

FCC TEST REPORT

Product Name: 3D Excavator Guidance System

Report No.: 24102114225RFC-1

Trade Mark: FJDynamics Model No.: G31 Pro

Report Number: 24102114225RFC-1

Test Standards: FCC 47 CFR Part 15 Subpart C

FCC ID: 2A2LL-G31PRO

Test Result: PASS

Date of Issue: February 8, 2025

Prepared for:

FJ Dynamics Co., Ltd.
21F, Das Tower, No. 28, 1st South Keji Road, Nanshan District,
Shenzhen, China

Prepared by:

Shenzhen UnionTrust Quality and Technology Co., Ltd.
16/F, Block A, Building 6th, Baoneng Science and Technology Park,
Longhua Street, Longhua District, Shenzhen, China

TEL: +86-755-2823 0888 FAX: +86-755-2823 0886

Prepared by:	Parid Chen	Reviewed by:	
	David Chen		Henry Lu
	Senior Project Engineer		Team Leader
Approved by:	Robben chen	Date:	February 8, 2025
	Robben Chen		
	Assistant Manager		

Version

Version No.	Date	Description
V1.0	February 8, 2025	Original

CONTENTS

1.	GENERAL INFORMATION				
	1.1	CLIENT INFORMATION			
	1.2	EUT Information			
		1.2.1 GENERAL DESCRIPTION OF EUT	4		
		1.2.2 DESCRIPTION OF ACCESSORIES			
	1.3	PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	!		
	1.4	OTHER INFORMATION	5		
	1.5	DESCRIPTION OF SUPPORT UNITS			
	1.6	TEST LOCATION			
	1.7	TEST FACILITY			
	1.8	DEVIATION FROM STANDARDS			
	1.9	ABNORMALITIES FROM STANDARD CONDITIONS			
	1.11	MEASUREMENT UNCERTAINTY	6		
2.	TEST	SUMMARY	7		
3.		PMENT LIST			
		CONFIGURATION			
	4.1				
	4.2				
	4.2				
	4.3 4.4				
	4.4				
	4.5				
	4.6	DUTY CYCLE			
_	_				
5.	KADI				
	5.1	REFERENCE DOCUMENTS FOR TESTING	14		
	5.2	ANTENNA REQUIREMENT			
	5.3	CONDUCTED PEAK OUTPUT POWER			
	5.4	6 dB Bandwidth			
	5.5	Power Spectral Density			
	5.6				
	5.7				
	5.8	BAND EDGE MEASUREMENTS (RADIATED)	AL DESCRIPTION OF EUT PTION OF ACCESSORIES 4 PTION OF ACCESSORIES 4 IFICATION SUBJECTIVE TO THIS STANDARD ATION. 5 FSUPPORT UNITS 5 SUPPORT UNITS 6 STANDARDS 5 FROM STANDARD CONDITIONS ATION REQUESTED BY THE CUSTOMER 6 UNCERTAINTY 6 UNCERTAINTY 6 CONDITIONS FOR TESTING 6 OF NORMAL ENVIRONMENT AND TEST SAMPLE 5 S. 6 US 7 US 8 DIATED EMISSIONS TEST SETUP 8 NUDUCTED EMISSION TEST SETUP 8 NUDUCTED REST SETUP 8 10 NUT OF A STANDARD SETUP 8 10 NUT OF A STANDARD SETUP 9 10 NUT OF A STANDARD SETUP 10 NUT OF A STANDARD SETUP 11 NUT OF BANDEMISSION 12 NUT OF BANDEMISSION 13 NUT OF BANDEMISSION 14 NUT OF BANDEMISSION 15 NUT OF BANDEMISSION 16 NUT OF A STANDARD SETUP 17 OF BANDEMISSION 18 NUT OF BANDEMISSION 18 NUT OF BANDEMISSION 19 NUT OF BANDEMISSION 10 NUT OF BANDEMISSION 11 NUT OF BANDEMISSION 12 NUT OF BANDEMISSION 13 NUT OF BANDEMISSION 14 NUT OF BANDEMISSION 15 NUT OF BANDEMISSION 16 NUT OF THE STANDARD SETUP 17 OF BANDEMISSION 18 NUT OF BANDEMISSION 19 NUT OF BANDEMISSION 10 NUT OF THE STANDARD SETUP 11 NUT OF BANDEMISSION 12 NUT OF BANDEMISSION 13 NUT OF STANDARD SETUP 14 NUT OF BANDEMISSION 15 NUT OF STANDARD SETUP 16 NUT OF STANDARD SETUP 17 NUT OF BANDEMISSION 18 NUT OF STANDARD SETUP 18 NUT OF STANDARD SETUP 19 NUT OF STANDARD SETUP 10 NUT OF STANDARD SETUP 10 NUT OF STANDARD SETUP 11 NUT OF STANDARD SETUP 12 NUT OF STANDARD SETUP 13 NUT OF STANDARD SETUP 14 NUT OF STANDARD SETUP 16 NUT OF STANDARD SETUP 17 NUT OF STANDARD SETUP 18 NUT OF STANDARD SETUP 19 NUT OF STANDARD SETUP 10 NUT OF STANDARD SETUP 10 NUT OF STANDARD SETUP 11 NUT OF STANDARD SETUP 11 NUT OF STANDARD SETUP 12 NUT OF STANDARD SETUP 14 NUT OF STANDARD SETUP 15 NUT OF STANDARD SETUP 16 NUT OF STANDARD SETUP 17 NUT OF STANDARD SETUP 18 NUT OF STANDARD SETUP 19 NUT OF STANDARD		
APF	PENDI	X A RF TEST DATA	26		
		Card Decomposition	~		
	A.1				
	A.2				
	A.3 A.1				
	A.1 A.2				
	_				
		X 1 PHOTOS OF TEST SETUP X 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS			

Page 4 of 39 Report No.: 24102114225RFC-1

1. GENERAL INFORMATION 1.1 CLIENT INFORMATION

Applicant:	FJ Dynamics Co., Ltd.
Address of Applicant:	21F, Das Tower, No. 28, 1st South Keji Road, Nanshan District, Shenzhen, China
Manufacturer:	FJ Dynamics Co., Ltd.
Address of Manufacturer:	21F, Das Tower, No. 28, 1st South Keji Road, Nanshan District, Shenzhen, China

1.2 EUT INFORMATION

General Description of EUT

Product Name:	3D Excavator Guidar	nca Systam				
Model No.:		G31 Pro				
Trade Mark:	FJDynamics	FJDynamics				
DUT Stage:	Identical Prototype					
	2.4 GHz ISM Band:	IEEE 802.11b/g/n				
	2.4 GHZ ISIVI Ballu.	Bluetooth 5.0				
EUT Supports Function:	Radio Rx Band:	902-928MHz				
(Provided by the customer)		1164-1300 MHz	GPS/ Galileo			
	RNSS Rx Bands: 1559-10	1559-1610 MHz	GPS/ Galileo/ GLONASS/ BDS/ SBAS			
Software Version:	V1.3 (Provided by the	e customer)				
Hardware Version:	V1.1 (Provided by the	V1.1 (Provided by the customer)				
Sample Received Date: October 21, 2024						
Sample Tested Date:	October 30, 2024 to	November 28, 2024				
Remark:						

The above EUT's information was provided by customer. Please refer to the specifications or user's manual for more detailed description.

1.2.2 **Description of Accessories**

Optional Accessory:

- GNSS Antenna x 2
- Wi-Fi/BT Antenna x 1
- 902-928MHz RX Antenna x 1
- DC Power Cable x 1
- Sensor x 4
- DC Cable x 1
- Ethernet Cable x 1
- Other metal structural parts

Page 5 of 39 Report No.: 24102114225RFC-1

1.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2402 MHz to 2480 MHz
Bluetooth Version:	Bluetooth LE
Type of Modulation:	GFSK
Number of Channels:	40
Channel Separation:	2 MHz
Antenna Type: (Provided by the customer)	External Antenna
Antenna Gain: (Provided by the customer)	2.86 dBi
Maximum Peak Power:	2.21 dBm
Normal Test Voltage:	12 Vdc

1.4 OTHER INFORMATION

Operation Frequency Each of Channel				
f = 2402 + 2k MHz, k = 0,,39				
Note:				
f is the operating frequency (MHz);				
k	is the operating channel.			

1.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested with associated equipment below.

1) Support Equipment

Description Manufacturer		Model No.	Serial Number	Supplied by
Notebook	HUAWVEI	KLVF-16	CUCBB22B14800595	UnionTrust
Mouse	DELL	MS111	CN-011D3V-738	UnionTrust

2) Support Cable

Cable No.	Description	Connector	Length	Supplied by	
1	Antenna Cable	SMA	0.3 Meter	UnionTrust	

1.6 TEST LOCATION

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Address: 16/F, Block A, Building 6th, Baoneng Science and Technology Park, Longhua Street, Longhua District,

Shenzhen, China

Telephone: +86 (0) 755 2823 0888 Fax: +86 (0) 755 2823 0886

1.7 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L9069

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

Report No.: 24102114225RFC-1

A2LA-Lab Certificate No.: 4312.01

Shenzhen UnionTrust Quality and Technology Co., Ltd. has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED Wireless Device Testing Laboratories

CAB identifier: CN0032

FCC Accredited Lab.

Designation Number: CN1194

Test Firm Registration Number: 259480

1.8 DEVIATION FROM STANDARDS

None.

1.9 ABNORMALITIES FROM STANDARD CONDITIONS

None.

1.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER

None.

1.11 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Measurement Uncertainty	
1	Conducted emission 9kHz-150kHz	±3.2 dB	
2	Conducted emission 150kHz-30MHz	±2.7 dB	
3	Radiated emission 9kHz-30MHz	±4.7 dB	
4	Radiated emission 30MHz-1GHz	±4.6 dB	
5	Radiated emission 1GHz-18GHz	±4.4 dB	
6	Radiated emission 18GHz-26GHz	±4.6 dB	
7	Radiated emission 26GHz-40GHz	±4.6 dB	
8	Conducted spurious emissions	± 2.7 dB	
9	RF Power, Conducted	± 0.68 dB	
10	Occupied Bandwidth	± 1.86 %	
11	Radio Frequency	2.4 GHz: ± 6.5 x 10 ⁻⁸	
12	Transmission Time	± 0.19 %	

2. TEST SUMMARY

FCC 47 CFR Part 15 Subpart C Test Cases					
Test Item	Test Requirement	Test Method	Result		
Antenna Requirement	FCC 47 CFR Part 15 Subpart C Section 15.203/15.247 (b)	N/A	PASS		
AC Power Line Conducted Emission	FCC 47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013 Clause 6.2	N/A (Note 1,2)		
Conducted Peak Output Power	Conducted Peak FCC 47 CFR Part 15 Subpart C Section		PASS		
6dB Bandwidth	FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(2)				
Power Spectral Density	FCC 47 CFR Part 15 Subpart C Section ANSI C63.10-2013 15.247 (e) Clause 11.10.2		PASS		
Conducted Out of Band Emission	FCC 47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013 Clause 11.11	PASS		
Radiated Spurious Emissions	FCC 47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013 Clause 11.11 & Clause 11.12	PASS		
Band Edge Measurements (Radiated)	rements FCC 47 CFR Part 15 Subpart C Section ANSI Cb3.10-20		PASS		

Note:

- 1) N/A: In this whole report not applicable.
- 2) The product is powered by the car battery.

Disclaimer and Explanations:

The declared of product specification and data (e.g., antenna gain, RF specification, etc) for EUT presented in the report are provided by the customer, and the customer takes all the responsibilities for the accuracy of product specification.

3. EQUIPMENT LIST

	Radiated Emission Test Equipment List						
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date	
Ø	3m SAC	ETS-LINDGREN	ЗМ	Euroshiedpn- CT001270-13 17	11-Nov-2023	10-Nov-2026	
Ø	Receiver	R&S	ESIB26	100114	25-Oct-2024	24-Oct-2025	
Ø	Loop Antenna	ETS-LINDGREN	6502	00202525	28-Oct-2024	27-Oct-2025	
V	Broadband Antenna	ETS-LINDGREN	3142E	00201566	29-Oct-2024	28-Oct-2025	
Ø	6dB Attenuator	Talent	RA6A5-N- 18	18103001	29-Oct-2024	28-Oct-2025	
Ø	Preamplifier	HP	8447F	2805A02960	25-Oct-2024	24-Oct-2025	
Ø	Double-Ridged Waveguide Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3117-PA	00201541	01-Apr-2024	31-Mar-2025	
Ø	Pre-amplifier	ETS-LINDGREN	00118385	00201874	01-Apr-2024	31-Mar-2025	
Ø	Double-Ridged Waveguide Horn Antenna (Pre-amplifier)	ETS-LINDGREN	3116C-PA	00202652	28-Oct-2024	27-Oct-2025	
V	Pre-amplifier	ETS-LINDGREN	00118384	00202652	28-Oct-2024	27-Oct-2025	
V	Multi device Controller	ETS-LINDGREN	7006-001	00160105	N/A	N/A	
\square	Test Software	Audix	e3	Software Version: 9.160323			

	RF Conducted Test Equipment List								
Used	Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date			
	EXA Spectrum Analyzer	KEYSIGHT	N9010A	MY51440197	29-Mar-2024	28-Mar-2025			
Ø	EXA Spectrum Analyzer	KEYSIGHT	N9020A	MY51286807	25-Oct-2024	24-Oct-2025			
Ø	USB Wideband Power Sensor	KEYSIGHT	U2021XA	MY55430035	25-Oct-2024	24-Oct-2025			

4. TEST CONFIGURATION

4.1 ENVIRONMENTAL CONDITIONS FOR TESTING

4.1.1 Normal or Extreme Test Conditions

Environment Parameter	Selected Values During Tests						
Test Condition	Ambient						
rest Condition	Temperature (°C)	Voltage (V)	Relative Humidity (%)				
NT/NV	+15 to +35	12V Battery	20 to 75				
Remark: 1) NV: Normal Voltage; NT: Normal Temperature							

Report No.: 24102114225RFC-1

4.1.2 Record of Normal Environment and Test Sample

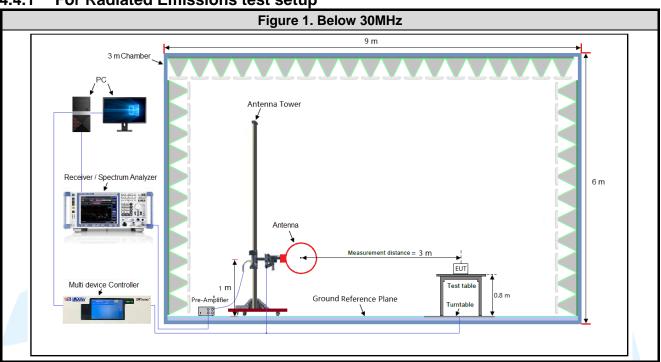
Test Item	Temp. (°C)	Relative Humidity (%)	Pressure (kPa)	Sample No.	Tested by
Conducted Peak Output Power					
6dB Bandwidth	24.6	45.8	100.4	S2024102114483-ZJB01/1	Allen Zhou
Power Spectral Density	24.0	45.0	100.4	32024102114463-23601/1	Allen Zhou
Conducted Out of Band Emission					
Radiated Spurious Emissions					Jackson
Band Edge Measurements (Radiated)	23.6	46.3	100.5	S2024102114483-ZJB01/1	Wu

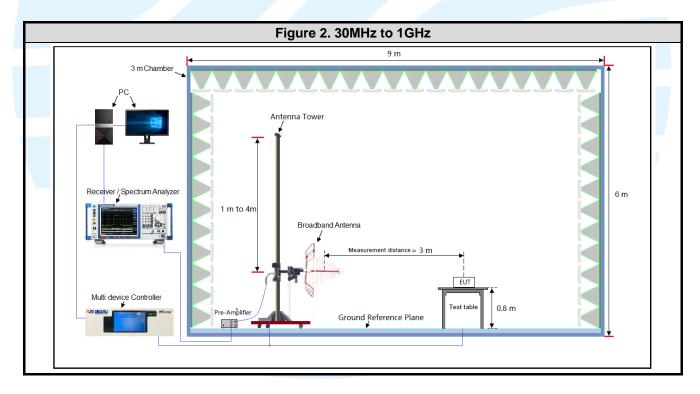
4.2 TEST CHANNELS

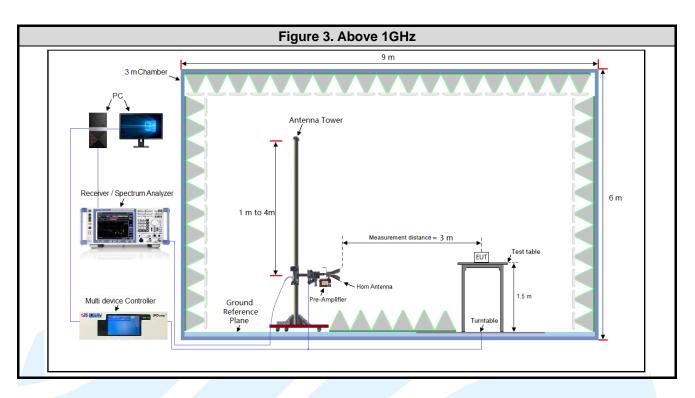
Type of Modulation	Tx/Rx Frequency	Test RF Channel Lists		
GFSK		Lowest(L)	Middle(M)	Highest(H)
	2402 MHz to 2480 MHz	Channel 0	Channel 19	Channel 39
		2402 MHz	2440 MHz	2480 MHz

4.3 EUT TEST STATUS

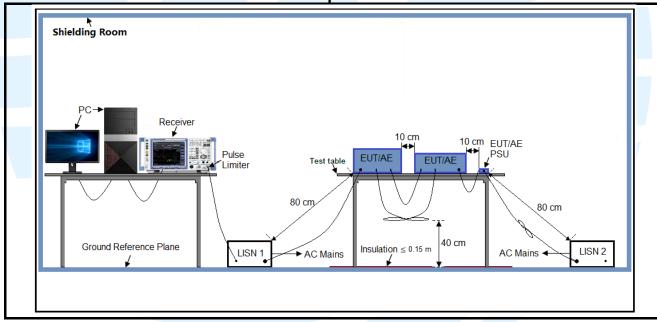
Type of Modulation	Tx Function	Description			
GFSK	1Tx	1. Keep the EUT in continuously transmitting with modulation test single.			

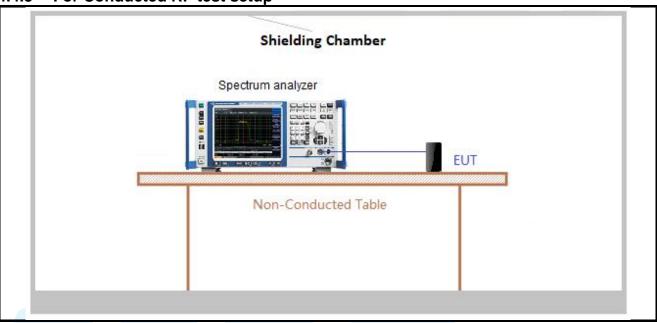

Power Setting (Provided by the customer)						
Channel 0	Channel 0 Channel 19 Channel 39					
7	12	6				


Test Software (Provided by the customer)					
Test Software: EspRFTestTool					


4.4 TEST SETUP

For Radiated Emissions test setup





4.4.2 For Conducted Emissions test setup

4.4.3 For Conducted RF test setup

4.5 SYSTEM TEST CONFIGURATION

For emissions testing, the equipment under test (EUT) setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, radiated emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario. It was powered by a 12V battery. Only the worst case data were recorded in this test report.

The signal is maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters. Radiated emissions are taken at three meters unless the signal level is too low for measurement at that distance. If necessary, a pre-amplifier is used and/or the test is conducted at a closer distance. Therefore, all final radiated testing was performed with the EUT in orientation.

All readings are extrapolated back to the equivalent three meter reading using inverse scaling with distance. Analyzer resolution is 100 kHz or greater for frequencies below 1000 MHz. The resolution is 1 MHz or greater for frequencies above 1000 MHz. The spurious emissions more than 20 dB below the permissible value are not reported.

Radiated emission measurement were performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

4.6 DUTY CYCLE

Test Procedure: ANSI C63.10-2013 Clause 11.6.

Test Results

Mode	On Time (msec)	Period (msec)	Duty Cycle (linear)	Duty Cycle (%)	Duty Cycle Factor (dB)	1/T Minimum VBW (kHz)
LE	2.100	2.505	0.84	83.83	0.77	0.48

Report No.: 24102114225RFC-1

Remark:

- 1) Duty cycle= On Time/ Period;
- 2) Duty Cycle factor = 10 * log(1/ Duty cycle);

The test plot as follows

Page 14 of 39 Report No.: 24102114225RFC-1

5. RADIO TECHNICAL REQUIREMENTS SPECIFICATION 5.1 REFERENCE DOCUMENTS FOR TESTING

No.	Identity	Document Title				
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations				
2	FCC 47 CFR Part 15	Radio Frequency Devices				
3	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices				
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules				

5.2 ANTENNA REQUIREMENT

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is on the External of the product and no consideration of replacement. The gain of the antenna is 2.86 dBi

Page 15 of 39 Report No.: 24102114225RFC-1

5.3 CONDUCTED PEAK OUTPUT POWER

Test Requirement: FCC 47 CFR Part 15 Subpart C Section15.247 (b)(3)

Test Method: ANSI C63.10-2013 Clause 11.9.1.3

Limit: For systems using digital modulation in the 2400-2483.5 MHz bands: 1 Watt.

Test Procedure: 1. Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the power meter.

2. Measure out each test modes' peak or average output power, record the power

level.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.4.3 for details. **Instruments Used:** Refer to section 3 for details

Test Results: Pass

Mode	Channel	Frequency	Max. Pea	ak Power	Peak Power Limit	Max. Avg. Power	Result
		(MHz)	(dBm)	(W)	(dBm)	(dBm)	
	0	2402	0.27	0.00106	30	-1.43	Pass
LE	19	2440	1.26	0.00134	30	-1.24	Pass
	39	2480	2.21	0.00166	30	-0.39	Pass

Note: The antenna gain of 2.86 dBi less than 6dBi maximum permission antenna gain value based on 1 watt peak output power limit.

Page 16 of 39 Report No.: 24102114225RFC-1

5.46 DB BANDWIDTH

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (a)(2)

Test Method: ANSI C63.10-2013 Clause 11.8.1

Limit: For direct sequence systems, the minimum 6dB bandwidth shall be at least 500kHz

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

b) Set the video bandwidth (VBW) ≥ 3 x RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental

emission.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.4.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode

Test Results: Please refer to Appendix A

Page 17 of 39 Report No.: 24102114225RFC-1

5.5 POWER SPECTRAL DENSITY

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247 (e)

Test Method: ANSI C63.10-2013 Clause 11.10.2

Limit: For digitally modulated systems, the power spectral density conducted from the

intentional radiator to the antenna shall not be greater than 8dBm in any 3kHz band

during any time interval of continuous transmission.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: 3 kHz ≤ RBW ≤ 100 kHz.

d) Set the VBW \geq 3 x RBW.

e) Detector = peak.

f) Sweep time = auto couple.g) Trace mode = max hold.

g) Trace mode = max hold.h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within

the RBW.

i) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.4.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode

Test Results: Please refer to Appendix A

Page 18 of 39 Report No.: 24102114225RFC-1

5.6 CONDUCTED OUT OF BAND EMISSION

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.247(d)

Test Method: ANSI C63.10-2013 Clause 11.11

Limit: In any 100kHz bandwidth outside the frequency bands in which the spread spectrum

intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the

band that contains the highest level of the desired power.

Test Procedure: Remove the antenna from the EUT and then connect a low loss RF cable from the

antenna port to the spectrum analyzer.

Use the following spectrum analyzer settings:

Step 1:Measurement Procedure REF

a) Set instrument center frequency to DTS channel center frequency.

b) Set the span to ≥ 1.5 times the DTS bandwidth.

c) Set the RBW = 100 kHz.

d) Set the VBW ≥ 3 x RBW.

e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum PSD level.

j) Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Step 2: Measurement Procedure OOBE

a) Set RBW = 100 kHz.

b) Set VBW ≥ 300 kHz.

c) Detector = peak.

d) Sweep = auto couple.

e) Trace Mode = max hold.

f) Allow trace to fully stabilize.

g) Use the peak marker function to determine the maximum amplitude level.

Note: The cable loss and attenuator loss were offset into measure device as an

amplitude offset.

Test Setup: Refer to section 4.4.3 for details. **Instruments Used:** Refer to section 3 for details

Test Mode: Link mode

Test Results: Please refer to Appendix A

Page 19 of 39 Report No.: 24102114225RFC-1

5.7 RADIATED SPURIOUS EMISSIONS

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209 **Test Method:** ANSI C63.10-2013 Clause 11.11 & Clause 11.12

Receiver Setup:

Frequency	RBW
0.009 MHz-0.150 MHz	200/300 kHz
0.150 MHz -30 MHz	9/10 kHz
30 MHz-1 GHz	100/120 kHz
Above 1 GHz	1 MHz

Limits:

Spurious Emissions

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009 MHz-0.490 MHz	2400/F(kHz)	-		300
0.490 MHz-1.705 MHz	24000/F(kHz)			30
1.705 MHz-30 MHz	30			30
30 MHz-88 MHz	100	40.0	Quasi-peak	3
88 MHz-216 MHz	150	43.5	Quasi-peak	3
216 MHz-960 MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1 GHz	500	54.0	Average	3

Remark:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dB\mu V/m) = 20 \log Emission level (uV/m)$.
- For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the
 peak field strength of any emission shall not exceed the maximum permitted average limits, specified
 above by more than 20 dB under any condition of modulation.

Test Setup: Refer to section 4.4.1 for details.

Test Procedures:

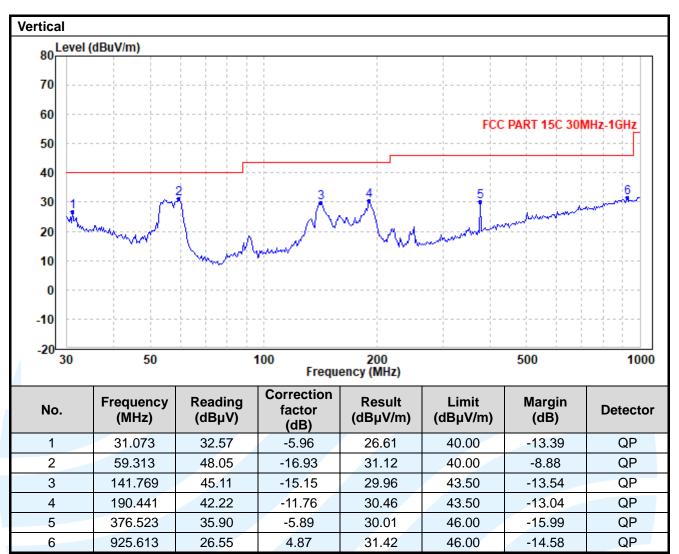
- 1. From 30 MHz to 1GHz test procedure as below:
- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- 3) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 2. Above 1GHz test procedure as below:
- 1) Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).

Page 20 of 39 Report No.: 24102114225RFC-1

- 2) Test the EUT in the lowest channel, middle channel, the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the Y axis positioning which it is worse case.
- 4) Repeat above procedures until all frequencies measured was complete.

Equipment Used: Refer to section 3 for details.

Test Result: Pass


The measurement data as follows:

Radiated Emission Test Data (9 kHz ~ 30 MHz):

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

Radiated Emission Test Data (30 MHz ~ 1 GHz): Worst-Case Configuration BLE 2480MHz Horizontal 80 Level (dBuV/m) 70 60 FCC PART 15C 30MHz-1GHz 50 40 30 20 10 0 -10 -20 30 100 200 1000 50 500 Frequency (MHz) Correction Reading Frequency Limit Result Margin No. factor **Detector** (MHz) (dBµV) (dBµV/m) (dBµV/m) (dB) (dB) 30.855 28.18 -5.68 22.50 40.00 -17.50QΡ 1 2 37.19 40.00 QΡ 50.108 -13.64 23.55 -16.45-15.18 3 139.791 43.50 QΡ 39.05 23.87 -19.634 190.441 34.89 -11.76 23.13 43.50 -20.37 QP 5 376.523 35.02 -5.89 29.13 46.00 -16.87 QP 6 919.132 26.45 4.94 31.39 46.00 -14.61 QΡ

Page 22 of 39 Report No.: 24102114225RFC-1

Radi	Radiated Emission Test Data (Above 1GHz):							
	Lowest Chan							
No.	Frequency (MHz)	Reading (dBµV)	Correction factor (dB/m)	Result (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Antenna Polaxis
1	4804	35.39	-2.08	33.31	54.00	-20.69	Average	Horizontal
2	4804	47.17	-2.08	45.09	74.00	-28.91	Peak	Horizontal
3	7206	34.00	1.30	35.30	54.00	-18.70	Average	Horizontal
4	7206	45.80	1.30	47.10	74.00	-26.90	Peak	Horizontal
5	4804	35.42	-2.08	33.34	54.00	-20.66	Average	Vertical
6	4804	47.07	-2.08	44.99	74.00	-29.01	Peak	Vertical
7	7206	33.94	1.30	35.24	54.00	-18.76	Average	Vertical
8	7206	46.11	1.30	47.41	74.00	-26.59	Peak	Vertical
LE.	Middle Chani	nel:						
1	4880	35.40	-2.05	33.35	54.00	-20.65	Average	Horizontal
2	4880	48.76	-2.05	46.71	74.00	-27.29	Peak	Horizontal
3	7320	34.51	1.31	35.82	54.00	-18.18	Average	Horizontal
4	7320	48.41	1.31	49.72	74.00	-24.28	Peak	Horizontal
5	4880	35.40	-2.05	33.35	54.00	-20.65	Average	Vertical
6	4880	46.85	-2.05	44.80	74.00	-29.20	Peak	Vertical
7	7320	34.48	1.31	35.79	54.00	-18.21	Average	Vertical
8	7320	46.55	1.31	47.86	74.00	-26.14	Peak	Vertical
LE_	Highest Char	nnel:						
1	4960	35.09	-2.02	33.07	54.00	-20.93	Average	Horizontal
2	4960	48.22	-2.02	46.20	74.00	-27.80	Peak	Horizontal
3	7440	33.89	1.32	35.21	54.00	-18.79	Average	Horizontal
4	7440	47.26	1.32	48.58	74.00	-25.42	Peak	Horizontal
5	4960	35.09	-2.02	33.07	54.00	-20.93	Average	Vertical
6	7440	33.95	1.32	35.27	54.00	-18.73	Peak	Vertical
7	4960	35.09	-2.02	33.07	54.00	-20.93	Average	Vertical
8	4960	48.22	-2.02	46.20	74.00	-27.80	Peak	Vertical

Remark:

- Correct Factor = Antenna Factor + Cable Loss Amplifier Gain, the value was added to Original Receiver Reading by the software automatically.
- 2. Result = Reading + Correct Factor.
- 3. Margin = Result Limit

Page 23 of 39 Report No.: 24102114225RFC-1

5.8 BAND EDGE MEASUREMENTS (RADIATED)

Test Requirement: FCC 47 CFR Part 15 Subpart C Section 15.205/15.209

Test Method: ANSI C63.10-2013 Clause 11.13

Limits:

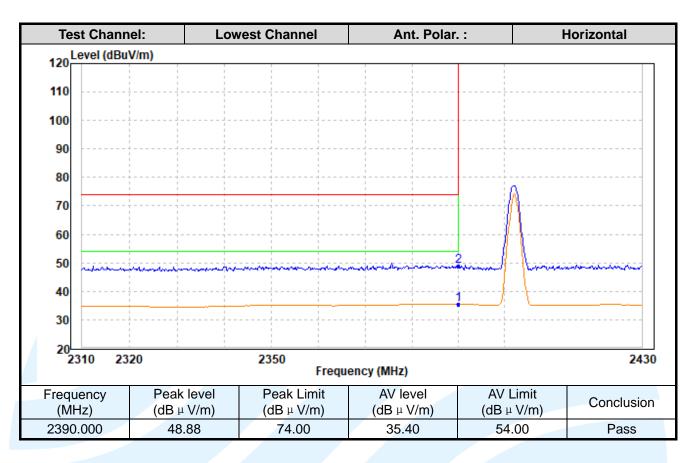
Radiated emissions which fall in the restricted bands, as defined in section 15.205(a), must also comply with

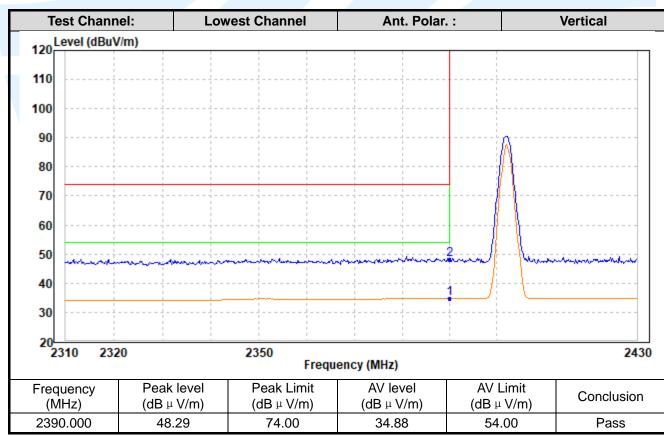
the radiated emission limits specified in section 15.209(a).

Frequency	Limit (dBµV/m @3m)	Remark
30 MHz-88 MHz	40.0	Quasi-peak Value
88 MHz-216 MHz	43.5	Quasi-peak Value
216 MHz-960 MHz	46.0	Quasi-peak Value
960 MHz-1 GHz	54.0	Quasi-peak Value
Above 1 GHz	54.0	Average Value
Above 1 GHz	74.0	Peak Value

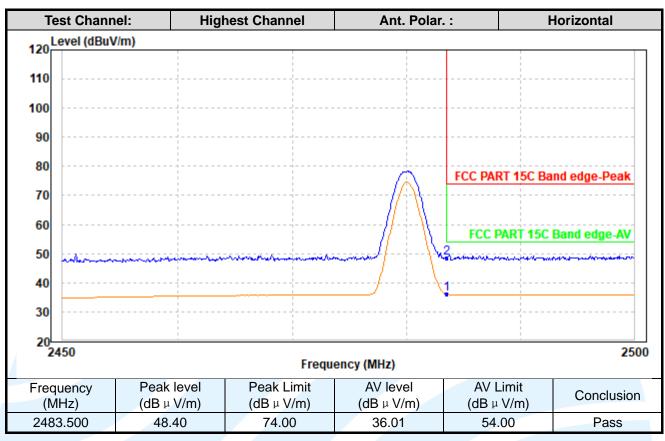
Test Setup: Refer to section 4.4.1 for details.

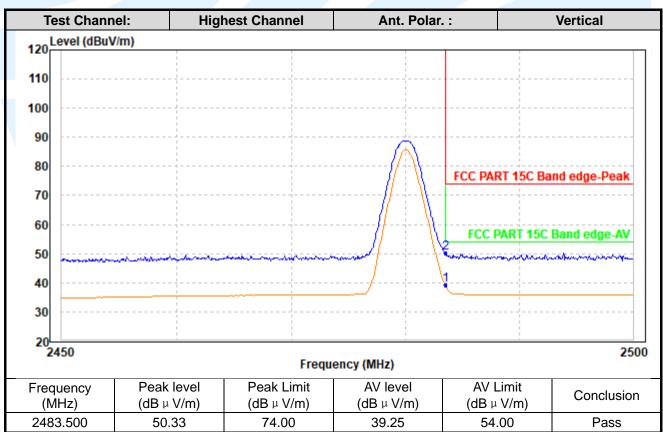
Test Procedures:

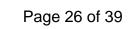

Radiated band edge measurements at 2390 MHz and 2483.5 MHz were made with the unit transmitting in the low end of the channel range and the high end closest to the restricted bands respectively. The emissions were made on the 966 Semi-Chamber. Use (resolution bandwidth (RBW) = 1 MHz, video bandwidth (VBW) = 3 MHz for peak levels and RBW = 1 MHz and VBW = 10 Hz or 1/T for average levels).

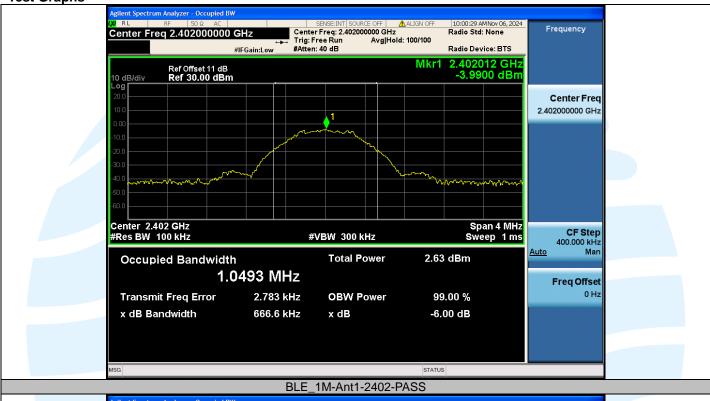

- 1. Use radiated spurious emission test procedure described in clause 5.10. The transmitter output (antenna port) was connected to the test receiver.
- 2. Set the PK and AV limit line.
- 3. Record the fundamental emission and emissions out of the band-edge.
- 4. Determine band-edge compliance as required. **Equipment Used:** Refer to section 3 for details.

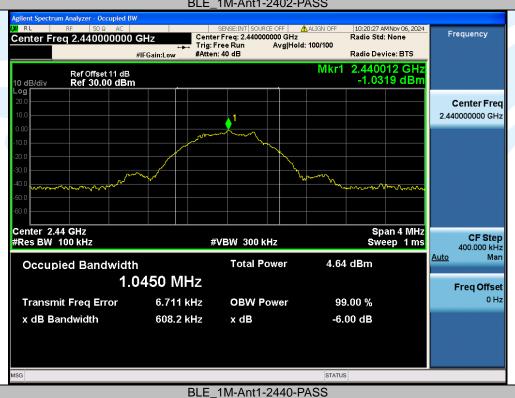
Test Result: Pass


The measurement data as follows:



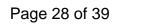






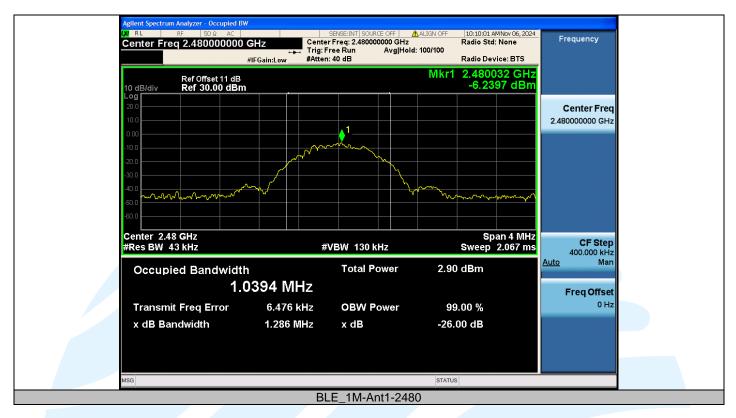
APPENDIX A RF TEST DATA A.1 6DB BANDWIDTH

Test Mode	Antenna	Frequency [MHz]	6dB BW [MHz]	Limit [MHz]	Verdict
BLE_1M	Ant1	2402	0.6666	0.5	PASS
BLE_1M	Ant1	2440	0.6082	0.5	PASS
BLE_1M	Ant1	2480	0.6539	0.5	PASS



A.2 OCCUPIED CHANNEL BANDWIDTH

Test Mode	Antenna	Frequency [MHz]	OCB [MHz]	
BLE_1M	Ant1	2402	1.0370	
BLE_1M	Ant1	2440	1.0268	
BLE 1M	Ant1	2480	1.0394	


Report No.: 24102114225RFC-1

Shenzhen UnionTrust Quality and Technology Co., Ltd.

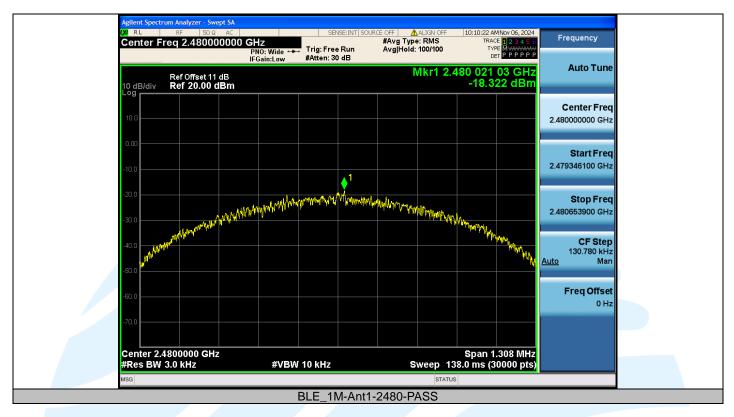
BLE_1M-Ant1-2440



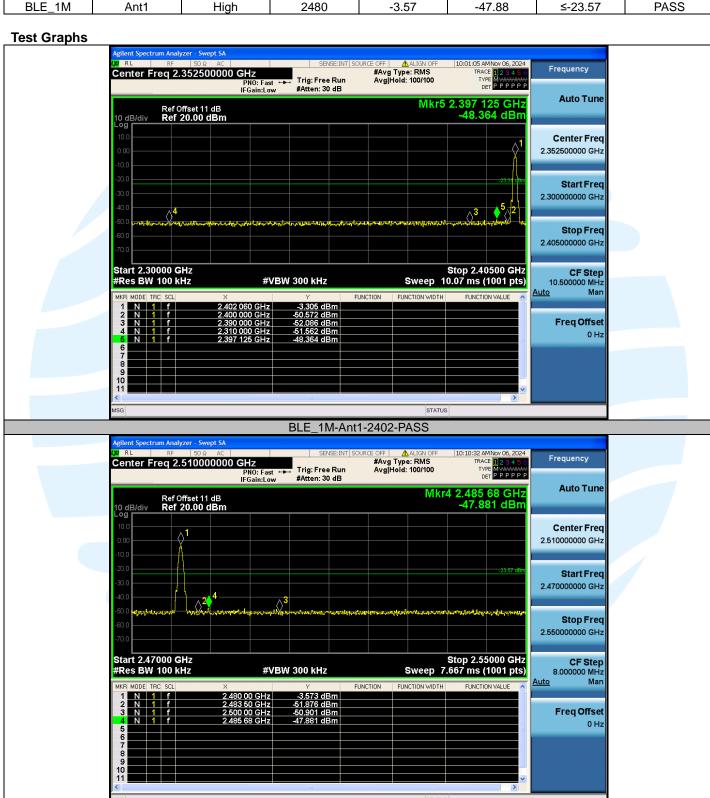
Page 30 of 39 Report No.: 24102114225RFC-1

A.3 POWER SPECTRAL DENSITY

Test Mode	Antenna	Frequency [MHz]	Result [dBm/3kHz]	Limit [dBm/3kHz]	Verdict
BLE_1M	Ant1	2402	-17.87	≤8.00	PASS
BLE_1M	Ant1	2440	-16.18	≤8.00	PASS
BLE_1M	Ant1	2480	-18.32	≤8.00	PASS



BLE_1M-Ant1-2440-PASS



Page 32 of 39 Report No.: 24102114225RFC-1

A.1 OUT OF BAND EMISSION

Test Mode	Antenna	Ch Name	Frequency [MHz]	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict
BLE_1M	Ant1	Low	2402	-3.31	-48.36	≤-23.31	PASS
BLE_1M	Ant1	High	2480	-3.57	-47.88	≤-23.57	PASS

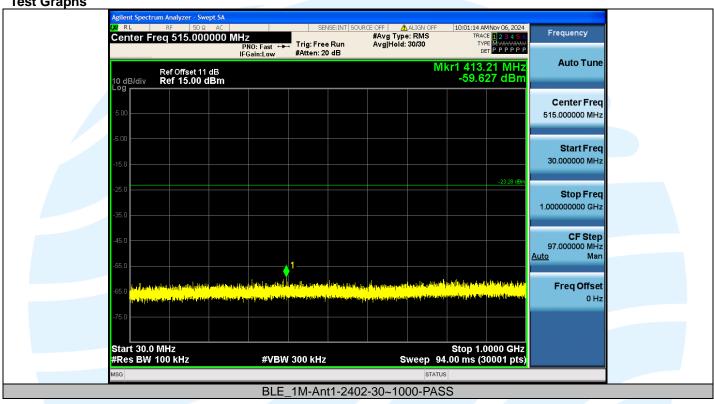
BLE_1M-Ant1-2480-PASS

A.2 REFERENCE LEVEL MEASUREMENT

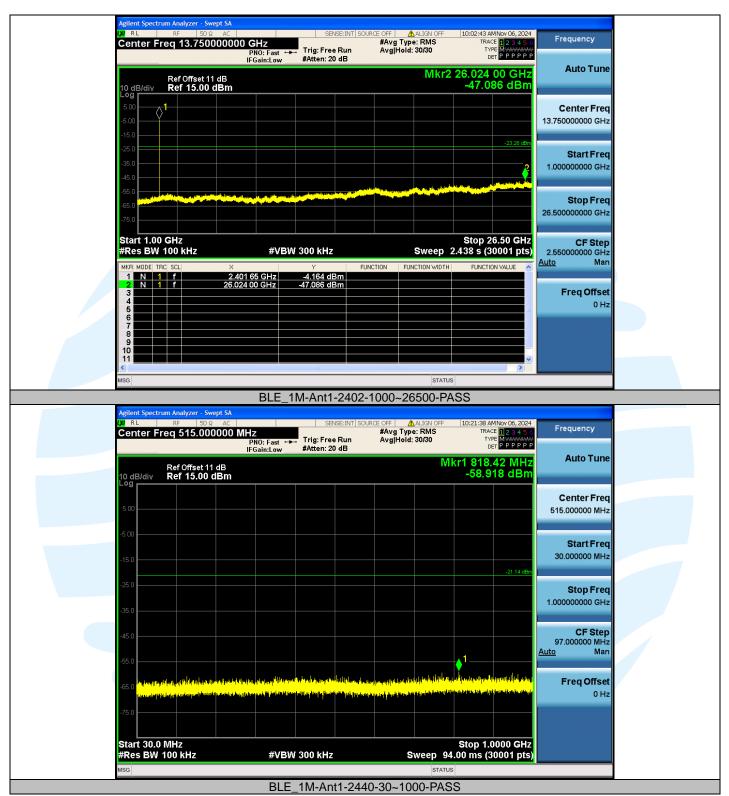
Test Mode	Antenna	Freq. (MHz)	Max. Point [MHz]	Result [dBm]
BLE_1M	Ant1	2402	2401.99	-3.28
BLE_1M	Ant1	2440	2439.99	-1.14
BLE_1M	Ant1	2480	2479.98	-3.74

Report No.: 24102114225RFC-1

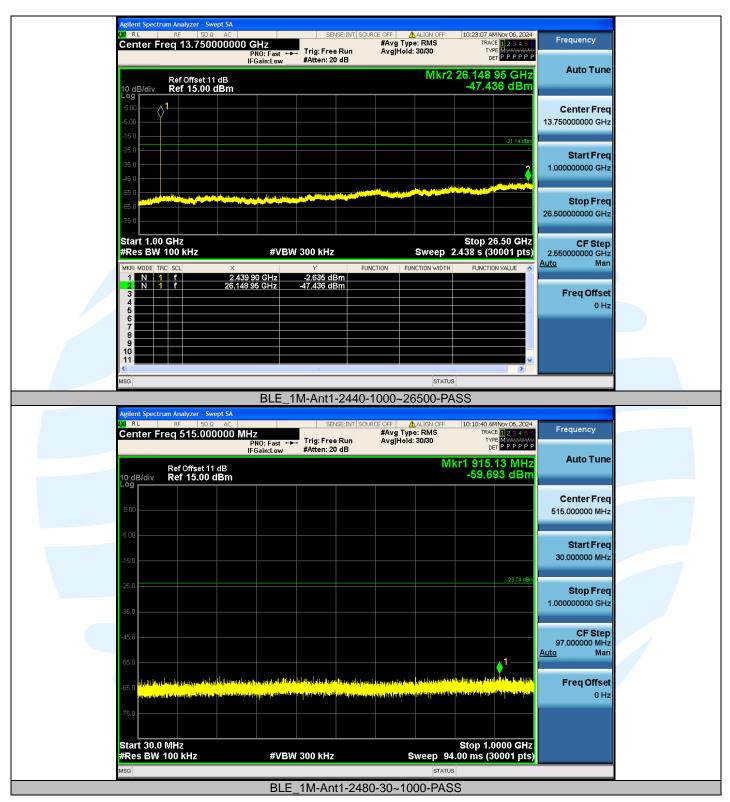
Shenzhen UnionTrust Quality and Technology Co., Ltd.

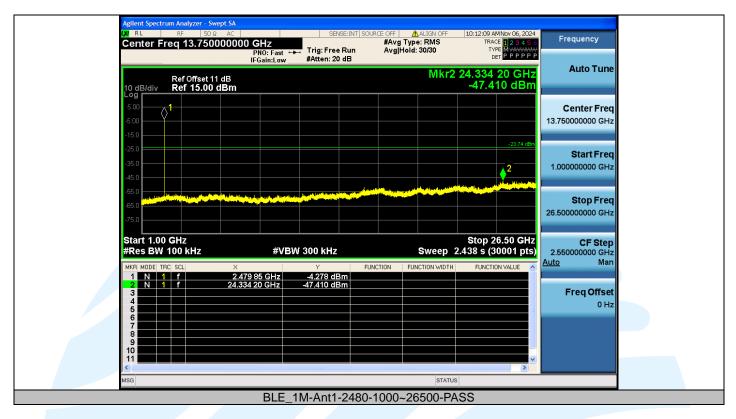


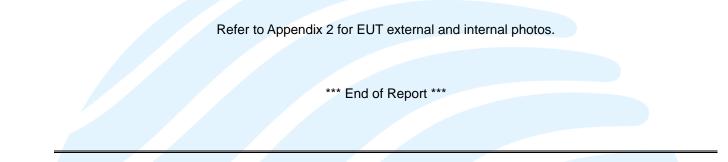
Page 35 of 39 Report No.: 24102114225RFC-1


A.3 CONDUCTED SPURIOUS EMISSION

Test Mode	Antenna	Frequency [MHz]	Freq Range [MHz]	Ref Level [dBm]	Result [dBm]	Limit [dBm]	Verdict
BLE_1M	Ant1	2402	30~1000	-3.28	-59.63	≤-23.28	PASS
BLE_1M	Ant1	2402	1000~26500	-3.28	-47.09	≤-23.28	PASS
BLE_1M	Ant1	2440	30~1000	-1.14	-58.92	≤-21.14	PASS
BLE_1M	Ant1	2440	1000~26500	-1.14	-47.44	≤-21.14	PASS
BLE_1M	Ant1	2480	30~1000	-3.74	-59.69	≤-23.74	PASS
BLE_1M	Ant1	2480	1000~26500	-3.74	-47.41	≤-23.74	PASS







Page 39 of 39 Report No.: 24102114225RFC-1

APPENDIX 1 PHOTOS OF TEST SETUP

See test photos attached in Appendix 1 for the actual connections between Product and support equipment.

APPENDIX 2 PHOTOS OF EUT CONSTRUCTIONAL DETAILS

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of UnionTrust, this report can't be reproduced except in full.