SPORTON International Inc. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw # **FCC RADIO TEST REPORT** | Applicant's company | D-Link Corporation | |---------------------|--| | Applicant Address | No.289, Sinhu 3rd Rd., Neihu District, Taipei City 114, Taiwan, R.O.C. | | FCC ID | KA2IR895LA1 | | Product Name | AC5300 Ultra Wi-Fi Router | | | | |-------------------|---------------------------------------|--|--|--| | Brand Name | D-Link | | | | | Model No. | DIR-895L, DIR-894L | | | | | Test Rule Part(s) | 47 CFR FCC Part 15 Subpart C § 15.247 | | | | | Test Freq. Range | 2400 ~ 2483.5MHz | | | | | Received Date | May 15, 2015 | | | | | Final Test Date | Jul. 06, 2016 | | | | | Submission Type | Class II Change | | | | #### Statement Test result included is only for the IEEE 802.11b/g, IEEE 802.11n and IEEE 802.11ac of the product. The test result in this report refers exclusively to the presented test model / sample. Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart C, KDB558074 D01 v03r05, KDB 662911 D01 v02r01, KDB644545 D01 v01r02. The test equipment used to perform the test is calibrated and traceable to NML/ROC. # **Table of Contents** | 1. VERII | IFICATION OF COMPLIANCE | 1 | |-----------|--------------------------------|-------| | 2. SUMI | IMARY OF THE TEST RESULT | | | | NERAL INFORMATION | | | 3.1. | Product Details | | | 3.2. | Accessories | | | 3.3. | Table for Filed Antenna | 5 | | 3.4. | Table for Carrier Frequencies | 7 | | 3.5. | Table for Test Modes | | | 3.6. | Table for Testing Locations | 7 | | 3.7. | Table for Multiple Listing | 8 | | 3.8. | Table for Class II Change | 8 | | 3.9. | Table for Supporting Units | 8 | | 3.10. | EUT Operation during Test | 8 | | 3.11. | . Duty Cycle | 8 | | 3.12. | Test Configurations | 9 | | 4. TEST | RESULT | | | 4.1. | Radiated Emissions Measurement | | | 4.2. | Emissions Measurement | 14 | | 4.3. | Antenna Requirements | 17 | | 5. LIST (| OF MEASURING EQUIPMENTS | 18 | | 6. MEA | ASUREMENT UNCERTAINTY | | | ADDENIE | DIV A TEST DUCTOS | A1 A2 | # History of This Test Report | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |---------------|---------|-------------------------|---------------| | FR551992-05AA | Rev. 01 | Initial issue of report | Nov. 03, 2016 | Issued Date :Nov. 03, 2016 Project No: CB10507143 ### 1. VERIFICATION OF COMPLIANCE Product Name: AC5300 Ultra Wi-Fi Router Brand Name : D-Link Model No. : DIR-895L, DIR-894L Applicant: **D-Link Corporation** Test Rule Part(s) : 47 CFR FCC Part 15 Subpart C § 15.247 Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on May 15, 2015 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature. Sam Chen SPORTON INTERNATIONAL INC. Report Format Version: Rev. 01 FCC ID: KA2IR895LA1 Page No. : 1 of 19 Issued Date : Nov. 03, 2016 # 2. SUMMARY OF THE TEST RESULT | Applied Standard: 47 CFR FCC Part 15 Subpart C | | | | | | | |--|-----------|----------------------|----------|--|--|--| | Part Rule Section Description of Test Result | | | | | | | | 4.1 | 15.247(d) | Radiated Emissions | Complies | | | | | 4.2 | 15.247(d) | Band Edge Emissions | Complies | | | | | 4.3 | 15.203 | Antenna Requirements | Complies | | | | # 3. GENERAL INFORMATION ### 3.1. Product Details | Items | Description | | | | | | |---------------------|--|--|--|--|--|--| | Product Type | WLAN (4TX, 4RX) | | | | | | | Radio Type | Intentional Transceiver | | | | | | | Power Type | From power adapter | | | | | | | Modulation | IEEE 802.11b: DSSS | | | | | | | | IEEE 802.11g: OFDM | | | | | | | | IEEE 802.11n/ac: see the below table | | | | | | | Data Modulation | IEEE 802.11b: DSSS (BPSK / QPSK / CCK) | | | | | | | | IEEE 802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM) | | | | | | | | IEEE 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM, | | | | | | | | 1024QAM) | | | | | | | Data Rate (Mbps) | IEEE 802.11b: DSSS (1/ 2/ 5.5/11) | | | | | | | | IEEE 802.11g: OFDM (6/9/12/18/24/36/48/54) | | | | | | | | IEEE 802.11n/ac: see the below table | | | | | | | Frequency Range | 2400 ~ 2483.5MHz | | | | | | | Channel Number | 11 for 20MHz bandwidth ; 7 for 40MHz bandwidth | | | | | | | Carrier Frequencies | Please refer to section 3.4 | | | | | | | Antenna | Please refer to section 3.3 | | | | | | | Items | Description | | | | | |----------------------|-------------|--|--|--|--| | Beamforming Function | | | | | | Note: The product has beamforming function for $801.11 \, \text{n/ac}$ in $2.4 \, \text{GHz}$ and $5 \, \text{GHz}$. #### Antenna and Band width | Antenna | Four (TX) | | | | | | |-----------------|---------------|---|--|--|--|--| | Band width Mode | 20 MHz 40 MHz | | | | | | | IEEE 802.11b | V X | | | | | | | IEEE 802.11g | V | x | | | | | | IEEE 802.11n | V | V | | | | | | IEEE 802.11ac | V | V | | | | | Report Format Version: Rev. 01 Page No. : 3 of 19 FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016 #### IEEE 802.11n/ac Spec. | Protocol | Number of
Transmit Chains (NTX) | Data Rate / MCS | |------------------|------------------------------------|-----------------| | 802.11n (HT20) | 4 | MC\$0-31 | | 802.11n (HT40) | 4 | MC\$0-31 | | 802.11ac (VHT20) | 4 | MCS0-11/Nss1-4 | | 802.11ac (VHT40) | 4 | MCS0-11/Nss1-4 | Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40. Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT supports VHT20, VHT40 in 2.4GHz and supports VHT20, VHT40, VHT80 in 5GHz. Note 3: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac #### 3.2. Accessories | Power | Brand | Model | Rating | Remak | | | |----------------------------------|-------|----------|-----------------------------|--------------|--|--| | | | | Input:100-240V~1.5A 50-60Hz | DC cable | | | | Adapter | APD | DA-60N12 | | Non-shielded | | | | | | | Output:12V-5A | 1.8m | | | | Others | | | | | | | | Power cable*1, Non-shielded 1.3m | | | | | | | Report Format Version: Rev. 01 : 4 of 19 Page No. FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016 #### 3.3. Table for Filed Antenna | | | | | | Antenn Gain | | | Cable Loss | | | True Gain | | | | |------|---------------|-----------|--------------|-----------|-------------|-------|-----|------------|-----|-----|-----------|-----|-----|-----| | Ant. | Brand Holder | P/N | Antenna
- | Connector | | (dBi) | | (dBi) | | | (dBi) | | | | | | | | Туре | | 2.4G | 5G | 5G | 2.4G | 5G | 5G | 2.4G | 5G | 5G | | | | | | | | | B1 | B4 | | B1 | B4 | | B1 | B4 | | | 1 | HL TECHNOLOGY | 290-20187 | Dipole | SMA Plug | 1.8 | 2.8 | 2.8 | 0.5 | 1.1 | 0.7 | 1.3 | 1.7 | 2.1 | | | ' | GROUP LIMITED | 290-20107 | Antenna | Reverse | 1.0 | 2.0 | 2.0 | 0.5 | 1.1 | 0.7 | 1.5 | 1.7 | 2.1 | | | 2 | HL TECHNOLOGY | 290-20188 | Dipole | SMA Plug | | | 0.0 | 0.5 | 1 1 | 0.7 | 1 2 | 1 7 | 0 1 | | | 2 | GROUP LIMITED | 290-20100 | Antenna | Reverse | 1.8 | 2.8 | 2.8 | 0.5 | 1.1 | 0.7 | 1.3 | 1.7 | 2.1 | | | 3 | HL TECHNOLOGY | 290-20188 | Dipole | SMA Plug | 1.0 | 0.0 | 2.8 | 0.5 | 1.1 | 0.7 | 1.3 | 1.7 | 2.1 | | | 3 | GROUP LIMITED | | Antenna | Reverse | 1.8 | 2.8 | 2.0 | 0.5 | 1.1 | 0.7 | 1.5 | 1.7 | 2.1 | | | 4 | HL TECHNOLOGY | 200 20100 | 290-20188 | Dipole | SMA Plug | 1.0 | 0 | 0.0 | 0.5 | 1.1 | 0.7 | 1.3 | 1.7 | 2.1 | | 4 | GROUP LIMITED | 290-20100 | Antenna | Reverse | 1.8 | 2.8 | 2.8 | 0.5 | 1.1 | 0.7 | 1.3 | 1.7 | 2.1 | | | 5 | HL TECHNOLOGY | 290-20187 | Dipole | SMA Plug | 1.0 | 0 | 0.0 | 0.5 | 1.1 | 0.7 | 1.3 | 1.7 | 2.1 | | | 5 | GROUP LIMITED | 290-2010/ | Antenna | Reverse | 1.8 | 2.8 | 2.8 | 0.5 | 1.1 | 0.7 | 1.3 | 1.7 | 2.1 | | | | HL TECHNOLOGY | 290-20188 | Dipole | SMA Plug | | | | 0.5 | 1 1 | 0.7 | 1.3 | 1.7 | 0.1 | | | 6 | GROUP LIMITED | 290-20100 | Antenna | Reverse | 1.8 | 2.8 | 2.8 | 0.5 | 1.1 | 0.7 | 1.3 | 1.7 | 2.1 | | | 7 | HL TECHNOLOGY | 200 20122 | Dipole | SMA Plug | | 0.0 | 0.0 | 0.5 | 1 1 | 0.7 | 1.2 | 1 7 | 0.1 | | | 7 | GROUP LIMITED | 290-20188 | Antenna | Reverse | 1.8 | 2.8 | 2.8 | 0.5 | 1.1 | 0.7 | 1.3 | 1.7 | 2.1 | | | 0 | HL TECHNOLOGY | 200 20122 | Dipole | SMA Plug | 1.0 | 0.0 | 0.0 | 0.5 | 1 1 | 0.7 | 1.2 | 1 7 | 0.1 | | | 8 | GROUP LIMITED | 290-20188 | Antenna | Reverse | 1.8 | 2.8 | 2.8 | 0.5 | 1.1 | 0.7 | 1.3 | 1.7 | 2.1 | | Note: The EUT has eight antennas. <For 2.4GHz Band> For IEEE 802.11b/g/n/ac mode (4TX/4RX) Chain 1, Chain 2, Chain 3 and Chain 4 could transmit/receive simultaneously. <For 5GHz Band 1> For IEEE 802.11a/n/ac mode (4TX/4RX): Chain 1, Chain 2, Chain 3 and Chain 4 could transmit/receive simultaneously. <For 5GHz Band 4> For IEEE 802.11a/n/ac mode (4TX/4RX): Chain 5, Chain 6, Chain 7 and Chain 8 could transmit/receive simultaneously. Report Format Version: Rev. 01 Page No. : 5 of 19 FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016 Issued Date : Nov. 03, 2016 Page No. ### 3.4. Table for Carrier Frequencies There are two bandwidth systems. For 20MHz bandwidth systems, use Channel 1~Channel 11. For 40MHz bandwidth systems, use Channel 3~Channel 9. | Frequency Band | Channel No. | nnel No. Frequency Channel No. | | Frequency | |----------------|-------------|--------------------------------|----|-----------| | 2400~2483.5MHz | 1 | 2412 MHz | 7 | 2442 MHz | | | 2 | 2417 MHz | 8 | 2447 MHz | | | 3 | 2422 MHz | 9 | 2452 MHz | | | 4 | 2427 MHz | 10 | 2457 MHz | | | 5 | 2432 MHz | 11 | 2462 MHz | | | 6 | 2437 MHz | - | - | #### 3.5. Table for Test Modes Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report. | Test Items | Mode | Data Rate | Channel | Chain | |-------------------------------|---------|-----------|---------|---------| | Radiated Emissions Above 1GHz | 11b/CCK | 1 Mbps | 1 | 1+2+3+4 | | Band Edge Emissions | 11b/CCK | 1 Mbps | 1 | 1+2+3+4 | Note: All the specification of test configurations and test modes were based on customer's request The following test modes were performed for all tests: #### For Radiated Emission test: The EUT can be placed in Y-axis and Z-axis. According to the original report, the worst case was found at Y-axis. So The measurement followed the same test mode. Mode 1. CTX - Place EUT in Y-axis #### 3.6. Table for Testing Locations | | Test Site Location | | | | | | | | | |--|--|--|--|--|--|--|--|--|--| | Address: | No.8, L | No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C. | | | | | | | | | TEL: | 886-3-6 | 886-3-656-9065 | | | | | | | | | FAX: | 886-3-6 | 656-9085 | | | | | | | | | Test Site No. Site Category Location FCC Designation No. IC File No. | | | | | | | | | | | 03CH01 | 03CH01-CB SAC Hsin Chu TW0006 IC 4086D | | | | | | | | | Open Area Test Site (OATS); Semi Anechoic Chamber (SAC). Report Format Version: Rev. 01 Page No. : 7 of 19 FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016 ### 3.7. Table for Multiple Listing The model namesin the following table are all refer to the identical product. | Equipment Name | Model Name | Description | |---------------------------|------------|--| | AC5300 Ultra Wi-Fi Router | DIR-895L | All the models are identical, the different model name | | AC3300 Ulila WI-FI ROUIEI | DIR-894L | for different marketing strategy. | From the above models, model: DIR-895L was selected as representative model for the test and its data was recorded in this report. ### 3.8. Table for Class II Change This product is an extension of original one reported under Sporton project number: FR551992AA Below is the table for the change of the product with respect to the original one. | Modifications | Performance Checking | | | | |--|--|--|--|--| | | After evaluating, the worst case is found at 802.11b | | | | | | CH1 and retest this channel only. | | | | | Undating the chip version from PCM4366P1 to | The test item as below. | | | | | Updating the chip version from BCM4366B1 to BCM4366C0. | Radiated Emissions (Above 1GHz) | | | | | BCIVI4300CU. | 2. Emissions Measurement | | | | | | Note: The above test items will be based on original | | | | | | output power to re-test. | | | | | Adding a model name: DIR-894L | There's no influence on the original report. | | | | ### 3.9. Table for Supporting Units For Test Site No: 03CH01-CB | Support Unit | Brand | Model | FCC ID | |--------------|-------|-------|--------| | Notebook | DELL | E4300 | DoC | ### 3.10.EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. # 3.11. Duty Cycle | Mode | On Time On+Off Time | | Duty Cycle | Duty Factor | 1/T Minimum VBW | | |---------|---------------------|-------|------------|-------------|-----------------|--| | IVIOGE | (ms) | (ms) | (%) | (dB) | (kHz) | | | 802.11b | 1.000 | 1.000 | 100.00 | 0.00 | 0.01 | | Page No. : 8 of 19 FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016 # 3.12. Test Configurations # 3.12.1. Radiation Emissions Test Configuration | Item | Connection | Shielded | Length | | |------|-------------|----------|--------|--| | 1 | Power cable | No | 3.1m | | | 2 | RJ-45 cable | No | 10m | | Issued Date : Nov. 03, 2016 ## 4. TEST RESULT #### 4.1. Radiated Emissions Measurement #### 4.1.1. Limit 30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed. | Frequencies | Field Strength | Measurement Distance | | | |-------------|--------------------|----------------------|--|--| | (MHz) | (micorvolts/meter) | (meters) | | | | 0.009~0.490 | 2400/F(kHz) | 300 | | | | 0.490~1.705 | 24000/F(kHz) | 30 | | | | 1.705~30.0 | 30 | 30 | | | | 30~88 | 100 | 3 | | | | 88~216 | 150 | 3 | | | | 216~960 | 200 | 3 | | | | Above 960 | 500 | 3 | | | ### 4.1.2. Measuring Instruments and Setting Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver. | Spectrum Parameter | Setting | |---|--------------------------| | Attenuation | Auto | | Start Frequency | 1000 MHz | | Stop Frequency | 10th carrier harmonic | | RBW / VBW (Emission in restricted band) | 1MHz / 3MHz for Peak, | | | 1MHz / 1/T for Average | | RBW / VBW (Emission in non-restricted band) | 100kHz / 300kHz for peak | | Receiver Parameter | Setting | |------------------------|--------------------------------| | Attenuation | Auto | | Start ~ Stop Frequency | 9kHz~150kHz / RBW 200Hz for QP | | Start ~ Stop Frequency | 150kHz~30MHz / RBW 9kHz for QP | | Start ~ Stop Frequency | 30MHz~1GHz / RBW 120kHz for QP | Report Format Version: Rev. 01 Page No. : 10 of 19 FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016 #### 4.1.3. Test Procedures Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1m & 3m far away from the turntable. - 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation. - 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization. - 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading. - 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode. - 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer. - 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz. - 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported. - 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case. Report Format Version: Rev. 01 Page No. : 11 of 19 FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016 # 4.1.4. Test Setup Layout #### 4.1.5. Test Deviation There is no deviation with the original standard. # 4.1.6. EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. : 12 of 19 Page No. FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016 # 4.1.7. Results for Radiated Emissions (1GHz~10th Harmonic) | Temperature | 25°C | Humidity | 60% | |---------------|-------------------------------|-----------------------|-------------------------------------| | Tost Engineer | Akina Chiu | Configurations | IEEE 802.11b CH 1 / Chain 1 + Chain | | Test Engineer | eer Akina Chiu Configurations | 2 + Chain 3 + Chain 4 | | | Test Date | Jul. 06, 2016 | | | #### Horizontal | | Freq | Level | | | | | | Preamp
Factor | A/Pos | T/Pos | Remark | Pol/Phase | |---|---------|--------|--------|--------|-------|------|-------|------------------|-------|-------|---------|------------| | | MHz | dBuV/m | dBuV/m | dB | dBuV | dB | dB/m | dB | cm | deg | | | | 1 | 4823.98 | 47.45 | 54.00 | -6.55 | 40.85 | 7.22 | 31.12 | 31.74 | 141 | 273 | Average | HORIZONTAL | | 2 | 4824.05 | 50.88 | 74.00 | -23.12 | 44.28 | 7.22 | 31.12 | 31.74 | 141 | 273 | Peak | HORIZONTAL | #### Vertical | | | Level | | | | Read CableA
Level Loss | | | | T/Pos | Remark | Pol/Phase | |---|---------|-------|--------|--------|--------|---------------------------|-------|-------|------|-------|---------|-----------| | | | | dBuV/m | dBuV/m | dBuV/m | dB | dBuV | dB | dB/m | dB | cm | deg | | 1 | 4823.94 | 49.63 | 54.00 | -4.37 | 43.03 | 7.22 | 31.12 | 31.74 | 282 | 148 | Average | VERTICAL | | 2 | 4823.97 | 53.31 | 74.00 | -20.69 | 46.71 | 7.22 | 31.12 | 31.74 | 282 | 148 | Peak | VERTICAL | #### Note: The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported. Emission level (dBuV/m) = $20 \log Emission$ level (uV/m). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level. Report Format Version: Rev. 01 Page No. : 13 of 19 FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016 #### 4.2. Emissions Measurement #### 4.2.1. Limit 30dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed. | Frequencies | Field Strength | Measurement Distance | | | |-------------|--------------------|----------------------|--|--| | (MHz) | (micorvolts/meter) | (meters) | | | | 0.009~0.490 | 2400/F(kHz) | 300 | | | | 0.490~1.705 | 24000/F(kHz) | 30 | | | | 1.705~30.0 | 30 | 30 | | | | 30~88 | 100 | 3 | | | | 88~216 | 150 | 3 | | | | 216~960 | 200 | 3 | | | | Above 960 | 500 | 3 | | | ## 4.2.2. Measuring Instruments and Setting Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer. | Spectrum Parameter | Setting | |---|----------------------------| | Attenuation | Auto | | Span Frequency | 100 MHz | | RBW / VBW (Emission in restricted band) | 1MHz / 3MHz for Peak, | | | 1MHz / 1/T for Average | | RBW / VBW (30dBc in any 100 kHz bandwidth emission) | 100 kHz / 300 kHz for Peak | #### 4.2.3. Test Procedures For Radiated band edges Measurement: The test procedure is the same as section 4.1.3. For Radiated Out of Band Emission Measurement: Test was performed in accordance with KDB558074 D01 v03r05 for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 section 11.0 Unwanted Emissions into Non-Restricted Frequency Bands Measurement Procedure Report Format Version: Rev. 01 Page No. : 14 of 19 FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016 ### 4.2.4. Test Setup Layout #### For Radiated band edges Measurement: This test setup layout is the same as that shown in section 4.1.4. #### For Radiated Out of Band Emission Measurement: This test setup layout is the same as that shown in section 4.1.4. #### 4.2.5. Test Deviation There is no deviation with the original standard. #### 4.2.6. EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. Report Format Version: Rev. 01 Page No. : 15 of 19 FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016 ### 4.2.7. Test Result of Band Edge and Fundamental Emissions | Temperature | 25 ℃ | Humidity | 60% | | | |---------------|---------------|----------------|---|--|--| | Test Engineer | Akina Chiu | Configurations | IEEE 802.11b CH 1 / Chain 1 + Chain 2 + Chain 3 + Chain 4 | | | | Test Date | Jul. 06, 2016 | | | | | #### Channel 1 | | | Freq | Level | Limit
Line | | Read
Level | | | Preamp
Factor | A/Pos | T/Pos | Remark | Pol/Phase | |---|---|---------|--------|---------------|--------|---------------|------|-------|------------------|-------|-------|---------|------------| | | | MHz | dBuV/m | dBuV/m | dB | dBuV | dB | dB/m | dB | cm | deg | | | | 1 | | 2388.40 | 47.85 | 54.00 | -6.15 | 16.47 | 4.33 | 27.05 | 0.00 | 172 | 237 | Average | HORIZONTAL | | 2 | | 2390.00 | 59.20 | 74.00 | -14.80 | 27.82 | 4.33 | 27.05 | 0.00 | 172 | 237 | Peak | HORIZONTAL | | 3 | 0 | 2411.00 | 116.82 | | | 85.37 | 4.35 | 27.10 | 0.00 | 172 | 237 | Peak | HORIZONTAL | | 4 | 0 | 2411.20 | 113.13 | | | 81.67 | 4.35 | 27.11 | 0.00 | 172 | 237 | Average | HORIZONTAL | Item 3, 4 are the fundamental frequency at 2412 MHz. Note: Emission level (dBuV/m) = $20 \log Emission$ level (uV/m). Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level. Page No. : 16 of 19 Issued Date : Nov. 03, 2016 ## 4.3. Antenna Requirements #### 4.3.1. Limit Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed. #### 4.3.2. Antenna Connector Construction Please refer to section 3.3 in this test report; antenna connector complied with the requirements. Report Format Version: Rev. 01 Page No. : 17 of 19 FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016 # 5. LIST OF MEASURING EQUIPMENTS | Instrument | Manufacturer | Model No. | Serial No. | Characteristics | Calibration
Date | Remark | |-------------------|--------------|------------------|-------------|-----------------|---------------------|--------------------------| | Horn Antenna | EMCO | 3115 | 00075790 | 750MHz ~ 18GHz | Oct. 22, 2015 | Radiation
(03CH01-CB) | | Horn Antenna | Schwarzbeck | BBHA 9170 | BBHA9170252 | 15GHz ~ 40GHz | Jul. 21, 2015 | Radiation
(03CH01-CB) | | Pre-Amplifier | Agilent | 8449B | 3008A02310 | 1GHz ~ 26.5GHz | Jan. 18, 2016 | Radiation
(03CH01-CB) | | Spectrum Analyzer | R&S | FSP40 | 100056 | 9kHz ~ 40GHz | Oct. 27, 2015 | Radiation
(03CH01-CB) | | RF Cable-high | Woken | High Cable-16 | N/A | 1 GHz ~ 18 GHz | Nov. 02, 2015 | Radiation
(03CH01-CB) | | RF Cable-high | Woken | High Cable-17 | N/A | 1 GHz ~ 18 GHz | Nov. 02, 2015 | Radiation
(03CH01-CB) | | RF Cable-high | Woken | High Cable-40G-1 | N/A | 18GHz ~ 40 GHz | Nov. 02, 2015 | Radiation
(03CH01-CB) | | RF Cable-high | Woken | High Cable-40G-2 | N/A | 18GHz ~ 40 GHz | Nov. 02, 2015 | Radiation
(03CH01-CB) | | Test Software | Audix | E3 | 6.2009-10-7 | N/A | N/A | Radiation
(03CH01-CB) | Note: Calibration Interval of instruments listed above is one year. Report Format Version: Rev. 01 FCC ID: KA2IR895LA1 Page No. : 18 of 19 Issued Date : Nov. 03, 2016 # 6. MEASUREMENT UNCERTAINTY | Test Items | Uncertainty | Remark | |--|-------------|--------------------------| | Radiated Emission (1GHz \sim 18GHz) | 3.7 dB | Confidence levels of 95% | | Radiated Emission (18GHz \sim 40GHz) | 3.5 dB | Confidence levels of 95% | Report Format Version: Rev. 01 Page No. : 19 of 19 FCC ID: KA2IR895LA1 Issued Date : Nov. 03, 2016