TEST REPORT

Applicant: Lightcomm Technology Co., Ltd.

Address of Applicant: UNIT 1306 13/F ARION COMMERCIAL CENTRE, 2-12

QUEEN'S ROAD WEST, SHEUNG WAN HK

Manufacturer/ Factory: Huizhou Hengdu Electronics Co., Ltd.

Address of No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao

Manufacturer/ Factory: Avenue, Huizhou, Guangdong, China

Equipment Under Test (EUT)

Product Name: 10.1" QUAD CORE TABLET PDVD COMBO

Model No.: SLTDVD1024-COMBO, SLTDVD1024 COMBO DISP14,

SLTDVD1024, SLTDVD1024_18DISP, SLTDVD1023, 206886, MDT9001, MDT9002, MDT9003, MDT1001,

MDT1002, MDT1005, MDT100X, DL9002, DL9003, DL1001,

DL1002

FCC ID: XMF-MDT1005MK

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: August 02, 2021

Date of Test: August 02-09, 2021

Date of report issued: August 09, 2021

Test Result: PASS *

Authorized Signature:

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	August 09, 2021	Original
2 2 2	Ø 2 9 D	2 2 2

Prepared By:	Jasantlu	Date:	August 09, 2021
	Project Engineer		
Check But	Labingon Lund	Data	August 00, 2024
Check By:	Paviawar	Date:	August 09, 2021

3 Contents

		Page
1		1
2	2 VERSION	2
3	CONTENTS	3
4	TEST SUMMARY	4
5	GENERAL INFORMATION	5
	5.1 GENERAL DESCRIPTION OF EUT	
	5.3 DESCRIPTION OF SUPPORT UNITS	7
	5.4 DEVIATION FROM STANDARDS	7
	5.6 TEST FACILITY	
	5.8 ADDITIONAL INSTRUCTIONS	
6	TEST INSTRUMENTS LIST	8
7		
	7.1 ANTENNA REQUIREMENT	
	7.3 Spurious Emission	14
•	7.3.1 Radiated Emission Method TEST SETUP PHOTO	
8		
9	EUT CONSTRUCTIONAL DETAILS	19

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	N/A
Channel Bandwidth	15.247 (a)(2)	N/A
Power Spectral Density	15.247 (e)	N/A
Band Edge	15.247(d)	N/A
Spurious Emission	15.205/15.209	Pass

Remarks:

1. Pass: The EUT complies with the essential requirements in the standard.

2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30MHz-200MHz	3.8039dB	(1)
Radiated Emission	200MHz-1GHz	3.9679dB	(1)
Radiated Emission	1GHz-18GHz	4.29dB	(1)
Radiated Emission	18GHz-40GHz	3.30dB	(1)
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	3.44dB	(1)

5 General Information

5.1 General Description of EUT

Product Name:	10.1" QUAD CORE TABLET PDVD COMBO
Model No.:	SLTDVD1024-COMBO, SLTDVD1024_COMBO_DISP14, SLTDVD1024, SLTDVD1024_18DISP, SLTDVD1023, 206886, MDT9001, MDT9002, MDT9003, MDT1001, MDT1002, MDT1005, MDT100X, DL9002, DL9003, DL1001, DL1002
Test Model No.:	SLTDVD1024-COMBO
Remark: All above models ar	e identical in the same PCB layout, interior structure and electrical circuits
The only difference is model	name for commercial purpose.
Test sample(s) ID:	GTS202108000003-1
Sample(s) Status:	Engineer sample
Serial No.:	A2008338340000001
Hardware Version:	MDT1005-MK-MAIN-MT8167-4BITX4-VER2.1
Software Version:	Android Q
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna Gain:	2.92dBi(declare by applicant)
Power Supply:	AC ADAPTER
	Model:TEKA-UCA20US
	Input: AC 100-240V, 50/60Hz, 0.35A MAX
	Output: DC 5.0V, 2.0A
	Battery: 3.7V, 16.28Wh, 4400mAh
	Car charger
	Input: 12V DC
	Output: 5V, 2A

Operation F	requency eac	h of channel	9 9	2	g g	9 9	1
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
9 7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data. New battery is used during all test.

5.3 Description of Support Units

None.

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• IC —Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-

anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test command provided by manufacturer
Power level setup	Default

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

6 Test Instruments list

Rad	iated Emission:			40		
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 24 2021	June. 23 2022
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 24 2021	June. 23 2022
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 24 2021	June. 23 2022
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 24 2021	June. 23 2022
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	June. 24 2021	June. 23 2022
9	Coaxial Cable	GTS	N/A	GTS211	June. 24 2021	June. 23 2022
10	Coaxial cable	GTS	N/A	GTS210	June. 24 2021	June. 23 2022
11	Coaxial Cable	GTS	N/A	GTS212	June. 24 2021	June. 23 2022
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 24 2021	June. 23 2022
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 24 2021	June. 23 2022
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 24 2021	June. 23 2022
15	Band filter	Amindeon	82346	GTS219	June. 24 2021	June. 23 2022
16	Power Meter	Anritsu	ML2495A	GTS540	June. 24 2021	June. 23 2022
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 24 2021	June. 23 2022
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 24 2021	June. 23 2022
19	Splitter	Agilent	11636B	GTS237	June. 24 2021	June. 23 2022
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 24 2021	June. 23 2022
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 24 2021	June. 23 2022

Cond	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	May.15 2019	May.14 2022	
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022	
3	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June. 24 2021	June. 23 2022	
4	ENV216 2-L-V- NETZNACHB.DE	ROHDE&SCHWARZ	ENV216	GTS226	June. 24 2021	June. 23 2022	
5	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A	
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
7	Thermo meter	KTJ	TA328	GTS233	June. 24 2021	June. 23 2022	
8	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	June. 24 2021	June. 23 2022	
9	ISN	SCHWARZBECK	NTFM 8158	GTS565	June. 24 2021	June. 23 2022	
10	High voltage probe	SCHWARZBECK	TK9420	GTS537	July. 09 2021	July. 08 2022	

Cal.Date Cal.Du									
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	(mm-dd-yy)	(mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 24 2021	June. 23 2022			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 24 2021	June. 23 2022			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 24 2021	June. 23 2022			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 24 2021	June. 23 2022			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 24 2021	June. 23 2022			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 24 2021	June. 23 2022			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 24 2021	June. 23 2022			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 24 2021	June. 23 2022			

General used equipment:								
Item	Test Equipment	Manufacturer Model N		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 24 2021	June. 23 2022		
2	Barometer	ChangChun	DYM3	GTS255	June. 24 2021	June. 23 2022		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

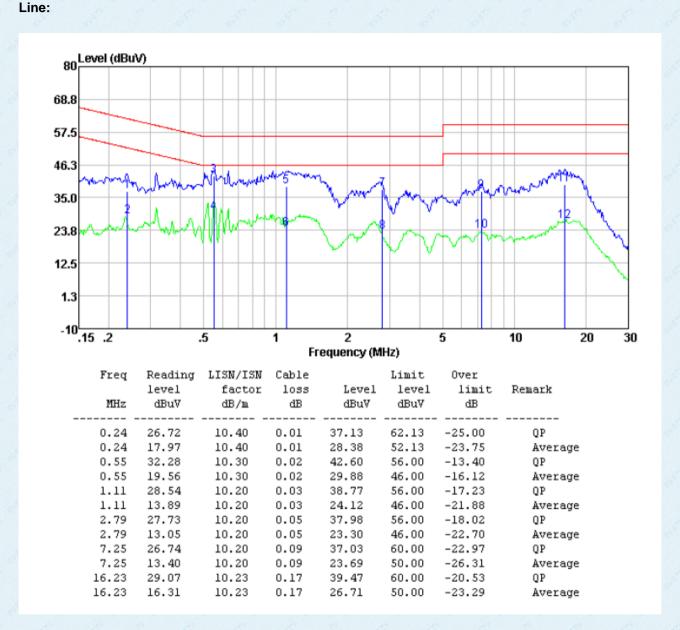
15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

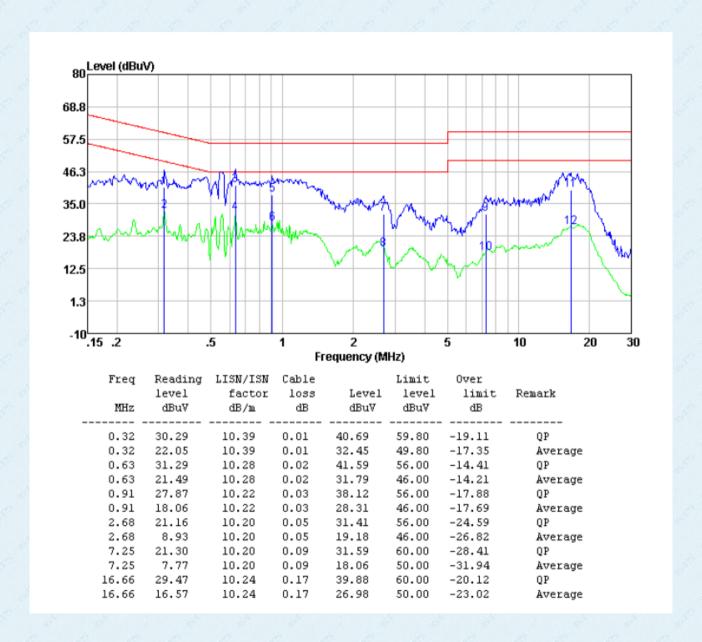
The antenna is PCB antenna, the best case gain of the antenna is 2.92dBi, reference to the appendix II for details

7.2 Conducted Emissions


FCC Part15 C Section 15.207														
ANSI C63.10:2013														
150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Sweep time=auto														
									Fraguency range (MHz) Limit (dBuV)					
									Frequency range (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*												
		46												
		50												
Test procedure: LISN 40cm 80cm Filter AC power EMI Receiver Test table/Insulation plane Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power throughts														
50ohm/50uH coupling impe	dance for the measu													
LISN that provides a 50ohm termination. (Please refer to photographs). 3. Both sides of A.C. line are content interference. In order to find positions of equipment and according to ANSI C63.10:2	n/50uH coupling imported the block diagram of the block diagram of the blocked for maximum emissible all of the interface control of the interface control of the interface control of the interface of the blocked for the bl	m conducted sion, the relative ables must be changed												
LISN that provides a 50ohm termination. (Please refer to photographs). 3. Both sides of A.C. line are content interference. In order to find positions of equipment and	n/50uH coupling imported the block diagram of the block diagram of the blocked for maximum emissible all of the interface control of the interface control of the interface control of the interface of the blocked for the bl	edance with 50ohm of the test setup and m conducted sion, the relative ables must be changed												
LISN that provides a 500hm termination. (Please refer to photographs). 3. Both sides of A.C. line are content interference. In order to find positions of equipment and according to ANSI C63.10:2	n/50uH coupling imported the block diagram of the block diagram of the blocked for maximum emissible all of the interface control of the interface control of the interface control of the interface of the blocked for the bl	edance with 50ohm of the test setup and m conducted sion, the relative ables must be changed												
LISN that provides a 500hm termination. (Please refer to photographs). 3. Both sides of A.C. line are content interference. In order to find positions of equipment and according to ANSI C63.10:2 Refer to section 6.0 for details	n/50uH coupling imported the block diagram of the block diagram of the cked for maximulating the maximum emisuall of the interface coupling on conducted not the conducted not	edance with 50ohm of the test setup and m conducted sion, the relative ables must be changed												
LISN that provides a 50ohm termination. (Please refer to photographs). 3. Both sides of A.C. line are content interference. In order to find positions of equipment and according to ANSI C63.10:2 Refer to section 6.0 for details Refer to section 5.2 for details	n/50uH coupling imported the block diagram of the block diagram of the cked for maximulating the maximum emisuall of the interface coupling on conducted not the conducted not	edance with 50ohm of the test setup and m conducted sion, the relative ables must be changed neasurement.												
	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Sv Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * Decreases with the logarithm Reference Plane LISN AUX Equipment LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators a line impedance stabilization 500hm/50uH coupling impe	ANSI C63.10:2013 150KHz to 30MHz Class B RBW=9KHz, VBW=30KHz, Sweep time=auto Frequency range (MHz) Quasi-peak 0.15-0.5 66 to 56* 0.5-5 5-30 * Decreases with the logarithm of the frequency. Reference Plane LISN AUX Equipment LISN Filter AC p Remark E.U.T. Equipment Under Test LISN Line impedence Stabilization Network												

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data

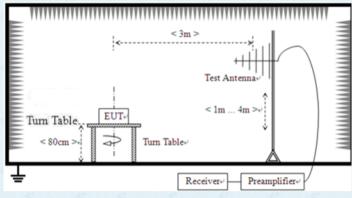

Report No.: GTS202108000003F02

Neutral:

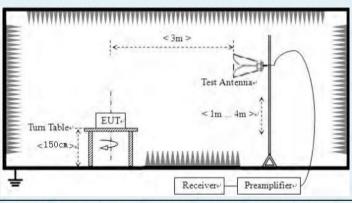
Report No.: GTS202108000003F02

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.


7.3 Spurious Emission

7.3.1 Radiated Emission Method


Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	30MHz to1GHz	8	20) - [(0)	20 20	
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency		etector	RBW		VBW	Value	
	9KHz-150KHz (asi-peak	200Hz		600Hz	Quasi-peak	
	150KHz-30MHz	150KHz-30MHz Quasi-peak 30MHz-1GHz Quasi-peak		9KHz 120KHz		30KHz	Z Quasi-peak	
	30MHz-1GHz					300KH	z Quasi-peak	
	Above 1GHz	á	Peak	1MHz		3MHz	Peak	
	Above IGIIZ	9	Peak	1MHz		10Hz	Average	
Limit:	Frequency	uency Limit (//m) Value		alue	Measurement Distance	
	0.009MHz-0.490M	0.009MHz-0.490MHz		2400/F(KHz)		QP	300m	
	0.490MHz-1.705M	Hz	24000/F(KHz)			QP	30m	
	1.705MHz-30MH	1.705MHz-30MHz		30		QP	30m	
	30MHz-88MHz		100		QP			
	88MHz-216MHz		150		QP			
	216MHz-960MHz		200		QP		3m	
	960MHz-1GHz		500		QP		Sili	
	Above 1GHz	500		Average		erage	S &	
	7 IDOVO TOTIZ		5000		Peak		4 4	
Test setup:	For radiated emiss		< 3m >	z to 30		z		
			61	Keceiver				

For radiated emissions from 30MHz to1GHz

For radiated emissions above 1GHz

Test Procedure:

- 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test Instruments:	Refer to se	Refer to section 6.0 for details						
Test mode:	Refer to se	Refer to section 5.2 for details						
Test environment:	Temp.:	25 °C	Humid.:	52%	.50	Press.:	1012mbar	
Test voltage:	AC 120V,	AC 120V, 60Hz						
Test results:	Pass	6 6	6					

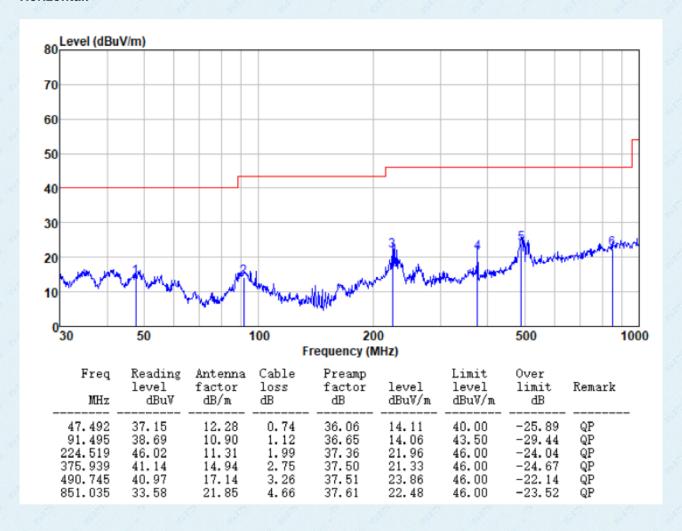
Measurement data:

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

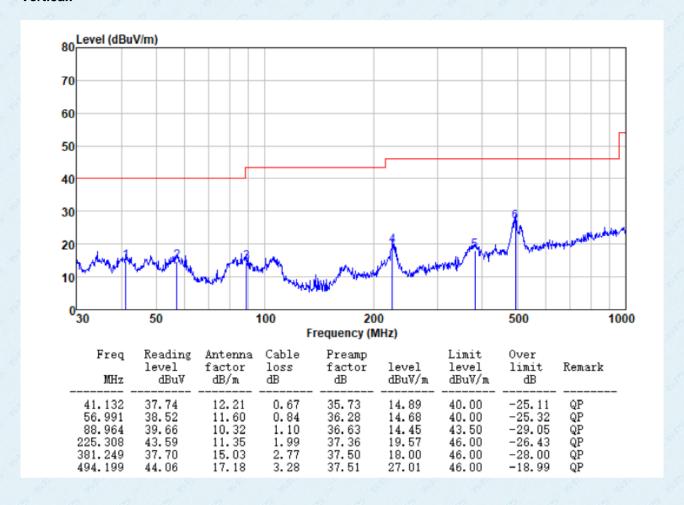
■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

■ Below 1GHz

■ Pre-scan all test modes, found worst case at 2440MHz, and so only show the test result of 2440MHz


Horizontal:

Vertical:

Report No.: GTS202108000003F02

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----