Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D2450V2-736_Aug21 # CALIBRATION CERTIFICATE Object D2450V2 - SN:736 Calibration procedure(s) QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between 0.7-3 GHz Calibration date: August 17, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Control of the Contro | |---|--|--|--| | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Metwork Analyzer Agilent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 | O9-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20) | Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 Oct-21 | | Calibrated by: | Name
Leif Klysner | Function Laboratory Technician | Signature Se Mbs | | approved by: | Katja Pokovic | Technical Manager | VAS. | issued: At Issued: August 25, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-736_Aug21 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.9 ± 6 % | 1.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 4555 | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.9 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.2 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.3 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-736_Aug21 ### Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | $55.3 \Omega + 3.6 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 24.3 dB | | ### **General Antenna Parameters and Design** | 122 PRO 20245 W W FE 502 | | |----------------------------------|----------| | Electrical Delay (one direction) | 1.158 ns | | | 1.156115 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by
this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | NA STATE OF THE ST | M | |--|-------| | Manufactured by | SPEAG | | | SPEAG | Certificate No: D2450V2-736_Aug21 ### **DASY5 Validation Report for Head TSL** Date: 17.08.2021 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.96, 7.96, 7.96) @ 2450 MHz; Calibrated: 28.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 118.4 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 27.7 W/kg ### SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.43 W/kg Smallest distance from peaks to all points 3 dB below = 9 mm Ratio of SAR at M2 to SAR at M1 = 50.3% Maximum value of SAR (measured) = 22.8 W/kg 0 dB = 22.8 W/kg = 13.58 dBW/kg ### Impedance Measurement Plot for Head TSL Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Accreditation No.: SCS 0108 Certificate No: D5GHzV2-1006 Sep21 ## CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1006 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: September 15, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | 11/1 | | Annual Indian | | | Ortigues | | Approved by: | Katja Pokovic | Technical Manager | all al | Issued: September 15, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1006_Sep21 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1006_Sep21 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.7 ± 6 % | 4.52 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL |
condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.2 ± 6 % | 4.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | <u>Discour</u> , | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 85.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.43 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1006_Sep21 Page 3 of 8 ### Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|----------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 5.01 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | and the second | 180006 | ### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1006_Sep21 Page 4 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 54.8 Ω - 8.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.3 dB | | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 56.3 Ω - 7.4 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.8 dB | | ### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 60.1 Ω + 3.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.3 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.199 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | And the state of t | | |--|-------| | Manufactured by | SPEAG | | ···airaidad by | SPEAG | | | | Certificate No: D5GHzV2-1006_Sep21 ### DASY5 Validation Report for Head TSL Date: 15.09.2021 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1006 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; σ = 4.52 S/m; ϵ_r = 34.7; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.86 S/m; ϵ_r = 34.2; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.01$ S/m; $\epsilon_r = 34$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 30.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.78 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.2 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.35 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.6% Maximum value of SAR (measured) = 18.5 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.99 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 8.59 W/kg; SAR(10 g) = 2.43 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68% Maximum value of SAR (measured) = 20.0 W/kg Certificate No: D5GHzV2-1006_Sep21 # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.50 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 31.9 W/kg SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.3% Maximum value of SAR (measured) = 19.6 W/kg 0 dB = 20.0 W/kg = 13.01 dBW/kg ### Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the sign The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D6.5GHzV2-1003_Sep21 ### CALIBRATION CERTIFICATE Object D6.5GHzV2 - SN:1003 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: September 24, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration
Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Power sensor R&S NRP33T | SN: 100967 | 08-Apr-21 (No. 217-03293) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 7405 | 30-Dec-20 (No. EX3-7405_Dec20) | Dec-21 | | DAE4 | SN: 908 | 24-Jun-21 (No. DAE4-908_Jun21) | Jun-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator Anapico APSIN20G | SN: 669 | 28-Mar-17 (in house check Dec-18) | In house check: Dec-21 | | Network Analyzer Keysight E5063A | SN:MY54504221 | 31-Oct-19 (in house check Oct-19) | In house check: Oct-22 | Calibrated by: Approved by: Name Function Jeton Kastrati Laboratory Technician Katja Pokovic Technical Manager Issued: September 27, 2021 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D6.5GHzV2-1003_Sep21 Page 1 of 6 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. #### Additional Documentation: b) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. - The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY6 | V16.0 | |------------------------------|--------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 5 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 3.4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 6500 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 34.5 | 6.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.6 ± 6 % | 6.11 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 100 mW input power | 29.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 292 W/kg ± 24.7 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 5.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.8 W/kg ± 24.4 % (k=2) | Certificate No: D6.5GHzV2-1003_Sep21 ### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.4 Ω - 1.9 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 26.8 dB | | | ### **APD (Absorbed Power Density)** | APD averaged over 1 cm ² | Condition | | |-------------------------------------|--------------------|--------------------------------------| | APD measured | 100 mW input power | 292 W/m ² | | APD measured | normalized to 1W | 2920 W/m ² ± 29.2 % (k=2) | | APD averaged over 4 cm ² | condition | | |-------------------------------------|--------------------|--------------------------------------| | APD measured | 100 mW input power | 132 W/m ² | | APD measured | normalized to 1W | 1320 W/m ² ± 28.9 % (k=2) | ### General Antenna Parameters and Design After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SDEAG | |-----------------|-------| | Manufactured by | SPEAG | ### **DASY6 Validation Report for Head TSL** Measurement Report for D6.5GHz-1003, UID 0 -, Channel 6500 (6500.0MHz) Dimensions [mm] | Device under Test Prope | erties | |-------------------------|--------| |-------------------------|--------| Name, Manufacturer | D6.5GHz | 16.0 x 6.0 x 300.0 | | SN: 1003 | % | | | | |--|---------------------------------------|------|---------------|--------------------|----------------------|--------------------|---------------------| | Exposure Cond
Phantom
Section, TSL | ditions
Position, Test
Distance | Band | Group,
UID | Frequency
[MHz] | Conversion
Factor | TSL Cond.
[S/m] | TSL
Permittivity | | | [mm] | | | | | | | | Flat, HSL | 5.00 | Band | CW, | 6500 | 5.75 | 6.11 | 33.6 | **DUT Type** IMEI | | Н | lai | ď | wa | re | S | e | tı | J | р | |--|---|-----|---|----|----|---|---|----|---|---| |--|---|-----|---|----|----|---|---|----|---|---| | Phantom | TSL | Probe, Calibration Date | DAE, Calibration Date | |------------------------|-----------------|-----------------------------|------------------------| | MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - SN7405, 2020-12-30 | DAE4 Sn908, 2021-06-24 | #### Scan Setup | Scan Setup | | Measurement Results | | |---------------------|-----------------------------|---------------------|------------------| | | Zoom Scan | | Zoom Scan | | Grid Extents [mm] | 22.0 x 22.0 x 22.0 | Date | 2021-09-24, 9:30 | | Grid Steps [mm] | $3.4 \times 3.4 \times 1.4$ | psSAR1g [W/Kg] | 29.4 | | Sensor Surface [mm] | 1.4 | psSAR10g [W/Kg] | 5.42 | | Graded Grid | Yes | Power Drift [dB] | -0.02 | | Grading Ratio | 1.4 | Power Scaling | Disabled | | MAIA | N/A | Scaling Factor [dB] | | | Surface Detection | VMS + 6p | TSL Correction | No correction | | Scan Method | Measured | M2/M1 [%] | 55.6 | | | | Dist 3dB Peak [mm] | 4.6 | ## Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: 5G-Veri10-1020_Jan22 | ion Source 10 GHz - SN: 1020 203 procedure for sources in air above 6 GHz 2022 to national standards, which realize the physical units ence probability are given on the following pages and aboratory facility:
environment temperature (22 ± 3)°C attion) Cal Date (Certificate No.) 2021-12-21(No. EUmmWV3-9374_Dec21) 2021-06-25 (No. DAE4ip-1602_Jun21) | of measurements (SI). are part of the certificate. and humidity < 70%. Scheduled Calibration Dec-22 Jun-22 | |--|---| | 2022 to national standards, which realize the physical units ence probability are given on the following pages and aboratory facility: environment temperature (22 ± 3)°C attion) Cal Date (Certificate No.) 2021-12-21(No. EUmmWV3-9374_Dec21) | of measurements (SI). are part of the certificate. and humidity < 70%. Scheduled Calibration Dec-22 Jun-22 | | to national standards, which realize the physical units ence probability are given on the following pages and aboratory facility: environment temperature (22 ± 3)°C attion) Cal Date (Certificate No.) 2021-12-21(No. EUmmWV3-9374_Dec21) | are part of the certificate. and humidity < 70%. Scheduled Calibration Dec-22 Jun-22 | | boratory facility: environment temperature (22 ± 3)°C and action) Cal Date (Certificate No.) 2021-12-21(No. EUmmWV3-9374_Dec21) | are part of the certificate. and humidity < 70%. Scheduled Calibration Dec-22 Jun-22 | | Cal Date (Certificate No.) 2021-12-21(No. EUmmWV3-9374_Dec21) | Dec-22
Jun-22 | | 2021-12-21(No. EUmmWV3-9374_Dec21) | Dec-22
Jun-22 | | | Jun-22 | | 2021-06-25 (No. DAE4ip-1602_Jun21) | | | | Schodulad Chast | | Check Date (in house) | Scheduled Check | | | | | Function | Signature | | Laboratory Technician | Seif The | | Deputy Manager | SIA | | | | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 ### Glossary CW Continuous wave ### Calibration is Performed According to the Following Standards - Internal procedure QA CAL-45-5Gsources - IEC TR 63170 ED1, "Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz", January 2018 ### **Methods Applied and Interpretation of Parameters** - Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange. - Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections. - Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn. - E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn. - Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation. ### **Calibrated Quantity** Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: 5G-Veri10-1020_Jan22 Page 2 of 7 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | cDASY6 Module mmWave | V2.4 | |--------------------------------|----------------------|------| | Phantom | 5G Phantom | | | Distance Horn Aperture - plane | 10 mm | | | XY Scan Resolution | dx, dy = 7.5 mm | | | Number of measured planes | 2 (10mm, 10mm + λ/4) | | | Frequency | 10 GHz ± 10 MHz | | ### Calibration Parameters, 10 GHz Circular Averaging | Distance Horn Aperture to Measured Plane | Prad¹
(mW) | Max E-field
(V/m) | Uncertainty
(k = 2) | Avg (psPD
psPD | er Density
n+, psPDtot+,
mod+)
//m ²) | Uncertainty
(k = 2) | |--|---------------|----------------------|------------------------|-------------------|--|------------------------| | | | | | 1 cm ² | 4 cm ² | | | 10 mm | 86.1 | 149 | 1.27 dB | 55.0 | 51.7 | 1.28 dB | **Square Averaging** | Distance Horn Aperture to Measured Plane | Prad¹
(mW) | Max E-field
(V/m) | Uncertainty
(k = 2) | Avg (psPD psPD | er Density
n+, psPDtot+,
mod+)
/m ²) | Uncertainty
(k = 2) | |--|---------------|----------------------|------------------------|-------------------|---|------------------------| | | | | | 1 cm ² | 4 cm ² | | | 10 mm | 86.1 | 149 | 1.27 dB | 55.0 | 51.5 | 1.28 dB | Certificate No: 5G-Veri10-1020_Jan22 $^{^{\}rm I}$ Assessed ohmic and mismatch loss plus numerical offset: 0.55 dB ### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) #### **Device under Test Properties** Name, Manufacturer | Name, Manufacturer | Dimensions [mm | n] | IMEI | DUT Type | | |--------------------------------------|---------------------------------|-----------------|----------|------------------------------------|-------------------| | 5G Verification Source | 10 GHz 100.0 x 100.0 x | 172.0 | SN: 1020 | 3
3 | | | Exposure Conditio
Phantom Section | ns Position, Test Distance [mm] | Band | Group, | Frequency [MHz],
Channel Number | Conversion Factor | | 5G - | 10.0 mm | Validation band | cw | 10000.0, | 1.0 | 10000.0, 10000 1.0 #### Hardware Setup | Phantom | Medium | Probe, Calibration Date | DAE, Calibration Date | |-----------------------|--------|----------------------------|-----------------------| | mmWave Phantom - 1002 | Air | EUmmWV3 - SN9374_F1-55GHz, | DAE4ip Sn1602, | | | | 2021-12-21 | 2021-06-25 | #### Scan Setup | Scan Setup | | Measurement Results | | |---------------------|---------------|------------------------------|-------------------| | | 5G Scan | | 5G Scan | | Grid Extents [mm] | 120.0 x 120.0 | Date | 2022-01-18, 16:30 | | Grid Steps [lambda] | 0.25 x 0.25 | Avg. Area [cm ²] | 1.00 | | Sensor Surface [mm] | 10.0 | psPDn+ [W/m²] | 54.8 | | MAIA | MAIA not used | psPDtot+ [W/m²] | 55.0 | | | | psPDmod+ [W/m²] | 55.2 | | | | E _{max} [V/m] | 149 | | | | Power Drift [dR] | 0.03 | ### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) #### **Device under Test Properties** | Name, Manufacturer | Dimensions [mm] | IMEI | DUT Type | | |-------------------------------|-----------------------|----------|----------|--| | 5G Verification Source 10 GHz | 100.0 x 100.0 x 172.0 | SN: 1020 | | | #### **Exposure Conditions** | Phantom Section | Position, Test Distance
[mm] | Band | Group, | Frequency [MHz],
Channel Number | Conversion Factor | |-----------------|---------------------------------|-----------------|--------|------------------------------------|-------------------| | 5G - | 10.0 mm | Validation band | CW | 10000.0, | 1.0 | | | | | | 10000 | | ### **Hardware Setup** | Phantom | Medium | Probe, Calibration Date | DAE, Calibration Date | |-----------------------|--------|--|------------------------------| | mmWave Phantom - 1002 | Air | EUmmWV3 - SN9374_F1-55GHz,
2021-12-21 | DAE4ip Sn1602,
2021-06-25 | #### Scan Setup | Scan Setup | | Measurement Results | | |---------------------|---------------|------------------------------|-------------------| | | 5G Scan | | 5G Scan | | Grid Extents [mm] | 120.0 x 120.0 | Date | 2022-01-18, 16:30 | | Grid Steps [lambda] | 0.25 x 0.25 | Avg. Area [cm ²] | 4.00 | | Sensor Surface [mm] | 10.0 | psPDn+ [W/m²] | 51.5 | | MAIA | MAIA not used | psPDtot+ [W/m ²] | 51.7 | | | | psPDmod+ [W/m ²] | 51.9 | | | | E _{max} [V/m] | 149 | | | | Power Drift [dB] | 0.02 | | | | | | ### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) ### **Device under Test Properties** | Name, Manufacturer | Dimensions [mm] | IMEI | DUT Type | | |-------------------------------|-----------------------|----------|----------|--| | 5G Verification Source 10 GHz | 100.0 x 100.0 x 172.0 | SN: 1020 | 2 | | | Exposure Conditions | | | | | | Phantom Section | Position, Test Distance
[mm] | Band | Group, | Frequency [MHz],
Channel Number | Conversion Factor |
-----------------|---------------------------------|-----------------|--------|------------------------------------|-------------------| | 5G - | 10.0 mm | Validation band | CW | 10000.0, | 1.0 | | | | | | 10000 | | ### **Hardware Setup** | Phantom | Medium | Probe, Calibration Date | DAE, Calibration Date | |-----------------------|--------|----------------------------|-----------------------| | mmWave Phantom - 1002 | Air | EUmmWV3 - SN9374_F1-55GHz, | DAE4ip Sn1602, | | | | 2021-12-21 | 2021-06-25 | #### Scan Setup | Scan Setup | | Measurement Results | | |---------------------|---------------|------------------------------|-------------------| | | 5G Scan | | 5G Scan | | Grid Extents [mm] | 120.0 x 120.0 | Date | 2022-01-18, 16:30 | | Grid Steps [lambda] | 0.25 x 0.25 | Avg. Area [cm ²] | 1.00 | | Sensor Surface [mm] | 10.0 | psPDn+ [W/m²] | 54.8 | | MAIA | MAIA not used | psPDtot+ [W/m²] | 55.0 | | | | psPDmod+ [W/m²] | 55.2 | | | | E _{max} [V/m] | 149 | | | | Power Drift [dB] | 0.02 | 0.02 ### Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) #### **Device under Test Properties** | Name, Manufacturer | Dimensions [mm] | IMEI | DUTT | | |--|-----------------------|----------|----------|--| | The control of co | Dimensions (min) | IIVIEI | DUT Type | | | 5G Verification Source 10 GHz | 100.0 x 100.0 x 172.0 | SN: 1020 | | | #### **Exposure Conditions** | Phantom Section | Position, Test Distance
[mm] | Band | Group, | Frequency [MHz],
Channel Number | Conversion Factor | |-----------------|---------------------------------|-----------------|--------|------------------------------------|-------------------| | 5G - | 10.0 mm | Validation band | CW | 10000.0,
10000 | 1.0 | ### **Hardware Setup** | Phantom | Medium | Probe, Calibration Date | DAE, Calibration Date | |-----------------------|--------|--|------------------------------| | mmWave Phantom - 1002 | Air | EUmmWV3 - SN9374_F1-55GHz,
2021-12-21 | DAE4ip Sn1602,
2021-06-25 | #### Scan Setup | | | Measurement Vesuits | | |---------------------|---------------|------------------------------|-------------------| | | 5G Scan | | 5G Scan | | Grid Extents [mm] | 120.0 x 120.0 | Date | 2022-01-18, 16:30 | | Grid Steps [lambda] | 0.25 x 0.25 | Avg. Area [cm ²] | 4.00 | | Sensor Surface [mm] | 10.0 | psPDn+ [W/m²] | 51.3 | | MAIA | MAIA not used | psPDtot+ [W/m²] | 51.5 | | | | psPDmod+ [W/m²] | 51.7 | | | | E _{max} [V/m] | 149 | | | | Power Drift [dR] | 0.03 | Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: EUmmWV4-9461 Oct21 ### **CALIBRATION CERTIFICATE** Object EUmmWV4 - SN:9461 Calibration procedure(s) QA CAL-02.v9, QA CAL-25.v7, QA CAL-42.v2 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date: October 22, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/0292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Reference Probe ER3DV6 | SN: 2328 | 05-Oct-20 (No. ER3-2328_Oct20) | Oct-21 | | DAE4 | SN: 789 | 23-Dec-20 (No. DAE4-789_Dec20) | Dec-21 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: October 23, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: NORMx,y,z DCP sensitivity in free space diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle Sensor Angles information used in DASY system to align probe sensor X to the robot coordinate system sensor deviation from the probe axis, used to calculate the field orientation and polarization is the wave propagation direction ### Calibration is Performed According to the Following Standards: a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005 ### Methods Applied and Interpretation of Parameters: - *NORMx,y,z*: Assessed for E-field polarization ϑ = 0 for XY sensors and ϑ = 90 for Z sensor (f \leq 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, Rp, inductance L and capacitors C, Cp). - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - Sensor Offset: The sensor offset corresponds to the mechanical from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). - Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different
angles. The angles are assessed using the information gained by determining the NORMx (no uncertainty required). - Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / horn setup. Certificate No: EUmmWV4-9461 Oct21 Page 2 of 19