Annex B.3 D2450V2 Calibration Certificate Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com **CNAS L0570** Http://www.chinattl.cn Tejet Client Certificate No: Z16-97175 **CALIBRATION CERTIFICATE** Object D2450V2 - SN: 845 Calibration Procedure(s) FD-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 12, 2016 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)*C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 101919 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | Power sensor NRP-Z91 | 101547 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | Reference Probe ES3DV3 | SN 3149 | 15-Apr-16(CTTL-SPEAG,No.J16-97035) | Apr-17 | | DAE4 | SN 777 | 22-Aug-16(CTTL-SPEAG,No.Z16-97138) | Aug-17 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-16 (CTTL, No.J16X00893) | Jan-17 | | Network Analyzer E5071C | MY46110673 | 26-Jan-16 (CTTL, No.J16X00894) | Jan-17 | | 100 July 10 May 1 | Name | Function | Signature | |-------------------|-------------|-----------------------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是第 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | 553 | | Approved by: | Liu Wei | Deputy Director of SEM Department | zike- | Issued: October 14, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z16-97175 Page 1 of 8 V2.0 Page 93 / 116 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - . SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Page 94 / 116 V2.0 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.8.8.1258 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | #### Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.0 ± 6 % | 1.78 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | **** | #### SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 52.3 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 6.09 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.4 mW /g ± 20.4 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.92 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.7 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 51.2 mW /g ± 20.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.99 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.1 mW /g ± 20.4 % (k=2) | Page 95 / 116 V2.0 #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.9Ω+ 4.93jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 25.7dB | | # Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.5Ω+ 6.56jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 23.7dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.270 ns | |----------------------------------|-----------| | - control - control and control | 1.270 118 | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. # Additional EUT Data | ORDER TO STATE OF THE | | |---|-------| | Manufactured by | SPEAG | Page 96 / 116 V2.0 Date: 10.12.2016 Add: No.51 Xueyuan Road, Haidian District, Beljing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 845 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.777$ S/m; $\epsilon r = 39.03$; $\rho = 1000$ kg/m3 Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(4.51, 4.51, 4.51); Calibrated: 4/15/2016; - Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 8/22/2016 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.63 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 26.7 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 6.09 W/kg Maximum value of SAR (measured) = 17.1 W/kg 0 dB = 17.1 W/kg = 12.33 dBW/kg Page 97 / 116 V2.0 # Impedance Measurement Plot for Head TSL Page 98 / 116 V2.0 Date: 10.12.2016 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 845 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.923$ S/m; $\epsilon_r = 52.91$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: ES3DV3 SN3149; ConvF(4.23, 4.23, 4.23); Calibrated: 4/15/2016; - · Sensor-Surface: 3mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 8/22/2016 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 97.85 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 24.8 W/kg SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.99 W/kg Maximum value of SAR (measured) = 16.7 W/kg 0 dB = 16.7 W/kg = 12.23 dBW/kg Page 99 / 116 V2.0 # Impedance Measurement Plot for Body TSL Page 100 / 116 V2.0 # Annex B.4 D5GHzV2 Calibration Certificate Client Tejet Certificate No: Z16-97177 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN: 1180 Calibration Procedure(s) FD-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: October 10, 2016 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRP2 | 101919 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | Power sensor NRP-Z91 | 101547 | 27-Jun-16 (CTTL, No.J16X04777) | Jun-17 | | ReferenceProbe EX3DV4 | SN 3801 | 29-Jun-16(SPEAG,No.EX3-3801_Jun16) | Jun-17 | | DAE4 | SN 777 | 22-Aug-16(CTTL-SPEAG,No.Z16-97138) | Aug-17 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 01-Feb-16 (CTTL, No.J16X00893) | Jan-17 | | NetworkAnalyzer E5071C | MY46110673 | 26-Jan-16 (CTTL, No.J16X00894) | Jan-17 | | | | | | | | Name | Function | Signature | |----------------|-------------|-----------------------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 是 | | Reviewed by: | Qi Dianyuan | SAR Project Leader | 70 | | Approved by: | Liu Wei | Deputy Director of SEM Department | also | Issued: October 14, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z16-97177 Page 1 of 14 Page 101 / 116 V2.0 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z16-97177 Page 2 of 14 Page 102 / 116 V2.0 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | Ao i system comiguration, as iai as | not given on page 1. | | |-------------------------------------|--|----------------------------------| | DASY Version | DASY52 | 52.8.8.1258 | | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | #### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.3 ± 6 % | 4.62 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 $\ cm^3$ (1 g) of Head TSL | Condition | | |--|--------------------|---------------------------| | SAR measured | 100 mW input power | 7.72 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 77.3 mW /g ± 23.0 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.18 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 21.8 mW /g ± 22.2 % (k=2) | Certificate No: Z16-97177 Page 3 of 14 Page 103 / 116 V2.0 #### Head TSL parameters at 5600 MHz | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.0 ± 6 % | 4.98 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |--|--------------------|---------------------------| | SAR measured | 100 mW input power | 8.11 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 81.3 mW /g ± 23.0 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.29 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 mW /g ± 22.2 % (k=2) | Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.9 ± 6 % | 5.12 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 $\ cm^3$ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 7.95 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 79.7 mW /g ± 23.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.26 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 mW /g ± 22.2 % (k=2) | Certificate No: Z16-97177 Page 4 of 14 Page 104 / 116 V2.0 ### Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 49.3 ± 6 % | 5.44 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--|--------------------|---------------------------| | SAR measured | 100 mW input power | 7.52 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 75.4 mW /g ± 23.0 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.12 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.3 mW /g ± 22.2 % (k=2) | Body TSL parameters at 5600 MHz The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.9 ± 6 % | 5.85 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL at 5600 MHz | SAR averaged over 1 $\ cm^3$ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 100 mW input power | 8.00 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 80.2 mW /g ± 23.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.27 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 22.8 mW /g ± 22.2 % (k=2) | Certificate No: Z16-97177 Page 5 of 14 Page 105 / 116 V2.0 Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.7 ± 6 % | 6.02 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL at 5750 MHz | SAR averaged over 1 $\ cm^3$ (1 g) of Body TSL | Condition | | |--|--------------------|---------------------------| | SAR measured | 100 mW input power | 7.44 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 74.6 mW /g ± 23.0 % (k=2) | | SAR averaged over 10 ${\it cm}^3$ (10 g) of Body TSL | Condition | | | SAR measured | 100 mW input power | 2.09 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 mW /g ± 22.2 % (k=2) | Certificate No: Z16-97177 Page 6 of 14 Page 106 / 116 V2.0 ### **Appendix** # Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 48.5Ω - 4.92jΩ | |--------------------------------------|----------------| | Return Loss | - 25.7dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | $53.9\Omega + 3.36j\Omega$ | | |--------------------------------------|----------------------------|--| | Return Loss | - 26.1dB | | # Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 53.7Ω - 2.28jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 27.6dB | | ### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 47.7Ω - 4.46jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 25.8dB | | # Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 53.3Ω + 3.72jΩ | |--------------------------------------|----------------| | Return Loss | - 26.4dB | ### Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 55.5Ω - 1.18jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 25.5dB | | Certificate No: Z16-97177 Page 7 of 14 Page 107 / 116 V2.0 # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.307 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: Z16-97177 Page 8 of 14 Page 108 / 116 V2.0 Date: 10.09.2016 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1180 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Medium parameters used: f = 5250 MHz; σ = 4.622 mho/m; ϵ r = 36.31; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 4.977 mho/m; ϵ r = 35.97; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 5.119 mho/m; ϵ r = 35.91; ρ = 1000 kg/m3, Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY5 Configuration: - Probe: EX3DV4 SN3801; ConvF(4.88,4.88,4.88); Calibrated: 2016/6/29, ConvF(4.42,4.42,4.42); Calibrated: 2016/6/29, ConvF(4.29,4.29,4.29); Calibrated: 2016/6/29. - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2016/8/22 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.77 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 34.6 W/kg SAR(1 g) = 7.72 W/kg; SAR(10 g) = 2.18 W/kg Maximum value of SAR (measured) = 18.8 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.56 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 36.6 W/kg SAR(1 g) = 8.11 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 20.4 W/kg Certificate No: Z16-97177 Page 9 of 14 Page 109 / 116 V2.0 Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.62 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 36.9 W/kg SAR(1 g) = 7.95 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 19.8 W/kg 0 dB = 19.8 W/kg = 12.97 dBW/kg Certificate No: Z16-97177 Page 10 of 14 Page 110 / 116 V2.0 # Impedance Measurement Plot for Head TSL Certificate No: Z16-97177 Page 11 of 14 Page 111 / 116 V2.0 Date: 10.10.2016 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1180 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Medium parameters used: f = 5250 MHz; σ = 5.436 mho/m; ϵ r = 49.32; ρ = 1000 kg/m3, Medium parameters used: f = 5600 MHz; σ = 5.846 mho/m; ϵ r = 48.86; ρ = 1000 kg/m3, Medium parameters used: f = 5750 MHz; σ = 6.015 mho/m; ϵ r = 48.72; ρ = 1000 kg/m3, Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY5 Configuration: - Probe: EX3DV4 SN3801; ConvF(4.25,4.25,4.25); Calibrated: 2016/6/29, ConvF(3.44,3.44,3.44); Calibrated: 2016/6/29, ConvF(3.57,3.57,3.57); Calibrated: 2016/6/29, - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn777; Calibrated: 2016/8/22 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/3 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372) Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 62.79 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 30.6 W/kg SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.12 W/kg Maximum value of SAR (measured) = 17.3 W/kg Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.19 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 31.7 W/kg SAR(1 g) = 8 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 18.6 W/kg Certificate No: Z16-97177 Page 12 of 14 Page 112 / 116 V2.0 Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.13 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 31.2 W/kg SAR(1 g) = 7.44 W/kg; SAR(10 g) = 2.09 W/kg Maximum value of SAR (measured) = 18.3 W/kg 0 dB = 18.3 W/kg = 12.62 dBW/kg Certificate No: Z16-97177 Page 13 of 14 Page 113 / 116 V2.0 # Impedance Measurement Plot for Body TSL Certificate No: Z16-97177 Page 14 of 14 Page 114 / 116 V2.0 # **ANNEX C: Test Layout** Picture C.1: Specific Absorption Rate Test Layout Picture C.3: Liquid depth in the flat Phantom (2450 MHz) (15.2cm deep) Page 115 / 116 V2.0 Picture C.4: Liquid depth in the flat Phantom (5GHz) (15.2cm deep) -----END OF REPORT----- Page 116 / 116 V2.0