FCC TEST REPORT				
	FCC ID: 2AAVD-D1031C8			
Report No.	: SSP24040119-2E			
Applicant	: Shenzhen Loyal Electronics Co., Ltd.			
Product Name	: WIRELESS MOUSE			
Model Name	: D1031C8B			
Test Standard	: FCC Part 15.249			
Date of Issue	: 2024-06-11			
	CCUT			
	nzhen CCUT Quality Technology Co., Ltd.			
	hnology Industrial Park, Yutang Street, Guangming District, Shenzhen, (Tel.:+86-755-23406590 website: www.ccuttest.com)			
This test report is limited to the ab	oove client company and the product model only. It may not be duplicated rmitted by Shenzhen CCUT Quality Technology Co., Ltd.			

Г

Test Report Basic Information

Applicant:	Shenzhen Loyal Electronics Co., Ltd. No.5, First Industry Park, Shanmen Songgang, Baoan, Shenzhen, Guangdong,		
Address of Applicant	China		
Manufacturer: Address of Manufacturer:	Shenzhen Loyal Electronics Co., Ltd. No.5, First Industry Park, Shanmen Songgang, Baoan, Shenzhen, Guangdong, China		
Product Name:	WIRELESS MOUSE		
Brand Name:	-		
Main Model	D1031C8B		
Series Models	-		
	FCC Part 15 Subpart C		
	ANSI C63.4-2014		
Test Standard	ANSI C63.10-2013		
Date of Test	2024-04-15 to 2024-05-23		
Test Result	PASS		
Tested By:	Colin Chen (Colin Chen) Lieber Ouyang) (Lieber Ouyang)		
Reviewed By			
Authorized Signatory	Lahm Peng (Lahm Peng)		
Note : This test report is limited	to the above client company and the product model only. It may not be		
duplicated without prior permit	ted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in		
this test report is only applicabl	e to presented test sample.		

CONTENTS

1. General Information	-
1.1 Product Information	5
1.2 Test Setup Information	6
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	9
3. Antenna Requirement	10
3.1 Standard and Limit	10
3.2 Test Result	10
4. Conducted Emissions	11
4.1 Standard and Limit	11
4.2 Test Procedure	11
4.3 Test Data and Results	12
5. Radiated Emissions	15
5.1 Standard and Limit	
5.2 Test Procedure	
5.3 Test Data and Results	17
6. Band-edge Emissions	22
6.1 Standard and Limit	
6.2 Test Procedure	
6.3 Test Data and Results	22
7. Occupied Bandwidth	24
7.1 Standard and Limit	24
7.2 Test Procedure	24
7.3 Test Data and Results	24

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2024-06-11	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	WIRELESS MOUSE	
Trade Name:	-	
Main Model:	D1031C8B	
Series Models:	-	
Rated Voltage:	DC 3.7V by battery, USB 5V charging	
Battery:	1.85Wh (3.7V, 500mAh)	
Hardware Version:	V02	
Software Version:	V1.0	
Note 1: The test data is gathered from a production sample, provided by the manufacturer.		

Wireless Specification	
Wireless Standard:	2.4GHz RF
Operating Frequency:	2405MHz ~2470MHz
Quantity of Channel:	16
Channel Separation:	2MHz
Modulation:	GFSK
Antenna Gain:	0dBi
Type of Antenna:	PCB Antenna
Type of Device:	Portable Device 🗌 Mobile Device 🗌 Modular Device

1.2 Test Setup Information

List of Test Modes						
Test Mode	Description			Remark		
TM1	Tra	insmitting		2405/2440/2470MHz		
TM2	C	Charging		AC 120V/60Hz		
List and Detail	ls of Auxiliary	/ Cable				
Descrip	cription Length (cm)			Shielded/Unshielded	With/Without Ferrite	
USB Ca	able	60		Unshielded	Without Ferrite	
-		-		-	-	
List and Details of Auxiliary Equipment						
Descrip	otion	Manufacturer		Model	Serial Number	
Adap	ter	Huawei		HW-100225C00	HC78E2N6A23645	
-		-		-	-	

No. of Channel	Frequency (MHz)	No. of Channel	Frequency (MHz)
01	2405	11	2450
02	2409	12	2455
03	2413	13	2460
04	2417	14	2465
05	2422	15	2467
06	2426	16	2470
07	2430	-	-
08	2435	-	-
09	2440	-	-
10	2445	-	-

1.3 Compliance Standards

Compliance Standards			
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
rec rait 15 Subpart C	Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test	nethodology		
FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,			
FCC Part 15 Subpart C	Intentional Radiators		
	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40		
GHz.			
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI C63.10-2015	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.	
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,	
	Guangming District, Shenzhen, Guangdong, China	
CNAS Laboratory No.:	L18863	
A2LA Certificate No.:	6893.01	
FCC Registration No:	583813	
ISED Registration No.:	CN0164	
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing		
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.		

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date	
Conducted Emissions						
AMN	ROHDE&SCHWARZ	ENV216	101097	2023-10-21	2024-10-20	
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2023-07-31	2024-07-30	
		Radiated Emissio	ons			
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2023-07-31	2024-07-30	
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2023-07-31	2024-07-30	
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2023-07-31	2024-07-30	
Amplifier	SCHWARZBECK	BBV 9743B	00251	2023-07-31	2024-07-30	
Amplifier	HUABO	YXL0518-2.5-45		2023-07-31	2024-07-30	
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2023-07-31	2024-07-30	
Loop Antenna	DAZE	ZN30900C	21104	2023-08-07	2024-08-06	
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2023-08-07	2024-08-06	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2023-08-07	2024-08-06	
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2023-08-07	2024-08-06	
Conducted RF Testing						
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2023-07-31	2024-07-30	
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2023-07-31	2024-07-30	

1.5 List of Measurement Instruments

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
Radiated Emissions	9kHz ~ 30MHz	±2.88 dB
	30MHz ~ 1GHz	±3.32 dB
	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %

2. Summary of Test Results

FCC Rule	Description of Test Item	Result					
FCC Part 15.203	Antenna Requirement	Passed					
FCC Part 15.207	Conducted Emissions	Passed					
FCC Part 15.209, 15.249(a)&(d)	Radiated Emissions	Passed					
FCC Part 15.249(d)	Band-edge Emissions	Passed					
FCC Part 15.215(c)	Occupied Bandwidth	Passed					
Passed: The EUT complies with the essential requirements in the standard							
Failed: The EUT does not comply with the essential requirements in the standard							
N/A: Not applicable							

3. Antenna Requirement

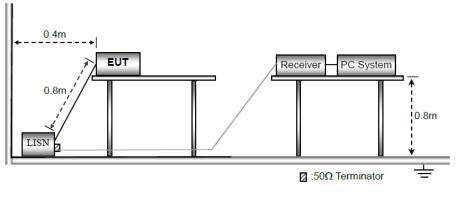
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an PCB antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)						
(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56	56 to 46					
0.5-5	56	46					
5-30 60 50							
Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz							
Note 2: The lower limit applies at the band edges							

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

All of the modes have been tested, the EUT complied with the FCC Part 15.07 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Test	Plo	ts and Data o	of Conduc	ted Emissi	ons								
Test	ed I	Mode:		TM2									
Test	Vol	tage:		AC 120V/60Hz									
Test	Pov	wer Line:		Neutral	Neutral								
Rem	nark												
90.0		lBu¥											
JU.U													
80									_				
70													
60										FCC Part15 CE-Class B_Q	P		
50	<u> </u>									FCC Part15 CE-Class B_A	Ve		
50													
40		Å .	3	5									
30	[]	LAAM	MAM	1 M 1	Nuch and the	. 9				11			
30			W Y Y V V	4 V V V	Manu Aur Law Ma	anter Via de Martin	Ver work	Mar Mark	m m	and the surprise with the surprise of the surp			
20	\vdash	1 MAR	A	Mr. Mar	-	methin 11	<u>'\/' '\\</u> D	(* ' *	_	12	Wy		
10						····	m	AN	ΛN		Mary .		
10										Mun	peak		
0	-										AVG		
-10													
0.	150		0.5	00		(MHz)		5.0)00		30.000		
No	D .	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark			
1		0.1860	31.22	9.39	40.61	64.21	-23.60	QP	Р				
2		0.1860	16.84	9.39	26.23	54.21	-27.98	AVG	Ρ				
3		0.3660	26.70	9.54	36.24	58.59	-22.35	QP	P				
4		0.3660	12.85	9.54	22.39	48.59	-26.20	AVG	P				
5		0.6315	28.19	9.68	37.87	56.00	-18.13	QP	P				
6		0.6315	12.24 23.63	9.68 10.01	21.92 33.64	46.00 56.00	-24.08 -22.36	AVG QP	P P				
8		1.2300	10.74	10.01	20.75	46.00	-22.30	AVG	P				
9		2.3505	20.06	10.01	30.12	56.00	-25.88	QP	P				
10		2.3505	4.73	10.06	14.79	46.00	-31.21	AVG	P				
11	1	9.8700	19.67	10.25	29.92	60.00	-30.08	QP	Ρ				
12	2	9.8700	4.95	10.25	15.20	50.00	-34.80	AVG	Р				

Test	Plc	ots and D	Data	of Co	ondı	ıcte	d E	mis	ssic	ons																	
Test	ed I	Mode:				TI	ГМ2																				
Test	Vo	ltage:				A	AC 120V/60Hz																				
Test	Po	wer Line	e:			Li	ve																				
Rem	ark	κ:																									
90.0		dBu¥																									
80									+							_				+							
70									_																		
																			FCC	C Pa	d15	5 CE-I	Class	вQ	P		
60									+															_			
50	_								+										FCC	: Pa	e15	i CE-	Class	<u>B_</u> A	Ve		
40		1 3					_																				
		Λ	A A		~ .		-5 A			7								9			1	1					
30	\rightarrow	3 4	v yn	WY	WW	W	6	syde	star	7 ***/,1, 8	M	MMMM	August	n.	а.	Aust	w	Ŵ	rwn	m	M	m	Man.				
20	⊢	ηı	Λr	h	\sim	w	Ŵ,	Au	~~~~	8 4	~~~			· ····	www.	Mark M		10		_			~~~v	mu	hay		
10												gernen ben	have they	1963-94 Juny	m	M	hr	X	Λh	da	M	2 MM	has		Y	Whyte	peak AVG
																		ľ						n w	M	h.u.h	
0	-								+				-							+						addiaa	AVG
-10	150				0	.500							MHz)				.000	Ц								30.00	0
	150				U	. 900							(4112)			5.	.000									50.00	
No	b .	Freque (MHz			adin BuV			ctoi B)	r	Lev (dBu			mit 8uV)	Mar (dE	gin 3)	Detecto	or P	P/F	R	ema	ark						
1		0.181			0.30			02		39.3			.42	-25.		QP	_	P									
2		0.181			5.73			02		24.7			.42	-29.		AVG	_	P									
3		0.235			8.93 5.53			36 36	+	38.2 24.8			.26 .26	-23. -27.		QP AVG		P P									
5		0.640			5.44			90	+	35.3			.20	-20.		QP		P									
6		0.640			3.65			90		23.5			.00	-22.		AVG		P									
7		1.036	3	2	2.22		9.	98		32.2	20	56	.00	-23.	80	QP		P									
8		1.036			0.66			98		20.6			.00	-25.		AVG		P									
9		6.409			9.23			.25	_	29.4			.00	-30.		QP		P									
10		6.409			1.06			.25	_	14.3			.00	-35.		AVG		P									
11		10.972			0.08 3.61			.10 .10		30.1 13.7			.00 .00	-29. -36.		QP AVG		P P									
	•	10.512	20				10	. 10		10.1		00		-00.	23	AVU		·									

5. Radiated Emissions

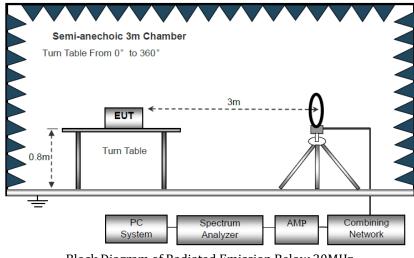
5.1 Standard and Limit

According to §15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

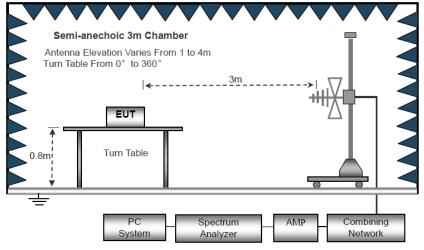
Fundamental frequency	Field strength of fundamental	Field strength of Harmonics		
Fundamental frequency	(milli-volts/meter)	(micro-volts/meter)		
902-928 MHz	50	500		
2400-2483.5 MHz	50	500		
5725-5875 MHz	50	500		
24.0-24.25 GHz	250	2500		

According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

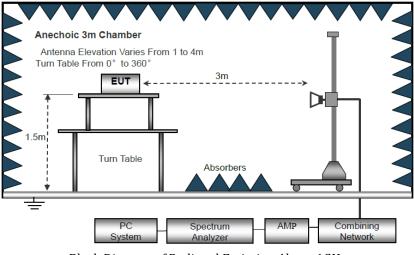
According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:


Encourage of amiggion (MHz)	Radiated emissions (3m)					
Frequency of emission (MHz)	Quasi-peak (dBuV/m)					
30-88	40					
88-216	43.5					
216-960	46					
Above 960	54					
Note: The more stringent limit applies at transition frequencies.						

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

5.2 Test Procedure


Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

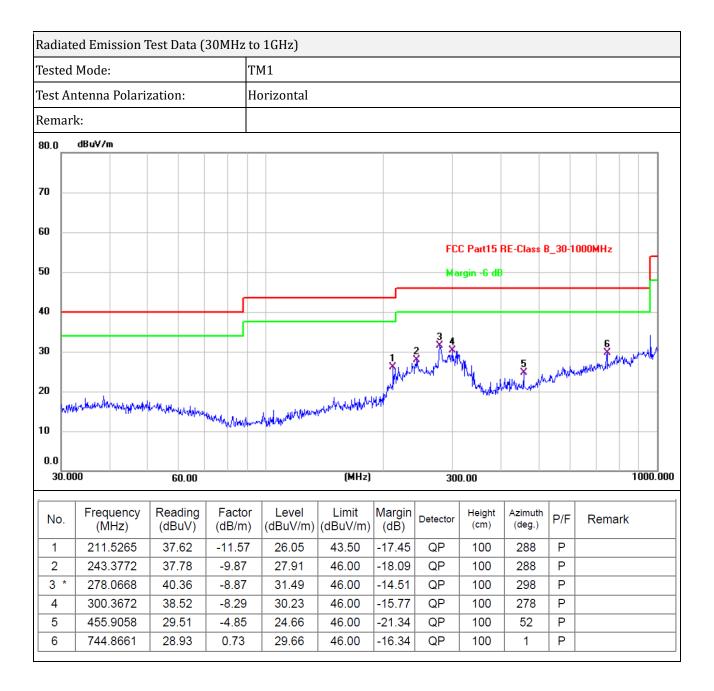
Block Diagram of Radiated Emission Above 1GHz

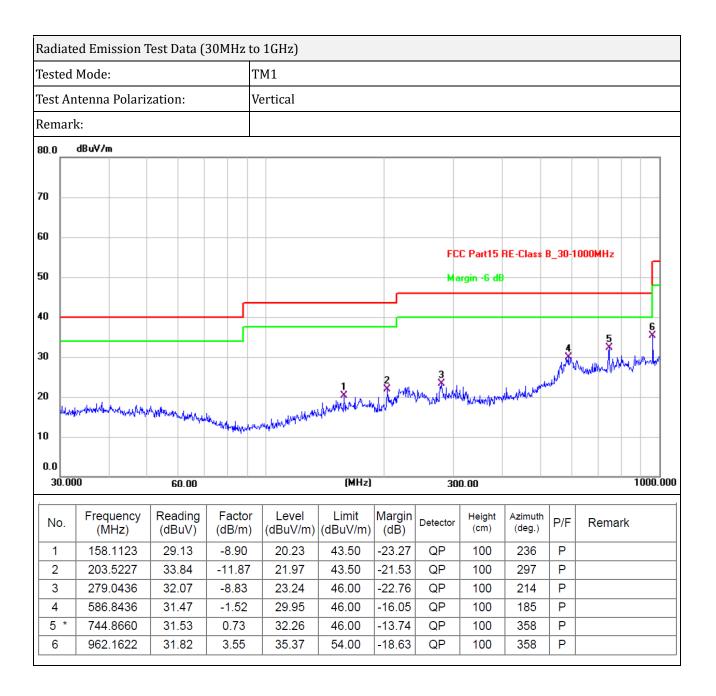
a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.


e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.


f) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

All of the modes have been tested, the EUT complied with the FCC Part 15.249 standard limit for a wireless device, and with the worst case 2405MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

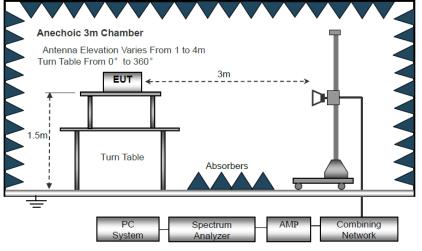
Radiated Em	ission Test Dat	ta (Above 1GH	z)							
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector			
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV			
Lowest Channel (2405MHz)										
2405	112.74	-20.7	92.04	114	-21.96	Н	РК			
2405	94.75	-20.7	74.05	94	-19.95	Н	AV			
4810	76.32	-14.72	61.6	74	-12.4	Н	РК			
4810	60.03	-14.72	45.31	54	-8.69	Н	AV			
7215	64.13	-8.41	55.72	74	-18.28	Н	РК			
7215	47.16	-8.41	38.75	54	-15.25	Н	AV			
2405	108.99	-20.89	88.1	114	-25.9	V	РК			
2405	99.72	-20.89	78.83	94	-15.17	V	AV			
4810	74.24	-14.72	59.52	74	-14.48	V	РК			
4810	58.02	-14.72	43.3	54	-10.7	V	AV			
7215	65.88	-8.41	57.47	74	-16.53	V	РК			
7215	49.43	-8.41	41.02	54	-12.98	V	AV			
			Middle Chann	el (2440MHz)						
2440	108.05	-20.7	87.35	114	-26.65	Н	РК			
2440	87.8	-20.7	67.1	94	-26.9	Н	AV			
4880	79.19	-14.64	64.55	74	-9.45	Н	РК			
4880	60.43	-14.64	45.79	54	-8.21	Н	AV			
7320	65.22	-8.28	56.94	74	-17.06	Н	РК			
7320	49.72	-8.28	41.44	54	-12.56	Н	AV			
2440	107.18	-20.55	86.63	114	-27.37	V	РК			
2440	88.38	-20.55	67.83	94	-26.17	V	AV			
4880	74.31	-14.64	59.67	74	-14.33	V	РК			
4880	59.6	-14.64	44.96	54	-9.04	V	AV			
7320	64.22	-8.28	55.94	74	-18.06	V	РК			
7320	46.39	-8.28	38.11	54	-15.89	V	AV			

Radiated Emission Test Data (Above 1GHz)									
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector		
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV		
Highest Channel (2470MHz)									
2470	102.56	-20.89	81.67	114	-32.33	Н	РК		
2470	98.55	-20.89	77.66	94	-16.34	Н	AV		
4940	79.37	-14.53	64.84	74	-9.16	Н	РК		
4940	62.5	-14.53	47.97	54	-6.03	Н	AV		
7410	65.37	-8.13	57.24	74	-16.76	Н	РК		
7410	46.96	-8.13	38.83	54	-15.17	Н	AV		
2470	106.73	-20.7	86.03	114	-27.97	V	РК		
2470	95.06	-20.7	74.36	94	-19.64	V	AV		
4940	74.07	-14.53	59.54	74	-14.46	V	РК		
4940	58.58	-14.53	44.05	54	-9.95	V	AV		
7410	65.22	-8.13	57.09	74	-16.91	V	РК		
7410	50.93	-8.13	42.8	54	-11.2	V	AV		

Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded in report. 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.


6. Band-edge Emissions

6.1 Standard and Limit

According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.249 standard limit, and with the worst case as below:

Test Mode	Frequency	Limit	Result
Test Mode	MHz	dBuV/dBc	Kesuit
Louvoat	2310.00	<54 dBuV	Pass
Lowest	2390.00	<54 dBuV	Pass
Uisheat	2483.50	<54 dBuV	Pass
Highest	2500.00	<54 dBuV	Pass

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
		Lo	west Channel	GFSK (2405MI	Hz)		_
2310	68.66	-21.34	47.32	74	-26.68	Н	РК
2310	50.71	-21.34	29.37	54	-24.63	Н	AV
2390	67.95	-20.96	46.99	74	-27.01	Н	РК
2390	50.23	-20.96	29.27	54	-24.73	Н	AV
2400	73.25	-20.91	52.34	74	-21.66	Н	РК
2400	56.73	-20.91	35.82	54	-18.18	Н	AV
2310	66.96	-21.34	45.62	74	-28.38	V	РК
2310	50.59	-21.34	29.25	54	-24.75	V	AV
2390	68.7	-20.96	47.74	74	-26.26	V	РК
2390	49.61	-20.96	28.65	54	-25.35	V	AV
2400	67.51	-20.91	46.6	74	-27.4	V	РК
2400	52.95	-20.91	32.04	54	-21.96	V	AV
		Hig	ghest Channel	GFSK (2470M)	Hz)		
2483.50	71.4	-20.51	50.89	74	-23.11	Н	РК
2483.50	55.39	-20.51	34.88	54	-19.12	Н	AV
2500	69.89	-20.43	49.46	74	-24.54	Н	РК
2500	49.21	-20.43	28.78	54	-25.22	Н	AV
2483.50	68.77	-20.51	48.26	74	-25.74	V	РК
2483.50	56.79	-20.51	36.28	54	-17.72	V	AV
2500	69.22	-20.43	48.79	74	-25.21	V	РК
2500	51.42	-20.43	30.99	54	-23.01	V	AV

7. Occupied Bandwidth

7.1 Standard and Limit

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

7.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 43kHz, VBW = 120kHz, Sweep = Auto.

4) Set a reference level on the measuring instrument equal to the highest peak value.

5) Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.

6) Repeat the above procedures until all frequencies measured were complete.

All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down and 99% bandwidth of the emission.

Test Setup Block Diagram

7.3 Test Data and Results

Test Channel	Test Frequency	20dB Bandwidth (MHz)	99% Bandwidth (MHz)		
Lowest Channel	2405MHz	2.430	2.0555		
Middle Channel	2440MHz	2.278	2.0471		
Highest Channel	2470MHz	2.369	2.0408		

***** END OF REPORT *****