GHz-8GHz Average(dBµV/m) 37.28 I)-CH151-8GHz-18GHz	ARpl (dB) 2 ARpl (dB) 2	(dBμV/m) 48.01 PMea (dBμV/m) 35.28 PMea	23.99 Margin(dB) 16.72	74.00 Limit(dBµV/m) 54.00	H Polarity

RSE-11N(40M)-CH151-8GHz-18GHz

Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
11741.8	43.03	10	33.03	10.97	54.00	V
16136.8	47.79	15	32.79	6.21	54.00	v
SE-11AC(20	M)-CH149-30MHz-1GI	Hz		O E		N .6
Frequency (MHz)	QuasiPeak(dBµV/m)	ARpl (dB)	PMea (dBμV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
30.7	8.45	-15	23.45	31.55	40.00	н
754.1	21.84	0	21.84	24.16	46.00	Н
SE-11AC(201	N)-CH149-1GHz-8GHz	1.7.5		Y N		N.s.
Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
5080.6	49.51	4	45.51	24.49	74.00	Н
SE-11AC(20	M)-CH149-1GHz-8GHz	N		O.S.	S S A	X G
Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
5080.6	37.29	4	33.29	16.71	54.00	Ϋ́́Η
SE-11AC(20	M)-CH149-8GHz-18GH	łz		X.r A	13 . 0.8	
Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
9390.8	51.54	6	45.54	22.46	74.00	́ н
11730.8	55.72	10	45.72	18.28	74.00	н
17226.5	63.24	18	45.24	4.96	68.20	н
SE-11AC(20	M)-CH149-8GHz-18GH	łz	5 43	AN AN	A Star A Star	Jo.
Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
9390.8	39.37	6	33.37	14.63	54.00	е н
11730.8	43.06	10	33.06	10.94	54.00	, H
17226.5	50.2	18	32.2	<u> </u>		Н
SE-11AC(40	M)-CH151-30MHz-1GI	Hz	Ser 10	E B	S. O.	6
Frequency (MHz)	QuasiPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
31.6	7.76	-16	23.76	32.24	40.00	н

RSE-11AC(40M)-CH151-1GHz-8GHz

RSE-11AC(40	M)-CH151-1GHz-8GHz					
Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
3852.4	49.91	2	47.91	24.09	74.00	Н
RSE-11AC(40	M)-CH151-1GHz-8GHz	· V.re		No.		Q S
Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	PMea (dBμV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
3852.4	37.03	2	35.03	16.97	54.00	ЮН
RSE-11AC(40	M)-CH151-8GHz-18GH	lz	IL SHE	100 × 2		Y ST /
Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
11635.0	55.29	10	45.29	18.71	74.00	v
17255.2	62.83	18	44.83	5.37	68.20	Н
RSE-11AC(40	M)-CH151-8GHz-18GH	lz	S LON			ON S
Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
11635.0	42.96	10	32.96	11.04	54.00	V
17255.2	50.03	18	32.03	10-5	all at a	н
RSE-11AC(80	M)-CH155-30MHz-1GI	Hz	SZC .	Y. S	1 3 . D . D	t v
Frequency (MHz)	QuasiPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
30.4	8.89	-15	23.89	31.11	40.00	H
762.1	22.02	0	22.02	23.98	46.00	Л
RSE-11AC(80	M)-CH155-1GHz-8GHz			0.5	N. 8 18	A.
Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
3862.0	49.14	2	47.14	24.86	74.00	Н
RSE-11AC(80	M)-CH155-1GHz-8GHz	$\sum_{i=1}^{2^{n}}$		Y AND	Y3N AV	8 ×
Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
	A ANA	2	34.8	17.20	54.00	Н
3862.0	36.8	2			S INC.	- AV
	36.8 M)-CH155-8GHz-18GH	A				
		A	PMea (dBμV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
RSE-11AC(80) Frequency	 M)-CH155-8GHz-18GH	łz		Margin(dB) 17.74	Limit(dBµV/m) 74.00	Polarity H

RSE-11AC(80M)-CH155-8GHz-18GHz

	M)-CH155-8GHz-18GH	Iz	N A	N ION	3	X.r
Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	PMea (dBμV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
11705.8	42.96	10	32.96	11.04	54.00	Н
16514.2	49.04	17	32.04		A BOAR	v
	ipply(S12aa) 1)-CH159-30MHz-1GH	z		Can Ce D		
Frequency (MHz)	QuasiPeak(dBµV/m)	ARpl (dB)	PMea (dBμV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
32.6	7.33	-16	23.33	32.67	40.00	н
598.5	25.2	-2	27.2	20.80	46.00	, Ng H
RSE-11N(40N	1)-CH159-1GHz-8GHz		O E	D. S.		1 L
Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
5048.6	50.6	5	45.6	23.40	74.00	v
RSE-11N(40N	1)-CH159-1GHz-8GHz	XXX T	YN	X 35 . Q		
Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
5048.6	37.72	5	32.72	16.28	54.00	v
RSE-11N(40N	1)-CH159-8GHz-18GHz	S LO			8 10 5	3
Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
9271.8	52.43	5	47.43	15.77	68.20	V
11606.0	55.42	10	45.42	18.58	74.00	н
17673.0	63.24	18	45.24	4.96	68.20	н
RSE-11N(40N	1)-CH159-8GHz-18GHz				No.	J. S. St
Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	PMea (dBμV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
9271.8	41.62	5	36.62		SHAN E	V
11606.0	42.86	10	32.86	11.14	54.00	Н
17673.0	50.54	18	32.54		STR BY	н
Thirdly suppl		The St			Y HANGE	Y 3th
RSE-11N(40N Frequency	1)-CH159-30MHz-1GH QuasiPeak(dBµV/m)		РМеа	Margin(dB)	Limit(dBµV/m)	Polarity

Frequency (MHz)	QuasiPeak(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
31.7	7.55	-16	23.55	32.45	40.00	Н

	Y Sr X		Ve v		Report No: 24T0	41300065-0
612.6	20	-2	22	26.00	46.00	н
RSE-11N(40M	1)-CH159-1GHz-8GHz	In YS		Y.M.	13.0	Y.S.
Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
5005.0	49.93	4	45.93	24.07	74.00	н
6697.5	50.48	4	46.48	17.72	68.20	н
SE-11N(40M	1)-CH159-1GHz-8GHz	S.		N. ON	A SH	100 5
Frequency (MHz)	Average(dBμV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
5005.0	37.35	4	33.35	16.65	54.00	н
6697.5	38.12	4	34.12	<u> </u>	1-1-1- S	н
SE-11N(40N	1)-CH159-8GHz-18GHz	z		No x		and and a
Frequency (MHz)	MaxPeak(dBµV/m)	ARpl (dB)	PMea (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
9271.8	51.97	5	46.97	16.23	68.20	v
11628.0	55.34	10	45.34	18.66	74.00	Н
17537.5	62.7	18	44.7	5.50	68.20	v
SE-11N(40M	1)-CH159-8GHz-18GHz	<u>z</u>	S. Ke	Y.M.		
Frequency (MHz)	Average(dBµV/m)	ARpl (dB)	РМеа (dBµV/m)	Margin(dB)	Limit(dBµV/m)	Polarity
9271.8	40.42	5	35.42			v
11628.0	43	10	33	11.00	54.00	Н
17537.5	50.13	18	32.13	<u></u>	N 12 43	v

Report No: 24T04I300065-048

6.8 Band Edges Compliance (Radiated)

6.8.1 Measurement Limit

Above 1G, non-restricted band

Standard	Limit		
15.407(b)	EIRP <-27dBm/MHz		

Above 1G, Restricted band

Standard	Limit	
15.407(b)	EIRP <-27dBm/MHz	
45 200	Peak	74dBμV/m
15.209	Average	54dBμV/m

 $EIRP[dBm] = E[dB\mu V/m] + 20 \log (d[m]) - 104.7$

 $E[dB\mu V/m] = EIRP[dBm] - 20 \log (d[m]) + 104.7$

 $E[dB\mu V/m] = EIRP[dBm] + 95.2 = 68.2$, for d = 3m

6.8.2 Test Procedure

The measurement is made according to KDB 789033.

Marker-Delta Method: The marker-delta method, as described in ANSI C63.10, can be used to perform measurements of the radiated unwanted emissions level of emissions provided that the 99% occupied bandwidth of the fundamental is within 2 MHz of the authorized band-edge.

Procedure for peak unwanted emissions measurements above 1000 MHz

The procedure for peak unwanted emissions measurements above 1000 MHz is as follows:

a) Follow the requirements in 12.7.4.

b) Peak emission levels are measured by setting the instrument as follows:

1) RBW = 1 MHz.

2) VBW \geq [3 × RBW].

3) Detector = peak.

4) Sweep time = auto.

5) Trace mode = max hold.

6) Allow sweeps to continue until the trace stabilizes. Note that if the transmission is not continuous, then the time required for the trace to stabilize will increase by a factor of approximately 1 / D,

where D is the duty cycle. For example, at 50% duty cycle, the measurement time will increase by a factor of two, relative to measurement time for continuous transmission.

Procedures for average unwanted emissions measurements above 1000 MHz

a) RBW = 1 MHz.

b) Video bandwidth:

1) If the EUT is configured to transmit with $D \ge 98\%$, then set VBW \le RBW / 100 (i.e., 10 kHz), but not less than 10 Hz.

2) If the EUT D is < 98%, then set VBW $\geq 1 / T$, where T is defined in item a1) of 12.2.

c) Video bandwidth mode or display mode:

1) The instrument shall be set with video filtering applied in the power domain. Typically, this requires setting the detector mode to RMS (power averaging) and setting the average-VBW type to

CAICT 中国信通院 Report No: 24T04I300065-048

power (rms).

2) As an alternative, the instrument may be set to linear detector mode. Video filtering shall be applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode to accomplish this. Others have a setting for average-VBW type, which can be set to "voltage" regardless of the display mode.

- d) Detector = peak.
- e) Sweep time = auto.
- f) Trace mode = max hold.

g) Allow max hold to run for at least 50 traces if the transmitted signal is continuous or has at least 98% duty cycle. For lower duty cycles, increase the minimum number of traces by a factor of 1/x, where *D* is the duty cycle. For example, use at least 200 traces if the duty cycle is 25%. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 50 traces should be averaged.)

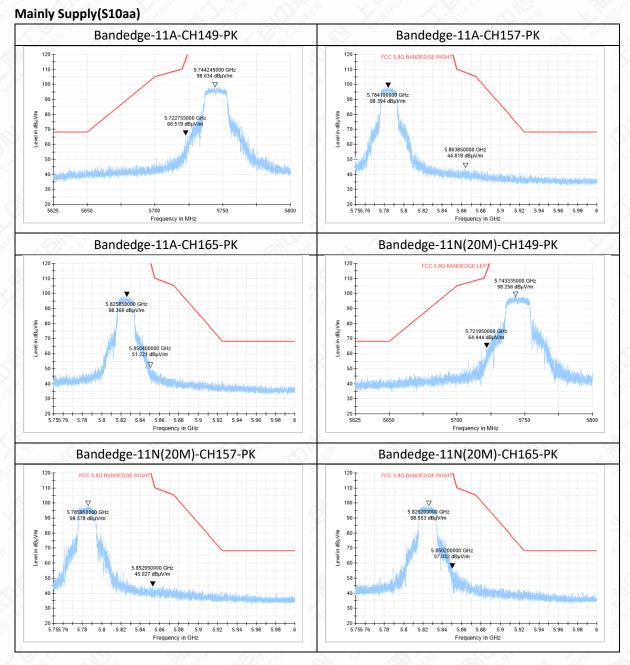
The measurement was applied in a fully anechoic chamber. While testing for spurious emission higher than 1GHz, if applied, the pre-amplifier would be equipped just at the output terminal of the antenna. Tabletop devices shall be placed on a nonconducting platform with nominal top surface dimensions 1 m by 1.5 m. For emission measurements above 1 GHz, the table height shall be 1.5 m. The turntable rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna which was mounted on an antenna mast. During the tests, the antenna height varied from 1m to 4m and the EUT azimuth were varied from 0° to 360° in order to identify the maximum level of emissions from the EUT. In making any tests involving handheld, body-worn, or ceiling-mounted equipment, it is essential to recognize that the measured levels may be dependent on the orientation (attitude) of the three orthogonal axes of the EUT. Thus, exploratory tests as specified in 8.3.1 shall be carried out for various axes orientations to determine the attitude having maximum or near-maximum emission level. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

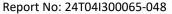
Test Setup

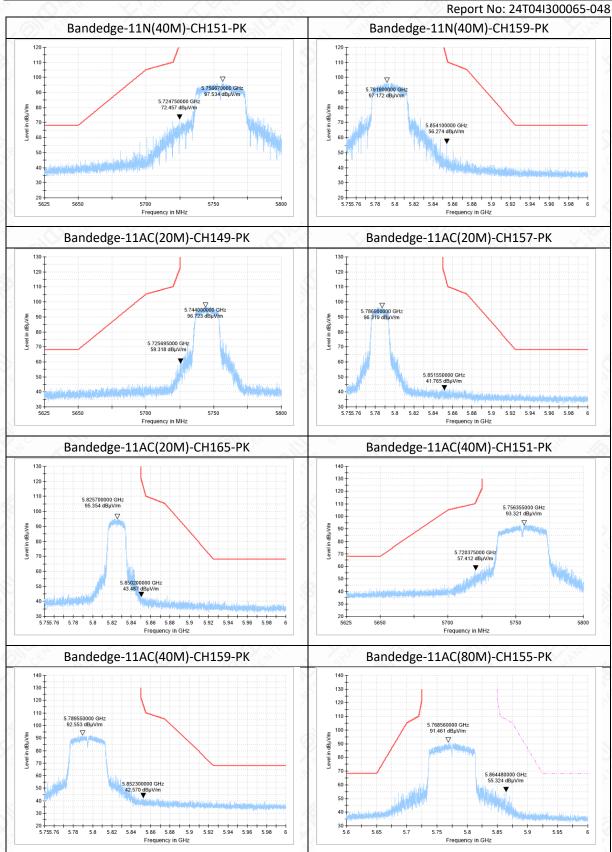
6.8.3

6.8.4	Measurement Result	

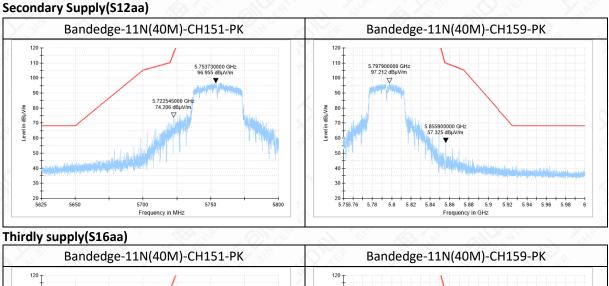
Mode	Channel	Conclusion
002.11a	149	P
802.11a	165	Р
802.11n	149	Р

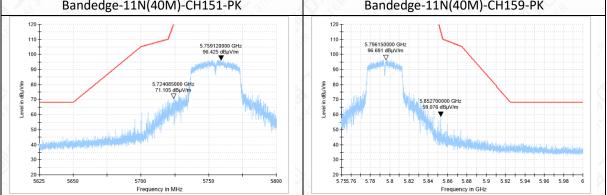

Industrial Internet Innovation Center (Shanghai) Co., Ltd.


Report No: 24T04I	300065-048
-------------------	------------


HT20	165	Р
802.11n	151	Р
HT40	159	Р
802.11ac	149	Р
VHT20	165	Р
802.11ac	151	Р
VHT40	159	Р
802.11ac VHT80	155	P

Test graphs as below:





Report No: 24T04I300065-048

Note: Only data in worst mode is provided.

6.9 AC Powerline Conducted Emission


- 6.9.1 Method of Measurement: ANSI C63.10-2013-clause 6.2
- 1. The one EUT cable configuration and arrangement and mode of operation that produced the emission with the highest amplitude relative to the limit is selected for the final measurement, while applying the appropriate modulating signal to the EUT.
- 2. If the EUT is relocated from an exploratory test site to a final test site, the highest emissions shall be remaximized at the final test location before final ac power-line conducted emission measurements are performed.
- 3. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment in the system) is then performed for the full frequency range for which the EUT is being tested for compliance without further variation of the EUT arrangement, cable positions, or EUT mode of operation.
- 4. If the EUT is comprised of equipment units that have their own separate ac power connections, e.g., floor-standing equipment with independent power cords for each shelf that are able to connect directly to the ac power network, each current-carrying conductor of one unit is measured while the other units are connected to a second (or more) LISN(s). All units shall be separately measured. If a power strip is provided by the manufacturer, to supply all of the units making up the EUT, only the conductors in the power cord of the power strip shall be measured.

If the EUT uses a detachable antenna, these measurements shall be made with a suitable dummy load connected to the antenna output terminals; otherwise, the tests shall be made with the antenna connected and, if adjustable, fully extended. When measuring the ac conducted emissions from a device that operates between 150 kHz and 30 MHz a non-detachable antenna may be replaced with a dummy load for the measurements within the fundamental emission band of the transmitter, but only for those measurements.36 Record the six highest EUT emissions relative to the limit of each of the current-carrying conductors of the power cords of the equipment that comprises the EUT over the frequency range specified by the procuring or regulatory agency. Diagram or photograph the test setup that was used. See Clause 8 for full reporting requirements.

CAICT 中国信通院 Report No: 24T04I300065-048

6.9.2 Test Setup

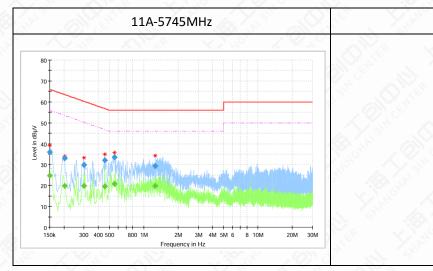
6.9.3 Test Condition

Voltage (V)	Frequency (Hz)	
120	60	

6.9.4 Measurement limit

(Quaci	peak-average	Limit)
(Quasi-	peak-average	LIIIII()

Frequency range (MHz)	Quasi-peak Limit (dBµV)	Average Limit (dBμV)	Conclusion
0.15 to 0.5	66 to 56	56 to 46	AN ON
0.5 to 5	56	46	Р
5 to 30	60	50	


NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

Report No: 24T04I300065-048

1

6.9.5 Measurement Result

Frequency (MHz)	QuasiPeak (dBµV)	Average (dBμV)	Limit (dBµV)	Margin (dB)	Meas.Time (ms)	Bandwidth (kHz)	Line	Filter	Corr (dB)
0.157463		36.14	55.60	19.45	15000.0	9.000	L1	ON	9.6
0.157463	52.86	X Q V	65.60	12.74	15000.0	9.000	L1	ON	9.6
0.176119	<u> </u>	37.41	54.67	17.25	15000.0	9.000	ेL1	ON	9.6
0.176119	51.36	3° X	64.67	13.30	15000.0	9.000	L1	ON	9.6
0.254475	10 A	24.14	51.61	27.47	15000.0	9.000	L1	ON	9.6
0.254475	38.29	- X-R	61.61	23.32	15000.0	9.000	L1	ON	9.6
0.732075	N.S	32.26	46.00	13.74	15000.0	9.000	L1	ON	9.6
0.732075	37.60	×	56.00	18.40	15000.0	9.000	L1	ON	9.6
2.321588	<u> </u>	25.64	46.00	20.36	15000.0	9.000	L1	ON	9.7
2.321588	32.45		56.00	23.55	15000.0	9.000	L1	ON	9.7
2.482031	, X	25.50	46.00	20.50	15000.0	9.000	L1	ON	9.7
2.482031	32.43		56.00	23.57	15000.0	9.000	L1	ON	9.7

Note:All modes have been tested and only the worst mode is recorded in the report.

Report No: 24T04I300065-048

Annex A: Revised History

Version	Revised Content
VO	Initial

CAICT 中国信通院 Report No: 24T04I300065-048

Annex B: Accreditation Certificate

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

END OF REPORT