FCC RADIO TEST REPORT Applicant.....: Acrox Technologies Co., Ltd Address...... : 4F., No.89, Minshan St., Neihu Dist., Taipei City 114, Taiwan, R.O.C Manufacturer....: Acrox Technologies Co., Ltd Address...... : 4F., No.89, Minshan St., Neihu Dist., Taipei City 114, Taiwan, R.O.C Factory.....: Acrox Technologies Co., Ltd Address.....: Hsinmin Industrial, Changan Town, Dongguan City, Guangdong, China Product Name...... 2.4GHz & Bluetooth Wireless Mouse Brand Name.....: Amazon Basics Model No.: B1T, B1T-B01, B08P6NDDGZ (For model difference refer to section 2) FCC ID.....: PRDMU95 Measurement Standard......: 47 CFR FCC Part 15, Subpart C (Section 15.247) Receipt Date of Samples....: November 13, 2020 Date of Tested.....: November 14, 2020 to January 19, 2021 Date of Report.....: February 03, 2021 This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan Nore Testing Center Co., Ltd, this report shall not be reproduced except in full. Louisa Huang / Project Engineer Dongguan Nore Testing Center Co., Ltd. Address: Building D, Gaosheng Science and Technology park, Hongtu road, Nancheng district, Dongguan city, Guangdong province, China Web: www.ntc-c.com Tel:+86-769-2202 2444 Fax:+86-769-2202 2799 Page 1 of 38 ## **Table of Contents** | 1. Summary of Test Result | 4 | |---|----| | 2. General Description of EUT | 5 | | 3. Test Channels and Modes Detail | 8 | | 4. Configuration of EUT | 8 | | 5. Modification of EUT | 8 | | 6. Description of Support Device | 9 | | 7. Test Facility and Location | 10 | | 8. Applicable Standards and References | 11 | | 9. Deviations and Abnormalities from Standard Conditions | 11 | | 10. Test Conditions | 12 | | 11. Measurement Uncertainty | 13 | | 12. Sample Calculations | 14 | | 13. Duty Cycle of Test Signal | 15 | | 14. Test Items and Results | 16 | | 14.1 Conducted Emissions Measurement | 16 | | 14.2 Maximum Conducted Output Power Measurement | 18 | | 14.3 6dB Bandwidth Measurement | 20 | | 14.4 Power Spectral Density Measurement | 23 | | 14.5 Band Edge and Conducted Spurious Emissions Measurement | 26 | | 14.6 Radiated Spurious Emissions and Restricted Bands Measurement | 30 | | 14.7 Antenna Requirement | 37 | | 15. Test Equipment List. | 38 | # **Revision History** | Report Number | Description | Issued Date | |----------------|---------------|-------------| | NTC2101002FV00 | Initial Issue | 2021-02-03 | # 1. Summary of Test Result | FCC Rules | Description of Test | Result | Remarks | |--------------------------------|--|--------|----------------| | §15.207 (a) | AC Power Conducted Emission | | Not applicable | | §15.247(b)(3) | Maximum Conducted Output Power | PASS | | | §15.247(a)(2) | 6dB Bandwidth | PASS | | | §15.247(e) | Power Spectral Density | PASS | | | §15.247(d) | Band Edge and Conducted Spurious
Emissions | PASS | | | §15.247(d),§15.209,
§15.205 | Radiated Spurious Emissions and Restricted Bands | PASS | | | §15.203 | Antenna Requirement | PASS | | # 2. General Description of EUT | Product Information | | |-------------------------|--| | Product Name: | 2.4GHz & Bluetooth Wireless Mouse | | Main Model Name: | B1T | | Additional Model Name: | B1T-B01, B08P6NDDGZ | | Model Difference: | These models have the same circuitry, electrical mechanical, PCB Layout and | | | physical construction. The differences is model number due to marketing | | | purpose. | | S/N: | L21A00100 | | Brand Name: | Amazon Basics | | Hardware Version: | V1.0 | | Software Version: | V1.0 | | Rating: | 1* DC 1.5V AA battery | | Typical arrangement: | Table-top | | I/O Port: | N/A | | Accessories Information | | | Adapter: | N/A | | Cable: | N/A | | Other: | N/A | | Additional Information | | | Note: | According to the model difference, all tests were performed on model B1T. | | Remark: | The EUT contains Mouse and USB Dongle two parts, and this report only | | | applies to Mouse. | | | 2. All the information above are provided by the manufacturer. More detailed | | | feature of the EUT please refers to the user manual. | | Technical Specification | | |-------------------------|--| | Bluetooth Version | 5.1 (BLE) | | Frequency Range | 2402-2480MHz | | Modulation Type | GFSK | | Number of Channel | 40 (refer to following channel list for details) | | Channel Space | 2MHz | | Data Rate: | 1Mbps | | Antenna Type | PCB antenna | | Antenna Gain | 0.9 dBi (Declared by the manufacturer) | | Note: The product suppo | rts BLE feature only. | | | Channel List | | | | | | |---------|--------------------|---------|--------------------|---------|--------------------|--| | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | Channel | Frequency
(MHz) | | | 1 | 2402 | 15 | 2430 | 29 | 2458 | | | 2 | 2404 | 16 | 2432 | 30 | 2460 | | | 3 | 2406 | 17 | 2434 | 31 | 2462 | | | 4 | 2408 | 18 | 2436 | 32 | 2464 | | | 5 | 2410 | 19 | 2438 | 33 | 2466 | | | 6 | 2412 | 20 | 2440 | 34 | 2468 | | | 7 | 2414 | 21 | 2442 | 35 | 2470 | | | 8 | 2416 | 22 | 2444 | 36 | 2472 | | | 9 | 2418 | 23 | 2446 | 37 | 2474 | | | 10 | 2420 | 24 | 2448 | 38 | 2476 | | | 11 | 2422 | 25 | 2450 | 39 | 2478 | | | 12 | 2424 | 26 | 2452 | 40 | 2480 | | | 13 | 2426 | 27 | 2454 | - | - | | | 14 | 2428 | 28 | 2456 | - | - | | # 3. Test Channels and Modes Detail | Мо | Mode Char | | | | Frequency
(MHz) | Modulation | Data Rate
(Mbps) | |----|-----------|------|----|------|--------------------|------------|---------------------| | 1 | Low | | 1 | 2402 | GFSK | 1 | | | 2 | TX | Mid | 20 | 2440 | GFSK | 1 | | | 3 | | High | 40 | 2480 | GFSK | 1 | | | 4 | Normal | | | | | | | Note: TX mode means that the EUT was programmed to be in continuously transmitting mode. # 4. Configuration of EUT | TX Mode | | | |----------------------------|-----------------------------------|--| | | EUT | | | Normal Mode | | | | | EUT Laptop | | | The support device is kept | in a remote area for normal mode. | | # 5. Modification of EUT No modifications are made to the EUT during all test items. # 6. Description of Support Device The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | No. | Equipment | Brand | M/N | S/N | Cable Specification | Remarks | |-----|-----------------------|--------|---------|---------|---------------------|---------| | 1. | Laptop | Lenovo | 02213DC | 0A33012 | Power cord, 1.8m, | | | 2. | Power supply (Laptop) | Delta | 92P1154 | N/A | unshielded | | | No. | Test Software Modulation | | Power Setting | |-----|--|------|---------------| | | No test software was used. The | | | | 1. | EUT was programmed a test firmware which used for testing. | GFSK | Default | # 7. Test Facility and Location | Test Site | : | Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.) | |--------------------|---|---| | Accreditations and | : | The Laboratory has been assessed and proved to be in compliance with | | Authorizations | | CNAS/CL01 | | | | Listed by CNAS, August 13, 2018 | | | | The Certificate Registration Number is L5795. | | | | The Certificate is valid until August 13, 2024 | | | | The Laboratory has been assessed and proved to be in compliance with | | | | ISO17025 | | | | Listed by A2LA, November 01, 2017 | | | | The Certificate Registration Number is 4429.01 | | | | The Certificate is valid until December 31, 2021 | | | | Listed by FCC, November 06, 2017 | | | | Test Firm Registration Number is 907417 | | | | Listed by Industry Canada, June 08, 2017 | | | | The Certificate Registration Number is 46405-9743A | | | | The CAB identifier number is CN0015 | | | | | | Test Site Location | : | Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng | | | | District, Dongguan City, Guangdong Province, China | # 8. Applicable Standards and References According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: #### **Test Standards:** 47 CFR Part 15, Subpart C, 15.247 ANSI C63.10-2013 ### **References Test Guidance:** DTS KDB 558074 D01 15.247 Meas Guidance v05r02 ### Remark: The EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report. # 9. Deviations and Abnormalities from Standard Conditions No additions, deviations and exclusions from the standard. # 10. Test Conditions | No. | Test Item | Test Mode | Test Voltage | Tested by | Remarks | |-----|--|-----------|--------------|-----------|------------| | 1. | AC Power Conducted Emission | | | | | | 2. | Max. Conducted Output Power | 1-3 | DC 1.5V | Ray Ding | See note 1 | | 3. | 6dB Bandwidth | 1-3 | DC 1.5V | Ray Ding | See note 1 | | 4. | Power Spectral Density | 1-3 | DC 1.5V | Ray Ding | See note 1 | | 5. | Band Edge and Conducted Spurious Emissions | 1-3 | DC 1.5V | Ray Ding | See note 1 | | 6. | Radiated Spurious Emissions and Restricted Bands | 1-4 | DC 1.5V | Ray Ding | See note 1 | | 7 | Antenna Requirement | | | | See note 1 | #### Note: - 1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35 °C, 30~70%, 86~106kPa - 2. As the EUT can be operated multiple positions, all X,Y,Z axis were considered during the test and only the worst case X was recorded. X Plane Y Plane Z Plane 3. Only the worst case was recorded in the report. # 11. Measurement Uncertainty | No. | Test Item | Frequency | Uncertainty | Remarks | |-----|------------------------|----------------|------------------------|---------| | 1. | Conducted Emission | 150KHz ~ 30MHz | $\pm 2.52~\mathrm{dB}$ | | | | | 9kHz ~ 30MHz | $\pm 2.60~\mathrm{dB}$ | | | | Radiated Emission Test | 30MHz ~ 1GHz | \pm 4.68 dB | | | 2. | | 1GHz ~ 18GHz | \pm 5.14 dB | | | | | 18GHz ~ 40GHz | \pm 5.14 dB | | #### Note: - 1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. - 2. The measurement uncertainly levels above are estimated and calculated according to CISPR 16-4-2. - 3. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded. # 12. Sample Calculations | Conducted Emission | | | | | | | | | | |--------------------|-------------------------|--------------------|-----------------|--------------|----------|----|--|--|--| | Freq.
(MHz) | Reading Level
(dBuV) | Measurement (dBuV) | Limit
(dBuV) | Over
(dB) | Detector | | | | | | 0.1900 | 30.10 | 10.60 | 40.70 | 79.00 | -38.30 | QP | | | | Where, Freq. =Emission frequency in MHz Reading Level = Uncorrected Analyzer/Receiver reading Corrector Factor = Insertion loss of LISN + Cable Loss + RF Switching Unit attenuation Measurement = Reading + Corrector Factor Limit = Limit stated in standard Margin = Measurement - Limit Margin = Measurement - Limit Detector = Reading for Quasi-Peak / Average / Peak | Radiated Spurious Emissions and Restricted Bands | | | | | | | | | | |--|-------------------------|-----------------------|----------------------|-------------------|--------------|----------|--|--|--| | Freq.
(MHz) | Reading Level
(dBuV) | Correct Factor (dB/m) | Measurement (dBuV/m) | Limit
(dBuV/m) | Over
(dB) | Detector | | | | | 60.0700 | 45.88 | -18.38 | 27.50 | 49.00 | -21.50 | QP | | | | Where, Freq. = Emission frequency in MHz Reading Level = Uncorrected Analyzer/Receiver reading Corrector Factor = Antenna Factor + Cable Loss - Pre-amplifier Measurement = Reading + Corrector Factor Limit = Limit stated in standard Over = Margin, which calculated by Measurement - Limit Detector = Reading for Quasi-Peak / Average / Peak Note: For all conducted test items, the spectrum analyzer offset or transducer is derived from RF cable loss and attenuator factor. The offset or transducer is equal to the RF cable loss plus attenuator factor. # 13. Duty Cycle of Test Signal | Frequency | TP time | Ton time(Total) | Duty cycle | Duty cycle | | |-----------|---------|-----------------|------------|------------|--| | MHz | (ms) | (ms) | | Factor | | | 2440 | 100 | 7.36 | 73.6% | 1.33 | | ## **GFSK** Note: If Duty Cycle of test signal is ≥98%, Duty cycle factor is not required. Duty Cycle = (Total Ton time / TP time) x 100% Total Ton time = Ton 1 x n1 = 0.46*16 = 7.36ms Duty Cycle Factor= 10 x log(1/Duty Cycle) # 14. Test Items and Results ## 14.1 Conducted Emissions Measurement ### **LIMIT** According to the requirements of FCC PART 15.207, the limits are as follows: | Frequency (MHz) | Quasi-peak | Average | |-----------------|------------|----------| | 0.15 to 0.5 | 66 to 56 | 56 to 46 | | 0.5 to 5 | 56 | 46 | | 5 to 30 | 60 | 50 | Note: 1. If the limits for the average detector are met when using the quasi-peak detector, then the limits for the measurements with the average detector are considered to be met. - 2. The lower limit shall apply at the transition frequencies. - 3. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz. ## **BLOCK DIAGRAM OF TEST SETUP** ## **TEST PROCEDURES** - a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface. - b. All I/O cables and support devices were positioned as per ANSI C63.10. - c. Connect mains power port of the EUT to a line impedance stabilization network (LISN). - d. Connect all support devices to the other LISN and AAN, if needed. - e. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for maximum conducted interference checking and record the test data. ## **TEST RESULTS** Not applicable. ## 14.2 Maximum Conducted Output Power Measurement ### LIMIT For system using digital modulation in the 2400-2483.5 MHz bands, the limit for peak output power is 1 Watt. If the transmitting antenna of directional gain greater than 6dBi are used the peak output power form the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of Antenna exceeds 6dBi. ### **BLOCK DIAGRAM OF TEST SETUP** ### **TEST PROCEDURES** ANSI C63.10 - 2013, Section 11.9.1.3 ANSI C63.10 - 2013, Section 11.9.2.3.2 #### **TEST RESULTS** **PASS** Please refer to the following table. | | GFSK | | | | | | | | | | |---------|----------------------|---|------------------------|----------------------|-------------------------------|----------------|--------|--|--|--| | Channel | nel Frequency (Mbps) | | Reading Level
(dBm) | Duty Cycle
Factor | Peak Output
Power
(dBm) | Limit
(dBm) | Result | | | | | 1 | 2402 | 1 | -11.04 | 1.33 | -9.71 | ≤30 | PASS | | | | | 20 | 2440 | 1 | -13.19 | 1.33 | -11.86 | ≤30 | PASS | | | | | 40 | 2480 | 1 | -14.49 | 1.33 | -13.16 | ≤30 | PASS | | | | Note: Peak Output Power = Reading Level + Duty Cycle Factor ## 14.3 6dB Bandwidth Measurement ### LIMIT The minimum 6dB bandwidth shall be at least 500 kHz ## **BLOCK DIAGRAM OF TEST SETUP** #### **TEST PROCEDURES** The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to DTS KDB 558074 D01 15.247 Meas Guidance v05r02: - a. Set the RBW = 100KHz. - b. Set the VBW ≥ 3 x RBW - c. Set the Detector = peak. - d. Set the Sweep time = auto couple. - e. Set the Trace mode = max hold. - f. Allow trace to fully stabilize. - g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. ## **TEST RESULTS** **PASS** Please refer to the following tables. | | GFSK | | | | | | | | | | |---------|-----------------|---------------------|------------------------|------------------------|----------------|--------|--|--|--|--| | Channel | Frequency (MHz) | Data Rate
(Mbps) | 6dB Bandwidth
(MHz) | 99% Bandwidth
(MHz) | Limit
(MHz) | Result | | | | | | 1 | 2402 | 1 | 0.688 | - | >0.5 | PASS | | | | | | 20 | 2440 | 1 | 0.694 | - | >0.5 | PASS | | | | | | 40 | 2480 | 1 | 0.690 | - | >0.5 | PASS | | | | | # 14.4 Power Spectral Density Measurement #### LIMIT The Maximum of Power Spectral Density Measurement is 8dBm in any 3 kHz. ### **BLOCK DIAGRAM OF TEST SETUP** #### **TEST PROCEDURES** The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to FCC DTS KDB 558074 D01 15.247 Meas Guidance v05r02: - a. Set analyzer center frequency to DTS channel center frequency. - b. Set the span to 1.5 times the DTS bandwidth. - c. Set the RBW to: 3 kHz ≤ RBW ≤ 100KHz - d. Set the VBW \geq 3 x RBW. - e. Set the Detector = peak. - f. Set the Sweep time = auto couple. - g. Set the Trace mode = max hold. - h. Allow trace to fully stabilize. - i. Use the peak marker function to determine the maximum amplitude level within the RBW. - j. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat. ## **TEST RESULTS** **PASS** Please refer to the following table. | GFSK | | | | | | | | | | |---------|--------------------|---------------------|-------------------|---------------------|---------|--|--|--|--| | Channel | Frequency
(MHz) | Data Rate
(Mbps) | PSD
dBm / 3kHz | Limit
dBm / 3kHz | Results | | | | | | 1 | 2402 | 1 | -17.623 | 8 | PASS | | | | | | 20 | 2440 | 1 | -19.785 | 8 | PASS | | | | | | 40 | 2480 | 1 | -21.069 | 8 | PASS | | | | | ## 14.5 Band Edge and Conducted Spurious Emissions Measurement #### LIMIT In any 100KHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100KHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. ### **BLOCK DIAGRAM OF TEST SETUP** ### **TEST PROCEDURES** The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer was set as below according to ANSI C63.10-2013, Section 11.11 #### **Measurement Procedure REF** - a. Set the RBW = 100 kHz. - b. Set the VBW ≥ 300 kHz. - c. Set the Detector = peak. - d. Set the Sweep time = auto couple. - e. Trace mode = max hold. - f. Allow trace to fully stabilize. - g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. ## **Measurement Procedure OOBE** - a. Set RBW = 100 kHz. - b. Set VBW ≥ 300 kHz. - c. Set the Detector = peak. - d. Set the Sweep = auto couple. - e. Set the Trace Mode = max hold. - f. Allow trace to fully stabilize. - g. Use the peak marker function to determine the maximum amplitude level. ## **TEST RESULTS** **PASS** Please refer to the following test plots. # 14.6 Radiated Spurious Emissions and Restricted Bands Measurement #### LIMIT | Frequency range | Distance Meters | Field Strengths Limit (15.209) | | | |------------------|-----------------|--------------------------------|--|--| | MHz | Distance Meters | μV/m | | | | 0.009 ~ 0.490 | 300 | 2400/F(kHz) | | | | 0.490 ~ 1.705 30 | | 24000/F(kHz) | | | | 1.705 ~ 30 | 30 | 30 | | | | 30 ~ 88 | 3 | 100 | | | | 88 ~ 216 | 3 | 150 | | | | 216 ~ 960 | 3 | 200 | | | | Above 960 | 3 | 500 | | | - Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m - (2) The smaller limit shall apply at the cross point between two frequency bands. - (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. - (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower. - (5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209. ## **BLOCK DIAGRAM OF TEST SETUP** ## For Radiated Emission below 30MHz ## For Radiated Emission 30-1000MHz ## For Radiated Emission Above 1000MHz. ### **TEST PROCEDURES** - a. Below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room. - b. For the radiated emission test above 1GHz: - The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. - c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode. - f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test. During the radiated emission test, the spectrum analyzer was set with the following configurations: | Frequency Band
(MHz) | Detector | Resolution Bandwidth | Video Bandwidth | |-------------------------|----------|----------------------|-----------------| | 30 to 1000 | QP | 120 kHz | 300 kHz | | Above 1000 | Peak | 1 MHz | 3 MHz | | Above 1000 | Average | 1 MHz | 10 Hz | # **TEST RESULTS** PASS Please refer to the following pages. Report No.: NTC2101002FV00 | M/N: B1T | Testing Voltage: DC 1.5V | | | |-------------------------------|--------------------------|--|--| | Polarization: Horizontal | Detector: QP | | | | Test Mode: 4 (the worst case) | Distance: 3m | | | # **Radiated Emission Measurement** Date: 2020/11/19 Time: 12:23:10 80.0 dBuV/m 70 60 FCC Part 15C_3M 50 Margin -6 dB 40 30 20 10 30.0000 127.000 224.000 321.000 418.000 515.000 612.000 709.000 806.000 1000.000 MHz | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |---------|----------|------------------|-------------------|------------------|--------|--------|----------|--|--| | | MHz | dBu∀ | dB | dBuV/m | dBuV/m | dB | Detector | | | | 1 | 55.2200 | 27.06 | -7.46 | 19.60 | 40.00 | -20.40 | QP | | | | 2 | 238.5500 | 25.98 | -6.68 | 19.30 | 46.00 | -26.70 | QP | | | | 3 | 419.9400 | 25.50 | -3.00 | 22.50 | 46.00 | -23.50 | QP | | | | 4 | 615.8800 | 25.32 | 0.88 | 26.20 | 46.00 | -19.80 | QP | | | | 5 * | 814.7300 | 25.17 | 4.23 | 29.40 | 46.00 | -16.60 | QP | | | | 6 | 978.6600 | 24.84 | 6.46 | 31.30 | 54.00 | -22.70 | QP | | | Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit. | M/N: B1T | Testing Voltage: DC 1.5V | | | |-------------------------------|--------------------------|--|--| | Polarization: Vertical | Detector: QP | | | | Test Mode: 4 (the worst case) | Distance: 3m | | | # **Radiated Emission Measurement** Date: 2020/11/19 Time: 12:16:09 80.0 dBuV/m 70 60 FCC Part 15C_3M 50 40 30 20 10 0.0 418.000 1000.000 MHz 30.0000 127.000 224.000 321.000 515.000 612.000 709.000 806.000 | No. Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | | | |---------|----------|------------------|-------------------|------------------|--------|--------|----------|--|--| | | MHz | dBuV | dB | dBuV/m | dBuV/m | dB | Detector | | | | 1 | 47.4600 | 26.20 | -7.30 | 18.90 | 40.00 | -21.10 | QP | | | | 2 | 240.4900 | 25.91 | -7.61 | 18.30 | 46.00 | -27.70 | QP | | | | 3 | 468.4400 | 26.15 | -3.25 | 22.90 | 46.00 | -23.10 | QP | | | | 4 | 654.6800 | 24.86 | 1.24 | 26.10 | 46.00 | -19.90 | QP | | | | 5 | 807.9400 | 24.59 | 4.11 | 28.70 | 46.00 | -17.30 | QP | | | | 6 * | 956.3500 | 25.59 | 5.11 | 30.70 | 46.00 | -15.30 | QP | | | Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit. | Modulation: GFSK | | | Test Result: PASS | | | | Test frequency range: 1-25GHz | | | | | |---------------------------------------|--------------|-----------------|-------------------|-----------|----------------------------|-----------|-------------------------------|-------|----------------|--------|--| | Freq. | Ant.
Pol. | Read
Level(d | IBuV) Factor | | Emission Level
(dBuV/m) | | Limit 3m
(dBuV/m) | | Margin
(dB) | | | | (MHz) | (H/V) | PK | AV | (dB/m) | PK | AV | PK | AV | PK | AV | | | Operation Mode: TX Mode (Low) | | | | | | | | | | | | | 4804 | V | 46.20 | 31.02 | 6.30 | 52.50 | 37.32 | 74.00 | 54.00 | -21.50 | -16.68 | | | 7206 | V | 45.44 | 30.77 | 10.44 | 55.88 | 41.21 | 74.00 | 54.00 | -18.12 | -12.79 | | | | | | | | | | | | | | | | 4804 | Н | 46.49 | 30.99 | 6.30 | 52.79 | 37.29 | 74.00 | 54.00 | -21.21 | -16.71 | | | 7206 | Н | 45.93 | 31.05 | 10.44 | 56.37 | 41.49 | 74.00 | 54.00 | -17.63 | -12.51 | | | | | | | | | | | | | | | | Operation Mode: TX Mode (Mid) | | | | | | | | | | | | | 4880 | V | 46.07 | 31.33 | 6.60 | 52.67 | 37.93 | 74.00 | 54.00 | -21.33 | -16.07 | | | 7320 | V | 46.36 | 31.04 | 10.55 | 56.91 | 41.59 | 74.00 | 54.00 | -17.09 | -12.41 | | | | | | | | | | | | | | | | 4880 | Н | 46.09 | 30.86 | 6.60 | 52.69 | 37.46 | 74.00 | 54.00 | -21.31 | -16.54 | | | 7320 | Н | 46.37 | 31.03 | 10.55 | 56.92 | 41.58 | 74.00 | 54.00 | -17.08 | -12.42 | | | | | | | | | | | | | | | | | | | Oper | ation Mod | le: TX Mod | de (High) | | | | | | | 4960 | V | 45.88 | 30.84 | 6.89 | 52.77 | 37.73 | 74.00 | 54.00 | -21.23 | -16.27 | | | 7440 | V | 46.05 | 30.91 | 10.60 | 56.65 | 41.51 | 74.00 | 54.00 | -17.35 | -12.49 | | | | | | | | | | | | | | | | 4960 | Н | 46.09 | 30.99 | 6.89 | 52.98 | 37.88 | 74.00 | 54.00 | -21.02 | -16.12 | | | 7440 | Η | 46.03 | 30.69 | 10.60 | 56.63 | 41.29 | 74.00 | 54.00 | -17.37 | -12.71 | | | | | | | | | | | | | | | | Spurious Emission in restricted band: | | | | | | | | | | | | | 2390.000 | Н | 50.57 | 31.22 | 0.09 | 50.66 | 31.31 | 74.00 | 54.00 | -23.34 | -22.69 | | | 2390.000 | V | 45.37 | 31.39 | 0.09 | 45.46 | 31.48 | 74.00 | 54.00 | -28.54 | -22.52 | | | 2483.500 | Н | 55.02 | 32.61 | 0.34 | 55.36 | 32.95 | 74.00 | 54.00 | -18.64 | -21.05 | | | 2483.500 | V | 51.03 | 31.56 | 0.34 | 51.37 | 31.90 | 74.00 | 54.00 | -22.63 | -22.10 | | Remark: Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 10dB below the permissible limits. # 14.7 Antenna Requirement #### STANDARD APPLICABLE According to of FCC part 15C section 15.203 and 15.247: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. Systems operating in the 2400-2483.5MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi. #### ANTENNA CONNECTED CONSTRUCTION The antenna is PCB antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 0.9dBi, Therefore, the antenna is consider meet the requirement. # 15. Test Equipment List | Item | Equipment | Manufacturer | Model No. | Serial No. | Last Cal. | Cal.
Interval | |------|--------------------------------|---|-----------|-------------------|---------------|------------------| | 1. | Test Receiver | Rohde & Schwarz | ESCI7 | 100837 | Mar. 13, 2020 | 1 Year | | 2. | Antenna | Schwarzbeck | VULB9162 | 9162-010 | Mar. 23, 2020 | 1 Year | | 3. | Spectrum Analyzer | Rohde & Schwarz | FSU26 | 200409/026 | Mar. 13, 2020 | 1 Year | | 4. | Spectrum Analyzer | Keysight | N9020A | MY54200831 | Mar. 13, 2020 | 1 Year | | 5. | Spectrum Analyzer | Rohde & Schwarz | FSV40 | 101094 | Mar. 13, 2020 | 1 Year | | 6. | Horn Antenna | Schwarzbeck | BBHA9170 | 9170-172 | Mar. 22, 2019 | 2 Year | | 7. | Power Sensor | DARE | RPR3006W | 15I00041SNO
64 | Mar. 13, 2020 | 1 Year | | 8. | Communication
Tester | Rohde & Schwarz | CMW500 | 149004 | Mar. 13, 2020 | 1 Year | | 9. | Horn Antenna | COM-Power | AH-118 | 071078 | Mar. 23, 2020 | 1 Year | | 10. | Pre-Amplifier | HP | HP 8449B | 3008A00964 | Mar. 13, 2020 | 1 Year | | 11. | Pre-Amplifier | HP | HP 8447D | 1145A00203 | Mar. 13, 2020 | 1 Year | | 12. | Loop Antenna | Schwarzbeck | FMZB 1513 | 1513-272 | Mar. 23, 2020 | 1 Year | | 13. | Test Receiver | Rohde & Schwarz | ESCI | 101152 | Mar. 14, 2020 | 1 Year | | 14. | L.I.S.N | Rohde & Schwarz | ENV 216 | 101317 | Mar. 13, 2020 | 1 Year | | 15. | L.I.S.N | Rohde & Schwarz | ESH2-Z5 | 893606/014 | Mar. 13, 2020 | 1 Year | | 16. | RF Switching Unit | Compliance
Direction Systems
Inc. | RSU-M2 | 38311 | Mar.13, 2020 | 1 Year | | 17. | Temperature & Humidity Chamber | REMAFEE | SYHR225L | N/A | Mar. 13, 2020 | 1 Year | | 18. | DC Source | Maynuo | MY8811 | N/A | Mar. 13, 2020 | 1 Year | | 19. | Temporary antenna connector | TESCOM | SS402 | N/A | N/A | N/A | | 20. | Chamber | SAEMC | 9*7*7m | N/A | Jun. 20, 2019 | 2 Year | | 21. | Test Software | EZ | EZ_EMC | N/A | N/A | N/A | Note: For photographs of EUT and measurement, please refer to appendix in separate documents.