

TEST	REPORT

Product

Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result

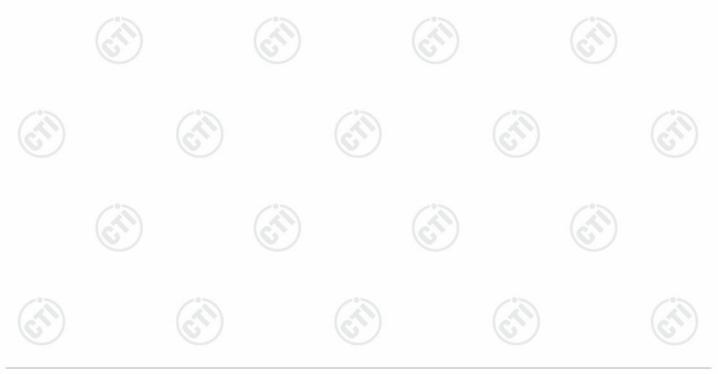
- : INTELLIGENT AUTOMOTIVE DIAGNOSTICS ANALYZER
- : OTOFIX : D1 Pro
- : N/A
- EED32O80133702
- : WQ8-D1PRO2124
- : Apr. 25, 2022
- : 47 CFR Part 15 Subpart C

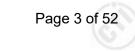
Prepared for:

PASS

Autel Intelligent Technology Corp.,Ltd. 7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen, China

> Prepared by: Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China TEL: +86-755-3368 3668 FAX: +86-755-3368 3385


Aavon Ma mark. chen Compiled by: Reviewed by: Mark Chen Aaron Ma David Wang Date of Issue: pproved b Apr. 25, 2022 David Wang Check No.:7639260122 Report Seal

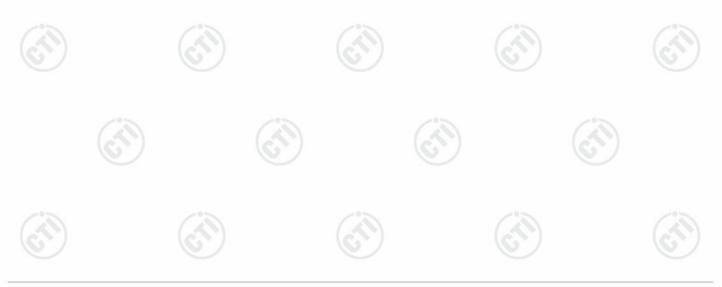


1 Contents

			Page
1 CONTENTS	\sim	~~~	2
2 VERSION		••••••	3
3 TEST SUMMARY	<u> </u>	<u></u>	
4 GENERAL INFORMA	TION		5
4.1 CLIENT INFORMAT 4.2 GENERAL DESCRIF 4.3 TEST CONFIGURAT 4.4 TEST ENVIRONME 4.5 DESCRIPTION OF S	ION PTION OF EUT FION NT SUPPORT UNITS		
5 TEST RESULTS AND	MEASUREMENT DATA		
5.2 AC POWER LINE C 5.3 MAXIMUM CONDUC 5.4 20DB EMISSION B 5.5 CARRIER FREQUEL 5.6 NUMBER OF HOPP 5.7 TIME OF OCCUPAN 5.8 BAND EDGE MEAS 5.9 CONDUCTED SPUE 5.10 PSEUDORANDOM 5.11 RADIATED SPUEL	EMENT CONDUCTED EMISSIONS CTED OUTPUT POWER ANDWIDTH NCY SEPARATION ING CHANNEL ING CH	os.	14 18 19 20 21 21 22 23 23 24 24 25 27
	TEST SETUP		
8 PHOTOGRAPHS OF	EUT CONSTRUCTIONAL DETAI	ILS	

2 Version

	Version No.	Date		Descriptio	on	
-	00	Apr. 25, 2022		Original		6
	(A)	(A)			(T)	



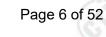
3 Test Summary

Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted47 CFR Part 15, Subpart C SectionEmission15.207		PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were Provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

4 General Information


4.1 Client Information

••••		
	Applicant:	Autel Intelligent Technology Corp.,Ltd.
	Address of Applicant:	7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen, China
	Manufacturer:	Autel Intelligent Technology Corp.,Ltd.
	Address of Manufacturer:	7th-8th, 10th Floor, Bldg. B1, Zhiyuan, Xueyuan Rd. Xili, Nanshan, Shenzhen, China
	Factory:	Autel Intelligent Technology Corp., Ltd. Guangming Branch
	Address of Factory:	7F&6F, East Wing, Building 2, and 6F of Electronical Building, Yanxiang Industrial Zone, Gaoxin Rd, Dongzhou Community of Guangming New District, Shenzhen

4.2 General Description of EUT

201	Product Name:	INTELLIGE	ENT AUTOMOTIVE DIAGNOSTICS ANALYZER	- 0.15
2	Model No.:	D1 Pro		
2	Trade Mark:	OTOFIX		0
	Product Type:	Portable		
	Operation Frequency:	2402MHz~	2480MHz	
	Modulation Technique:	Frequency	Hopping Spread Spectrum(FHSS)	
	Modulation Type:	GFSK, π/4	DQPSK, 8DPSK	
Num	Number of Channel:	79		
	Test Software of EUT:	CSR BlueS	Suite 2.6.2	
	Hopping Channel Type:	Adaptive Frequency Hopping systems		
3	Antenna Type:	Chip Anten	na	(\mathcal{C})
	Antenna Gain:	0.5dBi		
	Power Supply:	Adapter:	Model:GME36E-120300FDR Input:100-240V~50/60Hz 1.2A Output:12V3.0A 36.0W	
	Test Voltage:	AC 120V		
	Sample Received Date:	Jan. 26, 20	22	
	Sample tested Date:	Jan. 26, 20	22 to Mar. 07, 2022	
57				67

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7 🕓	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		e

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

~	Channel	Frequency		
(3)	The Lowest channel	2402MHz	(~~)	
	The Middle channel	2441MHz		
	The Highest channel	2480MHz		

4.3 Test Configuration

Software:	CSR BlueSuite 2.6.2 (manufacturer decla	re)				
EUT Power Grade:	Class2 (Power level is built-in set parame selected)	Class2 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to set the lov transmitting of the EUT.	vest frequency, the middle frequency and the	e highest frequency keep				
Mode	Channel	Frequency(MHz)				
	СН0	2402				
DH1/DH3/DH5	СН39	2441				
	CH78	2480				
	СН0	2402				
2DH1/2DH3/2DH5	СН39	2441				
	CH78	2480				
	СНО	2402				
3DH1/3DH3/3DH5	СН39	2441				
	CH78	2480				

4.4 Test Environment

Operating Environment	:				
Radiated Spurious Emi	ssions:				
Temperature:	22~25.0 °C	\sim			
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar		(in)		13
Conducted Emissions:	·				
Temperature:	22~25.0 °C		J		C
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar			10	
RF Conducted:					
Temperature:	22~25.0 °C	S		e la	
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar				
			~°>		10

Description of Support Units

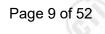
The EUT has been tested with associated equipment below.

support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	DELL	Latitude 3490	FCC&CE	СТІ

4.6 Test Location

All tests were performed at:


Centre Testing International Group Co., Ltd

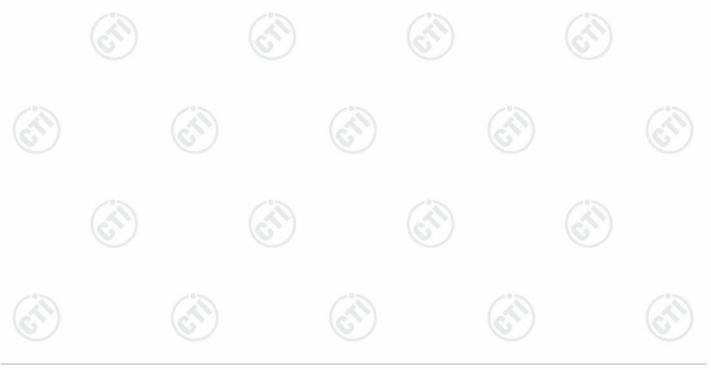
Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164

Measurement Uncertainty (95% confidence levels, k=2) 4.7

о.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2		0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-40GHz)	
3		3.3dB (9kHz-30MHz)	
	Dedicted Sourious emission test	4.3dB (30MHz-1GHz) 4.5dB (1GHz-18GHz)	
	Radiated Spurious emission test		
		3.4dB (18GHz-40GHz)	
4	Conduction emission	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Hotline:400-6788-333



4.8 Equipment List

	(A)				102
		RF test	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-24-2021	12-23-2022
Signal Generator	Keysight	N5182B	MY53051549	12-24-2021	12-23-2022
Signal Generator	Agilent	N5181A	MY46240094	12-24-2021	12-23-2022
DC Power	Keysight	E3642A	MY56376072	12-24-2021	12-23-2022
Power unit	R&S	OSP120	101374	12-24-2021	12-23-2022
RF control unit	JS Tonscend	JS0806-2	158060006	12-24-2021	12-23-2022
Communication test set	R&S	CMW500	120765	08-04-2021	08-03-2022
high-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-24-2021	12-23-2022
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	06-24-2021	06-23-2022
BT&WI-FI Automatic test software		JS1120-3	2.6.77.0518	\odot	

Conducted disturbance Test							
				Cal. date	Cal. Due date		
Equipment	Manufacturer	Model No.	Serial Number	(mm-dd-yyyy)	(mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-15-2021	04-14-2022		
Temperature/ Humidity Indicator	Defu	TH128	1	())	(3		
LISN	R&S	ENV216	100098	03-04-2021 03-01-2022	03-03-2022 02-28-2023		
Barometer	changchun	DYM3	1188				

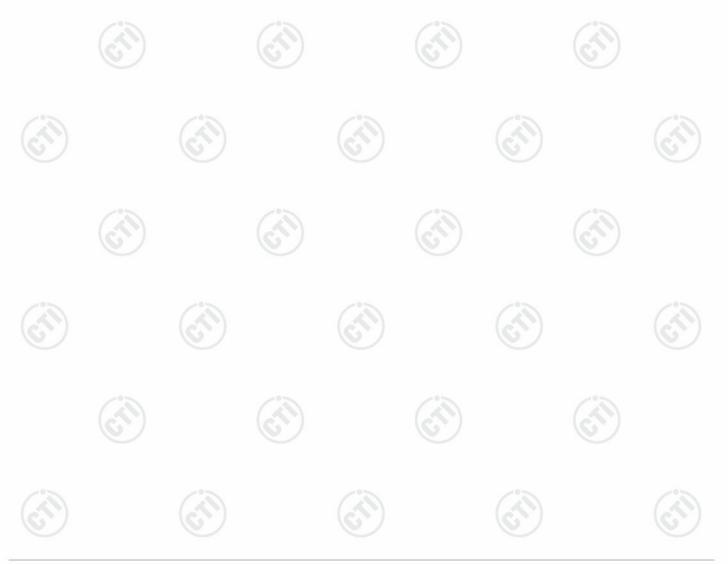
	3M Semi-an	echoic Chamber (2)	- Radiated distu	rbance Test	-
Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
3M Chamber & Accessory Equipment	TDK	SAC-3		05/24/2019	05/23/2022
Receiver	R&S	ESCI7	100938-003	10/14/2021	10/13/2022
TRILOG Broadband Antenna	Broadband schwarzbeck		9163-618	05/23/2019	05/22/2022
Multi device Controller	maturo	NCD/070/10711112			
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/15/2021	04/14/2024
Spectrum Analyzer	R&S	FSP40	100416	04/29/2021	04/28/2022
Microwave Preamplifier	Agilent	8449B	3008A02425	06/23/2021	06/22/2022

F			0	Cal. Date	Cal. Due date	
Equipment	Manufacturer	Model No.	Serial Number	(mm-dd-yyyy)	(mm-dd-yyyy	
RSE Automatic test software JS Tonscend		JS36-RSE	10166		v	
Receiver	Keysight	N9038A	MY57290136	03-04-2021 03-01-2022	03-03-2022 02-28-2023	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-04-2021 02-23-2022	03-03-2022 02-22-2023	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-04-2021 02-23-2022	03-03-2022 02-22-2023	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2021	04-27-2024	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-15-2021	04-14-2024	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021	07-03-2024	
Preamplifier	EMCI	EMC184055SE	980597	05-20-2021	05-19-2022	
Preamplifier	EMCI	EMC001330	980563	04-15-2021	04-14-2022	
Preamplifier	JS Tonscend	980380	EMC051845SE	12-24-2021	12-23-2022	
Communication test set	- R&S		102898	12-24-2021	12-23-2022	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-16-2021	04-15-2022	
Fully Anechoic Chamber	TDK	FAC-3	(6 ^)	01-09-2021	01-08-2024	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002		/	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	(\mathcal{O})	(6	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		D	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001		- /	
Cable line	Times	HF160-KMKM-3.00M	393493-0001	(6)	(6	

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)


15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is Prohibited.

15.247(b) (4) requirement:

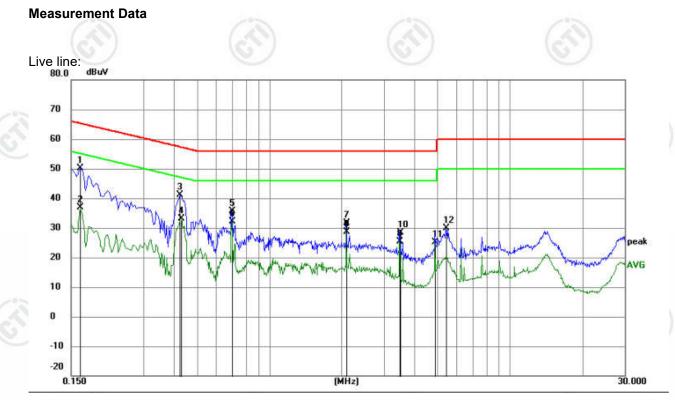
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as apPropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos
The antenna is Chip antenn	a. The best case gain of the antenna is 0.5dBi.


5.2 AC Power Line Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.	207	
Test Method:	ANSI C63.10: 2013	(S)	(3)
Test Frequency Range:	150kHz to 30MHz	U	I A A A A A A A A A A A A A A A A A A A
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	
Limit:		Limit (dl	BuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the logarithr	2000	
Test Setup:	Shielding Room	AE USN2 + AC Ground Reference Plane	Test Receiver
Test Procedure:	 The mains terminal distur room. The EUT was connected to Impedance Stabilization N impedance. The power ca connected to a second LIS reference plane in the sam measured. A multiple sock power cables to a single L exceeded. The tabletop EUT was plan ground reference plane. A placed on the horizontal g The test was performed wi of the EUT shall be 0.4 m vertical ground reference plane. The LISN 	o AC power source thro letwork) which Provides bles of all other units of SN 2, which was bonded he way as the LISN 1 for ket outlet strip was used ISN Provided the rating ced upon a non-metallic and for floor-standing arr round reference plane, ith a vertical ground refer from the vertical ground plane was bonded to the I 1 was placed 0.8 m fro	ugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω lines the EUT were I to the ground r the unit being to connect multiple of the LISN was not table 0.8m above the angement, the EUT was erence plane. The rear reference plane. The horizontal ground on the boundary of the
Exploratory Test Mode:	unit under test and bonded mounted on top of the grou between the closest points the EUT and associated e 5) In order to find the maximu equipment and all of the in ANSI C63.10: 2013 on cor Non-hopping transmitting mod	und reference plane. The s of the LISN 1 and the R quipment was at least 0 um emission, the relative aterface cables must be inducted measurement.	is distance was EUT. All other units of .8 m from the LISN 2. e positions of changed according to

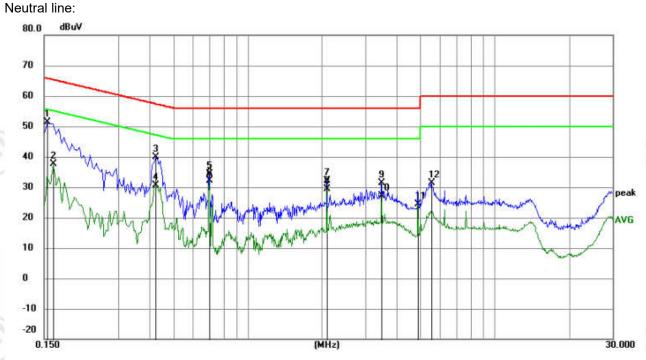
	data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Results:	Pass



Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1635	40.17	9.87	50.04	65.28	-15.24	QP	
2	0.1635	27.08	9.87	36.95	55.28	-18.33	AVG	
3	0.4245	31.08	9.97	41.05	57.36	-16.31	QP	
4	0.4290	23.08	9.96	33.04	47.27	-14.23	AVG	
5	0.6988	25.68	9.88	35.56	56.00	-20.44	QP	
6 *	0.6988	22.27	9.88	32.15	46.00	-13.85	AVG	
7	2.0939	21.84	9.79	31.63	56.00	-24.37	QP	
8	2.0939	18.90	9.79	28.69	46.00	-17.31	AVG	
9	3.4890	15.52	9.78	25.30	46.00	-20.70	AVG	
10	3.4935	18.65	9.78	28.43	56.00	-27.57	QP	
11	4.8885	15.30	9.78	25.08	46.00	-20.92	AVG	
12	5.4330	19.98	9.78	29.76	60.00	-30.24	QP	

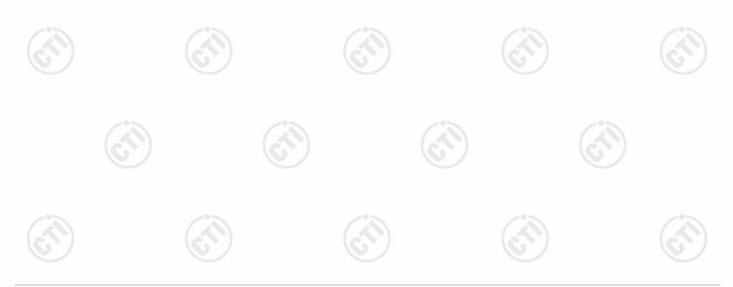
Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1544	41.43	9.87	51.30	65.76	-14.46	QP	
2		0.1635	27.78	9.87	37.65	55.28	-17.63	AVG	
3		0.4245	29.82	9.97	39.79	57.36	-17.57	QP	
4		0.4245	20.77	9.97	30.74	47.36	-16.62	AVG	
5		0.6988	24.61	9.88	34.49	56.00	-21.51	QP	
6	*	0.6988	22.30	9.88	32.18	46.00	-13.82	AVG	
7		2.0939	22.26	9.79	32.05	56.00	-23.95	QP	
8		2.0939	19.47	9.79	29.26	46.00	-16.74	AVG	
9		3.4890	21.63	9.78	31.41	56.00	-24.59	QP	
10		3.4890	17.42	9.78	27.20	46.00	-18.80	AVG	
11		4.8840	14.49	9.78	24.27	46.00	-21.73	AVG	
12		5.5590	21.55	9.78	31.33	60.00	-28.67	QP	

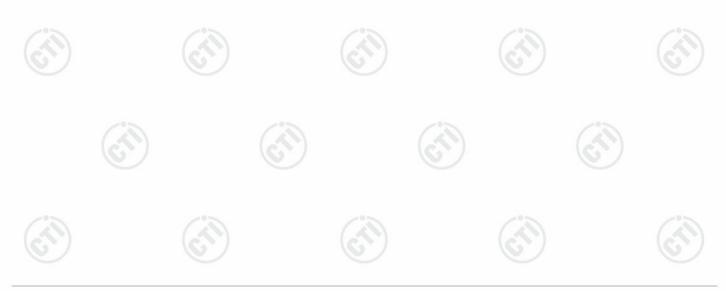
Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.



5.3 Maximum Conducted Output Power

	Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	RF test Computer Computer Computer Computer Power Supple Table RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
100	Test Procedure:	Use the following spectrum analyzer settings: Span = apProximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
	Limit:	21dBm
3	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSI modulation type, 2-DH5 of data type is the worst case of π /4DQPSI modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix A
	C)	



5.4 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)						
	Test Method:	ANSI C63.10:2013						
	Test Setup:							
		Centrel Centrel Centrel Porwer Supply TemPERATURE CABNET Table						
		Remark: Offset=Cable loss+ attenuation factor.						
Ŝ	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = apProximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 						
	Limit:	NA						
8	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type						
2	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.						
	Test Results:	Refer to Appendix A						
	G							



5.5 Carrier Frequency Separation

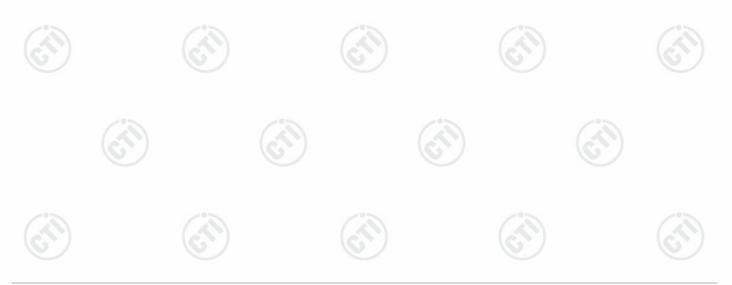
	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013
	Test Setup:	Control Computer Computer Supply Table RF test System Instrument
		Remark: Offset=Cable loss+ attenuation factor.
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to apProximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
2	Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
	Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
20		l spor

5.6 Number of Hopping Channel

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Power Supply Teble Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmi continuously. Enable the EUT hopping function.
	 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel.
	6. Record the measurement data in report.
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use a least 15 channels.
Test Mode:	Hopping transmitting with all kind of modulation
Test Results:	Refer to Appendix A

5.7 Time of Occupancy

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Power Supply Temperature CABNET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Results:	Refer to Appendix A



5.8 Band edge Measurements

	Test Requirement:	47 CFR Part 15C Section 15.247 (d)
	Test Method:	ANSI C63.10:2013
(CN)	Test Setup:	Control Control Control Control Control Control Control Control Power port Power port Power port Power TeMPERATURE CABRIET Table
		Remark: Offset=Cable loss+ attenuation factor.
(CN)	Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power Procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
X	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is Produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
6	Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Test Results:	Refer to Appendix A

5.9 **Conducted Spurious Emissions**

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013
Test Setup:	Control Control Control Power Suppy Power TemPERATURE CABNET Table RF test System Instrument
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is Produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Refer to Appendix A

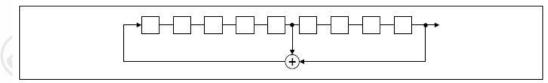
5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

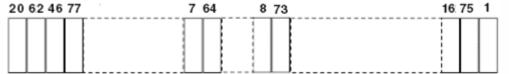
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a ninestage shift register whose 5th and 9th stage


outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹ -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

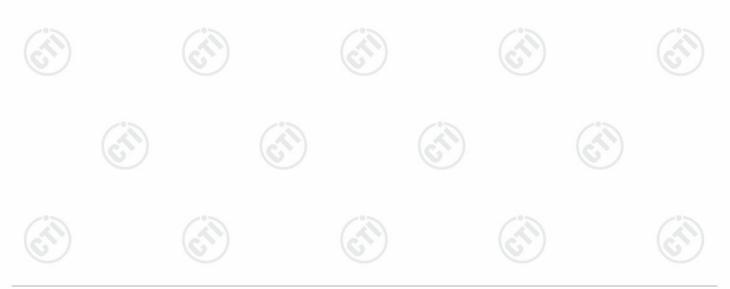
Compliance for section 15.247(g)

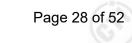
According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system.

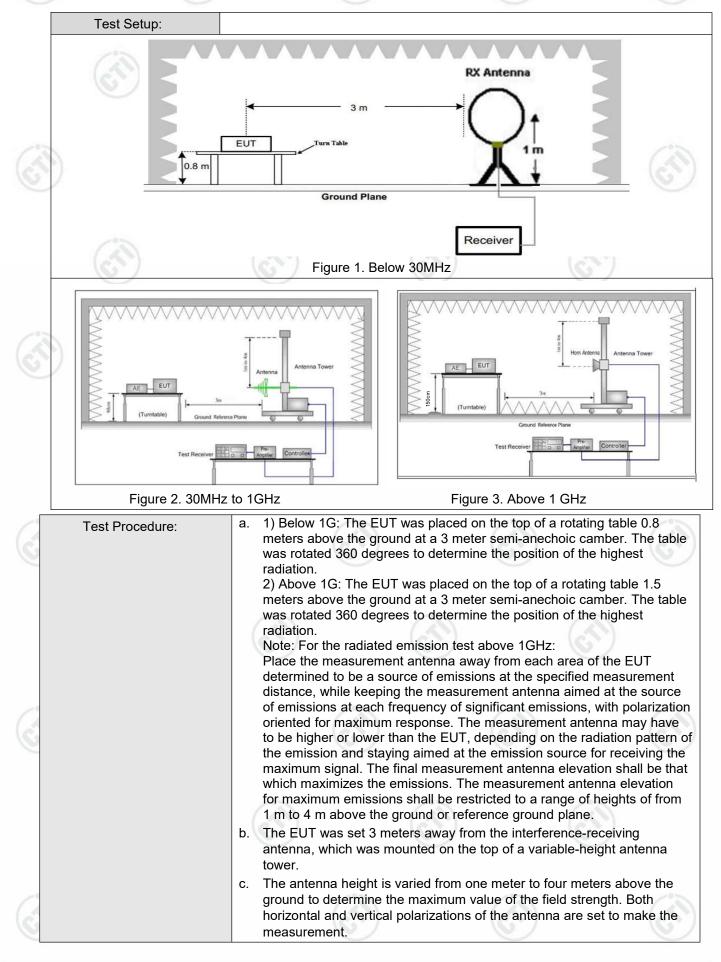
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

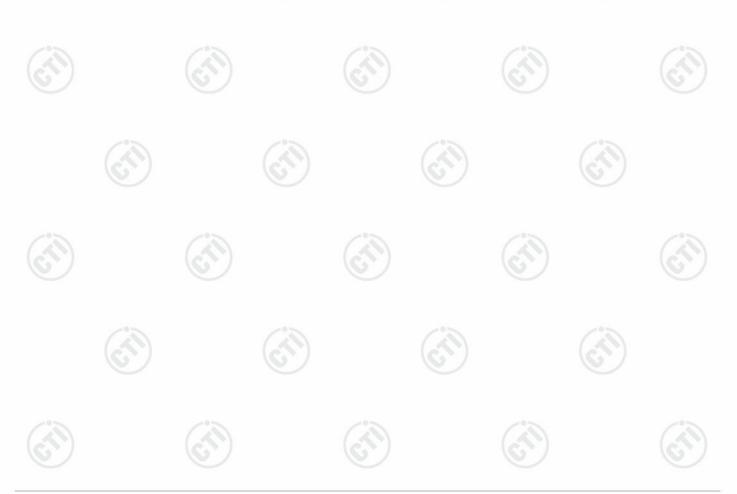
According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.






5.11 Radiated Spurious Emission & Restricted bands

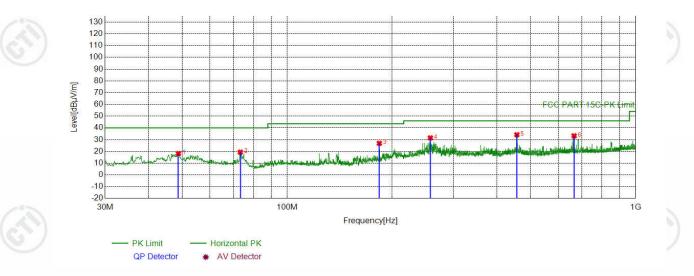
	Test Requirement:	47 CFR Part 15C Section	on 15.209 and 15	.205	6	•)
	Test Method:	ANSI C63.10: 2013				
	Test Site:	Measurement Distance	: 3m (Semi-Anecł	noic Cham	ber)	
-	Receiver Setup:	Frequency	Detector	RBW	VBW	Remark
8		0.009MHz-0.090MH	z Peak	10kHz	30kHz	Peak
		0.009MHz-0.090MH	z Average	10kHz	30kHz	Average
		0.090MHz-0.110MH	z Quasi-peak	10kHz	30kHz	Quasi-peak
		0.110MHz-0.490MH	z Peak	10kHz	30kHz	Peak
		0.110MHz-0.490MH	z Average	10kHz	30kHz	Average
		0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
		30MHz-1GHz	Peak	100 kH	z 300kHz	Peak
			Peak	1MHz	3MHz	Peak
2		Above 1GHz	Peak	1MHz	10kHz	Average
	Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)
		0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
		0.490MHz-1.705MHz	24000/F(kHz)	-	-73	30
		1.705MHz-30MHz	30	-	(S)	30
		30MHz-88MHz	100	40.0	Quasi-peak	3
		88MHz-216MHz	150	43.5	Quasi-peak	3
		216MHz-960MHz	200	46.0	Quasi-peak	3
0		960MHz-1GHz	500	54.0	Quasi-peak	3
		Above 1GHz	500	54.0	Average	3
		Note: 15.35(b), Unless emissions is 20dE applicable to the e peak emission lev	above the maxir equipment under t	num permi test. This p	tted average	emission limit



۲		
CTI		
	- キック シング	於 32080133702
- Re	eport No. : EEI	032080133702

		d. For each suspected emission, the EUT wa and then the antenna was tuned to height the test frequency of below 30MHz, the an meter) and the rotatable table was turned degrees to find the maximum reading.	is from 1 meter to 4 meters (for intenna was tuned to heights 1 from 0 degrees to 360
		e. The test-receiver system was set to Peak Bandwidth with Maximum Hold Mode.	Detect Function and Specified
ć		f. If the emission level of the EUT in peak m limit specified, then testing could be stopp EUT would be reported. Otherwise the en margin would be re-tested one by one usi average method as specified and then rep	bed and the peak values of the nissions that did not have 10dB ng peak, quasi-peak or
		g. Test the EUT in the lowest channel (2402 (2441MHz),the Highest channel (2480MH	
		 The radiation measurements are performed for Transmitting mode, and found the X as worst case. 	
		i. Repeat above Procedures until all frequer	ncies measured was complete.
Exp	oloratory Test Mode:	Non-hopping transmitting mode with all kind o data type	f modulation and all kind of
Fin	al Test Mode:	Through Pre-scan, find the DH5 of data typ worst case.	e and GFSK modulation is the
		Pretest the EUT at Transmitting mode, For scan, the worst case is the lowest channel.	below 1GHz part, through pre-
		Only the worst case is recorded in the report.	
Tes	st Results:	Pass	(65)

Page 29 of 52

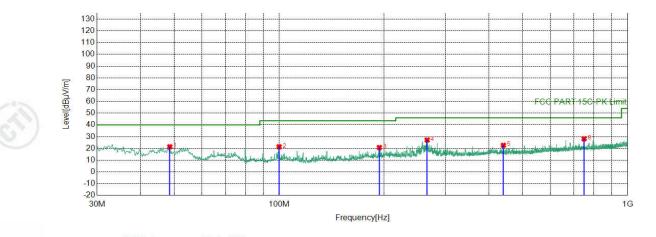


Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

Test Graph

	Suspect	ed List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	48.7229	-17.17	35.35	18.18	40.00	21.82	PASS	Horizontal	PK
	2	73.3633	-21.39	40.78	19.39	40.00	20.61	PASS	Horizontal	PK
1	3	183.8574	-19.41	46.32	26.91	43.50	16.59	PASS	Horizontal	PK
	4	257.5848	-16.40	47.91	31.51	46.00	14.49	PASS	Horizontal	PK
~	5	456.1636	-11.61	45.80	34.19	46.00	11.81	PASS	Horizontal	PK
	6	665.8986	-8.08	41.34	33.26	46.00	12.74	PASS	Horizontal	PK



Test Graph

PK Limit Vertical PK QP Detector * AV Detector

5		13		10			<u> ~~~</u>		100
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	48.5289	-17.17	38.59	21.42	40.00	18.58	PASS	Vertical	PK
2	99.9440	-18.41	39.79	21.38	43.50	22.12	PASS	Vertical	PK
3	193.8494	-18.41	39.20	20.79	43.50	22.71	PASS	Vertical	PK
4	265.9276	-16.23	43.41	27.18	46.00	18.82	PASS	Vertical	PK
5	439.9630	-12.01	34.69	22.68	46.00	23.32	PASS	Vertical	PK
6	750.1030	-7.00	35.19	28.19	46.00	17.81	PASS	Vertical	PK
(2)		(2)		6			(6

Radiated Spurious Emission above 1GHz:

	Mode:			GFSK Tra	ansmitting			Channe	el:	2402 MHz
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1206.4206	0.82	42.42	43.24	74.00	30.76	Pass	Н	PK
	2	1823.6824	3.46	41.19	44.65	74.00	29.35	Pass	Н	PK
	3	3489.0326	-20.04	66.73	46.69	74.00	27.31	Pass	Н	PK
	4	5740.1827	-13.78	54.15	40.37	74.00	33.63	Pass	Н	PK
	5	9756.4504	-7.52	51.66	44.14	74.00	29.86	Pass	Н	PK
	6	14392.7595	1.10	48.23	49.33	74.00	24.67	Pass	Н	PK
	7	1069.8070	0.88	44.94	45.82	74.00	28.18	Pass	V	PK
	8	1892.2892	3.97	40.16	44.13	74.00	29.87	Pass	V	PK
	9	3192.0128	-20.37	60.12	39.75	74.00	34.25	Pass	V	PK
	10	5893.1929	-13.61	54.94	41.33	74.00	32.67	Pass	V	PK
	11	9185.4124	-8.00	52.15	44.15	74.00	29.85	Pass	V	PK
3	12	14416.7611	0.98	47.77	48.75	74.00	25.25	Pass	V	PK
		- (c	<u> </u>		(a)		(2)			(a)
-	Mode:			GFSK Tra	nsmitting			Channel	:	2441 MHz
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1196.8197	0.80	42.09	42.89	74.00	31.11	Pass	Н	PK
	2	1733.8734	3.06	41.19	44.25	74.00	29.75	Pass	Н	PK
	3	3768.0512	-19.46	58.49	39.03	74.00	34.97	Pass	Н	PK
	4	7410.2940	-11.47	52.52	41.05	74.00	32.95	Pass	Н	PK
1	5	10807.5205	-6.24	51.43	45.19	74.00	28.81	Pass	Н	PK
2	6	13772.7182	-1.67	50.82	49.15	74.00	24.85	Pass	Н	PK
1	7	1199.0199	0.80	46.70	47.50	74.00	26.50	Pass	V	PK
	8	1787.2787	3.24	40.72	43.96	74.00	30.04	Pass	V	PK
	9	4253.0835	-17.60	58.50	40.90	74.00	33.10	Pass	V	PK
	10	7020.2680	-11.77	53.16	41.39	74.00	32.61	Pass	V	PK
	11	9846.4564	-7.24	51.01	43.77	74.00	30.23	Pass	V	PK
	12	13774.7183	-1.67	49.74	48.07	74.00	25.93	Pass	V	PK

CTI 1 (1)

Mode	Mode:			GFSK Transmitting				Channel:	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1380.2380	1.32	41.64	42.96	74.00	31.04	Pass	н	PK
2	1748.0748	3.10	41.26	44.36	74.00	29.64	Pass	н	PK
3	5050.1367	-15.75	54.16	38.41	74.00	35.59	Pass	Н	PK
4	7290.2860	-11.70	53.23	41.53	74.00	32.47	Pass	н	PK
5	10268.4846	-6.67	51.05	44.38	74.00	29.62	Pass	Н	PK
6	14423.7616	0.88	47.85	48.73	74.00	25.27	Pass	Н	PK
7	1134.6135	0.83	43.08	43.91	74.00	30.09	Pass	V	PK
8	1939.0939	4.23	40.10	44.33	74.00	29.67	Pass	V	PK
9	4791.1194	-16.26	56.30	40.04	74.00	33.96	Pass	V	PK
10	7776.3184	-11.30	53.61	42.31	74.00	31.69	Pass	V	PK
11	10718.5146	-6.43	51.32	44.89	74.00	29.11	Pass	V	PK
12	14394.7597	1.13	47.50	48.63	74.00	25.37	Pass	V	PK

Mode	:	π/4DQPSK	Transmitting	g		Channel:		2402 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1393.2393	1.37	41.31	42.68	74.00	31.32	Pass	н	PK
2	2029.9030	4.65	40.39	45.04	74.00	28.96	Pass	Н	PK
3	3482.0321	-20.05	57.82	37.77	74.00	36.23	Pass	Н	PK
4	5311.1541	-14.78	55.05	40.27	74.00	33.73	Pass	Н	PK
5	9141.4094	-8.35	51.53	43.18	74.00	30.82	Pass	Н	PK
6	12550.6367	-4.47	51.65	47.18	74.00	26.82	Pass	Н	PK
7	1198.4198	0.80	45.18	45.98	74.00	28.02	Pass	V	PK
8	1938.8939	4.23	40.81	45.04	74.00	28.96	Pass	V	PK
9	4259.0839	-17.55	58.60	41.05	74.00	32.95	Pass	V	PK
10	7029.2686	-11.75	53.21	41.46	74.00	32.54	Pass	V	PK
11	10281.4854	-6.58	50.97	44.39	74.00	29.61	Pass	V	PK
12	14392.7595	1.10	47.44	48.54	74.00	25.46	Pass	V	PK

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

	测
Report No	LLD32000133702

Mode:			π/4DQPSk	K Transmitting	3		Channel:		2441 MHz
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1265.8266	0.97	42.03	43.00	74.00	31.00	Pass	Н	PK
2	2084.7085	4.83	40.71	45.54	74.00	28.46	Pass	Н	PK
3	4368.0912	-17.11	55.98	38.87	74.00	35.13	Pass	Н	PK
4	7042.2695	-11.72	53.26	41.54	74.00	32.46	Pass	н	PK
5	10269.4846	-6.66	51.09	44.43	74.00	29.57	Pass	Н	PK
6	15380.8254	0.30	49.46	49.76	74.00	24.24	Pass	н	PK
7	1196.4196	0.80	44.30	45.10	74.00	28.90	Pass	V	PK
8	2098.9099	4.88	40.51	45.39	74.00	28.61	Pass	V	PK
9	3857.0571	-19.16	59.99	40.83	74.00	33.17	Pass	V	PK
10	5781.1854	-13.64	54.35	40.71	74.00	33.29	Pass	V	PK
11	9312.4208	-7.95	51.68	43.73	74.00	30.27	Pass	V	PK
12	14363.7576	0.62	48.15	48.77	74.00	25.23	Pass	V	PK

4	Mode:	:		π/4DQPSI	<pre>< Transmitting</pre>	g		Channel	:	2480 MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	1197.2197	0.80	43.22	44.02	74.00	29.98	Pass	н	PK	
	2	2026.1026	4.64	40.17	44.81	74.00	29.19	Pass	н	PK	
	3	4518.1012	-16.90	55.03	38.13	74.00	35.87	Pass	н	PK	
	4	6314.2209	-12.91	54.55	41.64	74.00	32.36	Pass	Н	PK	
2	5	9823.4549	-7.31	51.03	43.72	74.00	30.28	Pass	н	PK	
	6	14372.7582	0.77	48.19	48.96	74.00	25.04	Pass	Н	PK	
-	7	1197.2197	0.80	43.22	44.02	74.00	29.98	Pass	V	PK	
	8	2026.1026	4.64	40.17	44.81	74.00	29.19	Pass	V	PK	
	9	4518.1012	-16.90	55.03	38.13	74.00	35.87	Pass	V	PK	
	10	6314.2209	-12.91	54.55	41.64	74.00	32.36	Pass	V	PK	
	11	9823.4549	-7.31	51.03	43.72	74.00	30.28	Pass	V	PK	
	12	14372.7582	0.77	48.19	48.96	74.00	25.04	Pass	V	PK	

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

CTI 1	七测热测	
Report	 た 河 お の : EED3208013370	2
(C)		-

	Mode	e:		8DPSK Tra	ansmitting			Channel:		2402 MHz
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1308.0308	1.09	41.58	42.67	74.00	31.33	Pass	Н	PK
	2	1925.4925	4.16	40.37	44.53	74.00	29.47	Pass	Н	PK
5	3	4252.0835	-17.61	56.64	39.03	74.00	34.97	Pass	Н	PK
	4	6259.2173	-13.04	53.99	40.95	74.00	33.05	Pass	Н	PK
-	5	10297.4865	-6.48	50.78	44.30	74.00	29.70	Pass	Н	PK
	6	14372.7582	0.77	48.38	49.15	74.00	24.85	Pass	Н	PK
	7	1105.6106	0.85	43.49	44.34	74.00	29.66	Pass	V	PK
	8	1681.6682	2.82	41.05	43.87	74.00	30.13	Pass	V	PK
	9	4788.1192	-16.27	54.38	38.11	74.00	35.89	Pass	V	PK
	10	6617.2411	-12.77	53.32	40.55	74.00	33.45	Pass	V	PK
	11	9262.4175	-7.92	52.09	44.17	74.00	29.83	Pass	V	PK
	12	14380.7587	0.90	47.85	48.75	74.00	25.25	Pass	V	PK
		1	1	·		9			·	
)	Mod	e:		8DPSK Tr	ansmitting		Channel:		2441 MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1180.8181	0.81	41.95	42.76	74.00	31.24	Pass	н	PK
	2	1636.8637	2.53	40.83	43.36	74.00	30.64	Pass	Н	PK
	3	4248.0832	-17.64	56.06	38.42	74.00	35.58	Pass	Н	PK
	4	6880.2587	-11.94	53.00	41.06	74.00	32.94	Pass	н	PK
_	5	9260.4174	-7.92	51.37	43.45	74.00	30.55	Pass	н	PK
	6	14304.7537	-0.36	48.61	48.25	74.00	25.75	Pass	Н	PK
)	7	1309.6310	1.09	42.19	43.28	74.00	30.72	Pass	V	PK
	8	1854.0854	3.69	41.76	45.45	74.00	28.55	Pass	V	PK
	9	4655.1103	-16.63	55.24	38.61	74.00	35.39	Pass	V	PK
	10	8343.3562	-10.98	52.72	41.74	74.00	32.26	Pass	V	PK
	11	12433.6289	-4.74	51.67	46.93	74.00	27.07	Pass	V	PK
	12	16277.8852	1.54	49.69	51.23	74.00	22.77	Pass	V	PK

(Å)

(S)

	•			
СТ	1七		k	
VI	Report No	. : EED	32080	133702

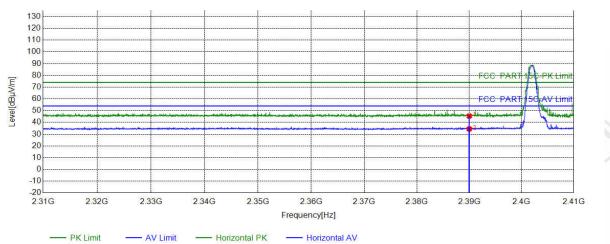
Mode:			8DPSK Tr	8DPSK Transmitting				Channel:	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1228.8229	0.87	42.13	43.00	74.00	31.00	Pass	Н	PK
2	1880.6881	3.89	40.48	44.37	74.00	29.63	Pass	Н	PK
3	3783.0522	-19.36	56.73	37.37	74.00	36.63	Pass	Н	PK
4	5798.1865	-13.58	54.91	41.33	74.00	32.67	Pass	Н	PK
5	9848.4566	-7.23	51.27	44.04	74.00	29.96	Pass	Н	PK
6	14366.7578	0.67	48.36	49.03	74.00	24.97	Pass	Н	PK
7	1152.2152	0.82	42.58	43.40	74.00	30.60	Pass	V	PK
8	1908.6909	4.08	40.82	44.90	74.00	29.10	Pass	V	PK
9	3938.0625	-19.02	57.19	38.17	74.00	35.83	Pass	V	PK
10	6622.2415	-12.75	53.30	40.55	74.00	33.45	Pass	V	PK
11	10290.4860	-6.52	51.06	44.54	74.00	29.46	Pass	V	PK
12	15337.8225	-0.20	50.30	50.10	74.00	23.90	Pass	V	PK

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor – Preamplifier Factor

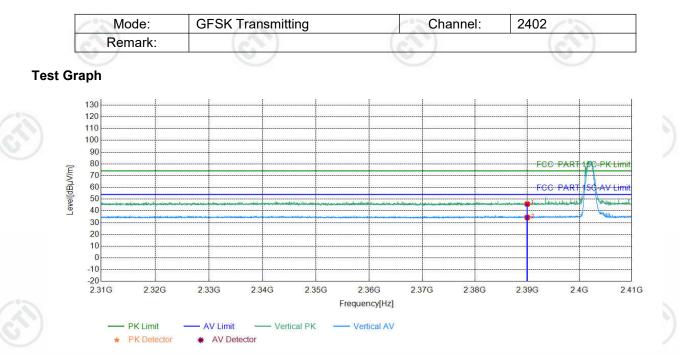
2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Test plot as follows:

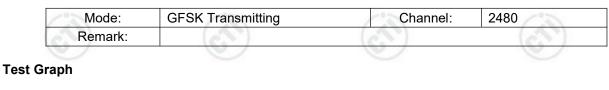
Mode:	GFSK Transmitting	Channel:	2402	1
Remark:	(25)	(5)	*)	(c^)
0				

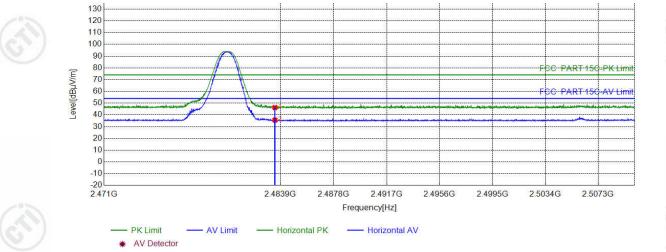
Test Graph


- AV Limit ----- Horizontal PK PK Detector * AV Detector

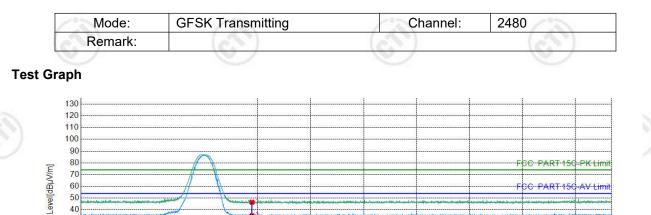
	Suspec	ted List								
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
~	1	2390.0000	5.77	39.67	45.44	74.00	28.56	PASS	Horizontal	PK
	2	2390.0000	5.77	28.71	34.48	54.00	19.52	PASS	Horizontal	AV

Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2390.0000	5.77	40.06	45.83	74.00	28.17	PASS	Vertical	PK			
2	2390.0000	5.77	28.66	34.43	54.00	19.57	PASS	Vertical	AV			





Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.73	46.30	74.00	27.70	PASS	Horizontal	PK
2	2483.5000	6.57	29.05	35.62	54.00	18.38	PASS	Horizontal	AV



70 60

FCC PART 15C AV Limit

2.5073G

3)	PK Limi		′ Limit —— V	ertical PK — 1	Vertical AV				2
	Suspec NO	r ted List Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5000	6.57	40.01	46.58	74.00	27.42	PASS	Vertical	PK
	2	2483.5000	6.57	28.35	34.92	54.00	19.08	PASS	Vertical	AV

2.4878G

2.4917G

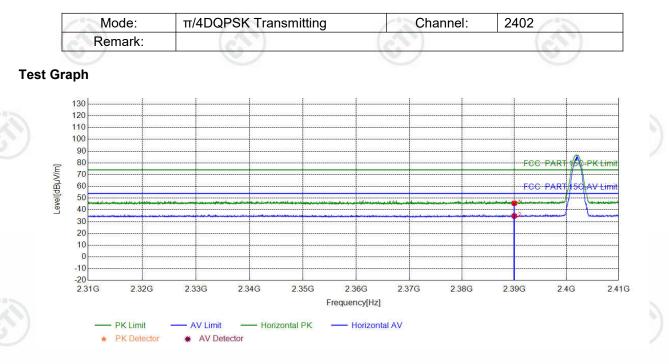
Frequency[Hz]

2.4956G

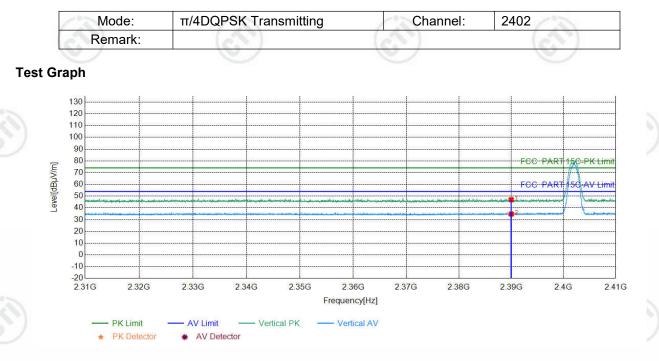
2.4995G

2.5034G

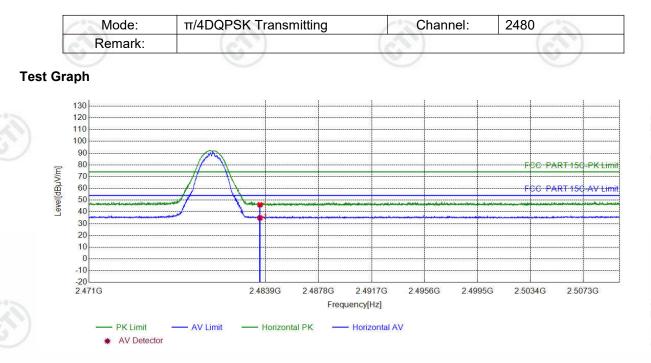
2.4839G



Sus	Suspected List											
NC	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2390.0000	5.77	39.89	45.66	74.00	28.34	PASS	Horizontal	PK			
2	2390.0000	5.77	29.06	34.83	54.00	19.17	PASS	Horizontal	AV			

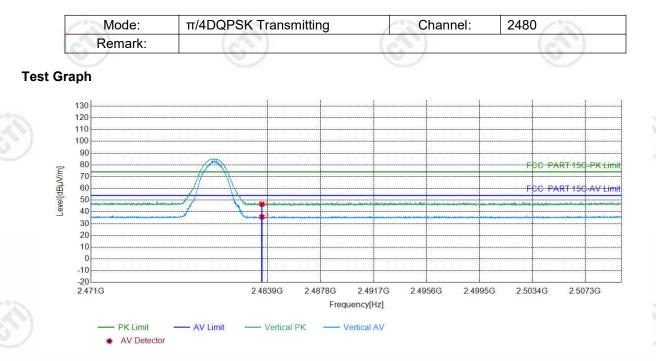


Su	ispec	ted List				_	_			
٦	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390.0000	5.77	41.20	46.97	74.00	27.03	PASS	Vertical	PK
	2	2390.0000	5.77	29.02	34.79	54.00	19.21	PASS	Vertical	AV

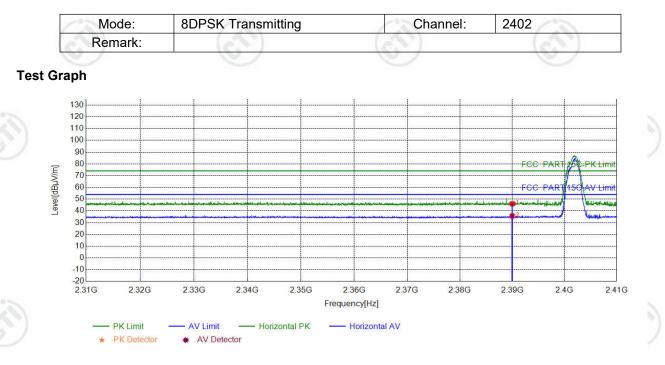


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Suspec	ted List					_			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.47	46.04	74.00	27.96	PASS	Horizontal	PK
2	2483.5000	6.57	28.34	34.91	54.00	19.09	PASS	Horizontal	AV

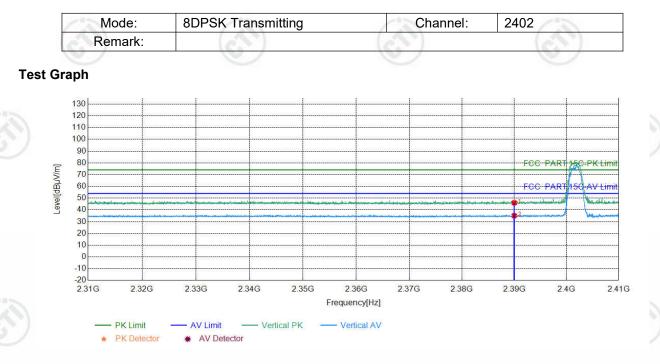


Suspe	ected List					_			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	40.03	46.60	74.00	27.40	PASS	Vertical	PK
2	2483.5000	6.57	29.21	35.78	54.00	18.22	PASS	Vertical	AV



Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

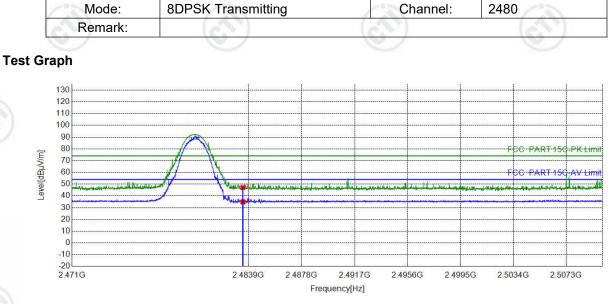
Sus	Suspected List											
N	С	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1		2390.0000	5.77	40.26	46.03	74.00	27.97	PASS	Horizontal	PK		
2	2	2390.0000	5.77	29.93	35.70	54.00	18.30	PASS	Horizontal	AV		



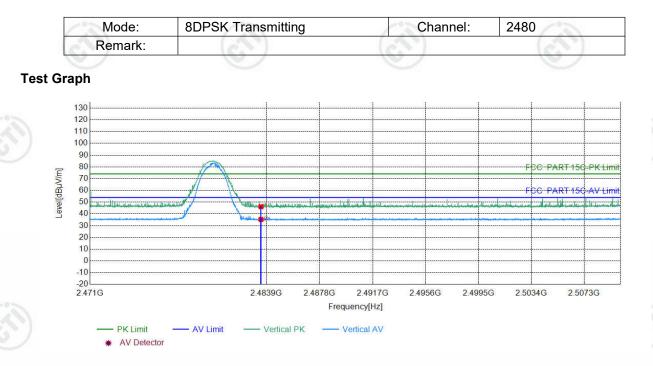
Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2390.0000	5.77	40.26	46.03	74.00	27.97	PASS	Vertical	PK			
2	2390.0000	5.77	29.33	35.10	54.00	18.90	PASS	Vertical	AV			

Hotline:400-6788-333



Suspe	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	2483.5000	6.57	40.62	47.19	74.00	26.81	PASS	Horizontal	PK				
2	2483.5000	6.57	28.37	34.94	54.00	19.06	PASS	Horizontal	AV				



Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5000	6.57	39.64	46.21	74.00	27.79	PASS	Vertical	PK
2	2483.5000	6.57	28.69	35.26	54.00	18.74	PASS	Vertical	AV

Note:

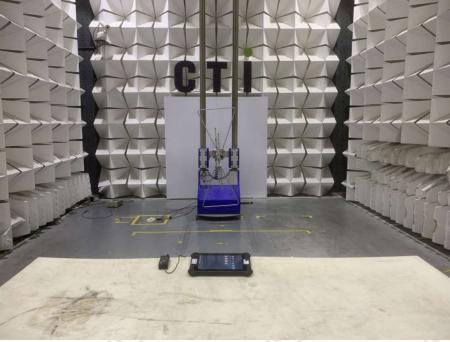
The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

6 Appendix A

Refer to Appendix: Bluetooth Classic of EED32O80133702




Page 50 of 52

7 PHOTOGRAPHS OF TEST SETUP

Test model No.:D1 Pro



Radiated spurious emission Test Setup-1(Below 1GHz)

Radiated spurious emission Test Setup-2(Above 1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz) There are absorbing materials under the ground.

Conducted Emissions Test Setup

8 PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32O80133701 for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written apProval of CTI, this report can't be reProduced

