

SAR TEST REPORT

Test Report No.: 14351608H-G

Customer	Audio-Technica Corporation	
Description of EUT	Handheld transmitter	
Model Number of EUT	ATW-T3202aEE1	
FCC ID	JFZT3202AEE1	
Test Regulation	FCC47CFR 2.1093	
Test Result	Complied (Refer to SECTION 4)	
Issue Date	October 4, 2022	
Remarks	The highest reported SAR (1 g)Standalone Tx (Body-worn): 0.43 W/kg	

Representative Test Engineer Approved By Hisayoshi Sato Satofumi Matsuyama Hisayoshi Sato Satofumi Matsuyama Engineer Enginer Engineer

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 21.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested.
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers SAR technical requirements. It does not cover administrative issues such as Manual or non-SAR test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14351608H-G

Revision	Test report No.	Date	Page Revised Contents
-	14351608H-G	October 4, 2022	-
(Original)			

Reference: Abbreviations (Including words undescribed in this report)

Ant, ANT Antenna IF Intermediate Frequency AP Access Point ILAC International Laborator	hnical Commission nd Electronics Engineers y Accreditation Conference d Economic Development Canada n Network ion for Standardization
AMNArtificial Mains NetworkI/OInput/OutputAmp, AMPAmplifierIECInternational ElectrotectANSIAmerican National Standards InstituteIEEEInstitute of Electrical andAnt, ANTAntennaIFIntermediate FrequencyAPAccess PointILACInternational LaboratorASKAmplitude Shift KeyingISEDInnovation, Science andAtten., ATTAttenuatorISNImpedance StabilizationAVAverageISOInternational OrganizatBPSKBinary Phase-Shift KeyingJABJapan Accreditation BoBRBluetooth Basic RateLANLocal Area NetworkBTBluetoothLCLLongitudinal ConversionBT LEBluetooth Low EnergyLIMSLaboratory InformationBWBandWidthLISNLine Impedance StabilizationC.FCorrection FactorMRAMutual Recognition ArCal IntCalibration IntervalN/ANot ApplicableCAVCISPR AVNISTNational Institute of Sta	hnical Commission nd Electronics Engineers y Accreditation Conference d Economic Development Canada n Network ion for Standardization
Amp, AMPAmplifierIECInternational ElectrotectANSIAmerican National Standards InstituteIEEEInstitute of Electrical atAnt, ANTAntennaIFIntermediate FrequencyAPAccess PointILACInternational LaboratorASKAmplitude Shift KeyingISEDInnovation, Science andAtten., ATTAttenuatorISNImpedance StabilizationAVAverageISOInternational OrganizatBPSKBinary Phase-Shift KeyingJABJapan Accreditation BoBRBluetooth Basic RateLANLocal Area NetworkBTBluetoothLCLLongitudinal ConversidBT LEBluetooth Low EnergyLIMSLaboratory InformationBWBandWidthLISNLine Impedance StabiliC.FCorrection FactorMRAMutual Recognition ArCal IntCalibration IntervalN/ANot ApplicableCAVCISPR AVNISTNational Institute of Sta	nd Electronics Engineers y Accreditation Conference d Economic Development Canada n Network ion for Standardization
ANSTAmerican National Standards InstituteIEEEInstitute of Electrical atAnt, ANTAntennaIFIntermediate FrequencyAPAccess PointILACInternational LaboratorASKAmplitude Shift KeyingISEDInnovation, Science andASKAmplitude Shift KeyingISEDInnovation, Science andAtten., ATTAttenuatorISNImpedance StabilizationAVAverageISOInternational OrganizatBPSKBinary Phase-Shift KeyingJABJapan Accreditation BoBRBluetooth Basic RateLANLocal Area NetworkBTBluetoothLCLLongitudinal ConversidBT LEBluetooth Low EnergyLIMSLaboratory InformationBWBandWidthLISNLine Impedance StabilitC.FCorrection FactorMRAMutual Recognition ArCal IntCalibration IntervalN/ANot ApplicableCAVCISPR AVNISTNational Institute of Sta	nd Electronics Engineers y Accreditation Conference d Economic Development Canada n Network ion for Standardization
Ant, ANTAntennaIFIntermediate FrequencyAPAccess PointILACInternational LaboratorASKAmplitude Shift KeyingISEDInnovation, Science andAtten, ATTAttenuatorISNImpedance StabilizationAVAverageISOInternational OrganizatBPSKBinary Phase-Shift KeyingJABJapan Accreditation BoBRBluetooth Basic RateLANLocal Area NetworkBTBluetoothLCLLongitudinal ConversidBTLEBluetooth Low EnergyLIMSLaboratory InformationBWBandWidthLISNLine Impedance StabiliC.FCorrection FactorMRAMutual Recognition ArCal IntCalibration IntervalN/ANot ApplicableCAVCISPR AVNISTNational Institute of Sta	y Accreditation Conference I Economic Development Canada n Network ion for Standardization
APAccess PointILACInternational LaboratorASKAmplitude Shift KeyingISEDInnovation, Science andASKAmplitude Shift KeyingISEDInnovation, Science andAtten., ATTAttenuatorISNImpedance StabilizationAVAverageISOInternational OrganizatBPSKBinary Phase-Shift KeyingJABJapan Accreditation BoBRBluetooth Basic RateLANLocal Area NetworkBTBluetoothLCLLongitudinal ConversionBT LEBluetooth Low EnergyLIMSLaboratory InformationBWBandWidthLISNLine Impedance StabilitC.FCorrection FactorMRAMutual Recognition ArCal IntCalibration IntervalN/ANot ApplicableCAVCISPR AVNISTNational Institute of Station	y Accreditation Conference I Economic Development Canada n Network ion for Standardization
APAccess PointILACInternational LaboratorASKAmplitude Shift KeyingISEDInnovation, Science andASKAmplitude Shift KeyingISEDInnovation, Science andAtten., ATTAttenuatorISNImpedance StabilizationAVAverageISOInternational OrganizatBPSKBinary Phase-Shift KeyingJABJapan Accreditation BoBRBluetooth Basic RateLANLocal Area NetworkBTBluetoothLCLLongitudinal ConversionBT LEBluetooth Low EnergyLIMSLaboratory InformationBWBandWidthLISNLine Impedance StabilitC.FCorrection FactorMRAMutual Recognition ArCal IntCalibration IntervalN/ANot ApplicableCAVCISPR AVNISTNational Institute of Station	y Accreditation Conference I Economic Development Canada n Network ion for Standardization
ASKAmplitude Shift KeyingISEDInnovation, Science and Atten, ATTAtten, ATTAttenuatorISNImpedance StabilizationAVAverageISOInternational OrganizatBPSKBinary Phase-Shift KeyingJABJapan Accreditation BoBRBluetooth Basic RateLANLocal Area NetworkBTBluetooth Low EnergyLIMSLaboratory InformationBWBandWidthLISNLine Impedance StabiliC.FCorrection FactorMRAMutual Recognition ArCal IntCalibration IntervalN/ANot ApplicableCAVCISPR AVNISTNational Institute of Sta	l Economic Development Canada n Network ion for Standardization
Atten, ATTAttenuatorISNImpedance StabilizationAVAverageISOInternational OrganizatBPSKBinary Phase-Shift KeyingJABJapan Accreditation BoBRBluetooth Basic RateLANLocal Area NetworkBTBluetoothLCLLongitudinal ConversionBT LEBluetooth Low EnergyLIMSLaboratory InformationBWBandWidthLISNLine Impedance StabiliC.FCorrection FactorMRAMutual Recognition ArCal IntCalibration IntervalN/ANot ApplicableCAVCISPR AVNISTNational Institute of Sta	n Network ion for Standardization
AVAverageINInternational OrganizatBPSKBinary Phase-Shift KeyingJABJapan Accreditation BoBRBluetooth Basic RateLANLocal Area NetworkBTBluetoothLCLLongitudinal ConversionBTBluetooth Low EnergyLIMSLaboratory InformationBWBandWidthLISNLine Impedance StabiliC.FCorrection FactorMRAMutual Recognition ArCal IntCalibration IntervalN/ANot ApplicableCAVCISPR AVNISTNational Institute of Sta	ion for Standardization
BPSK Binary Phase-Shift Keying JAB Japan Accreditation Bo BR Bluetooth Basic Rate LAN Local Area Network BT Bluetooth LCL Longitudinal Conversion BT LE Bluetooth Low Energy LIMS Laboratory Information BW BandWidth LISN Line Impedance Stabili C.F Correction Factor MRA Mutual Recognition Ar Cal Int Calibration Interval N/A Not Applicable CAV CISPR AV NIST National Institute of State	
BR Bluetooth Basic Rate LAN Local Area Network BT Bluetooth LCL Longitudinal Conversion BT LE Bluetooth Low Energy LIMS Laboratory Information BW BandWidth LISN Line Impedance Stabili C.F Correction Factor MRA Mutual Recognition Ar Cal Int Calibration Interval N/A Not Applicable CAV CISPR AV NIST National Institute of State	au
BTBluetoothLCLLongitudinal ConversionBT LEBluetooth Low EnergyLIMSLaboratory InformationBWBandWidthLISNLine Impedance StabilitienC.FCorrection FactorMRAMutual Recognition ArtCal IntCalibration IntervalN/ANot ApplicableCAVCISPR AVNISTNational Institute of Station	
BT LE Bluetooth Low Energy LIMS Laboratory Information BW BandWidth LISN Line Impedance Stabili C.F Correction Factor MRA Mutual Recognition Ar Cal Int Calibration Interval N/A Not Applicable CAV CISPR AV NIST National Institute of Sta	n Loss
BW BandWidth LISN Line Impedance Stabili C.F Correction Factor MRA Mutual Recognition Ar Cal Int Calibration Interval N/A Not Applicable CAV CISPR AV NIST National Institute of Sta	
C.F Correction Factor MRA Mutual Recognition Ar Cal Int Calibration Interval N/A Not Applicable CAV CISPR AV NIST National Institute of Sta	
Cal Int Calibration Interval N/A Not Applicable CAV CISPR AV NIST National Institute of Sta	
CAV CISPR AV NIST National Institute of Sta	rangement
	indexed and Taskaslas-
	indards and Technology
	ation
	lation
Ch., CH Channel OBW Occupied BandWidth	
CISPR Comite International Special des Perturbations Radioelectriques OFDM Orthogonal Frequency	Division Multiplexing
Corr. Correction PER Packet Error Rate	
CPE Customer premise equipment PK Peak	
CW Continuous Wave P _{LT} long-term flicker sever	, ,
DBPSK Differential BPSK POHC(A) Partial Odd Harmonic (Current
DC Direct Current Pol., Pola. Polarization	
DET Detector PR-ASK Phase Reversal ASK	
D-factor Distance factor P _{ST} short-term flicker seven	ity
Dmax maximum absolute voltage change during an observation period QAM Quadrature Amplitude	Modulation
DQPSK Differential QPSK QP Quasi-Peak	
DSSS Direct Sequence Spread Spectrum QPSK Quadrature Phase Shift	Keying
DUT Device Under Test r.m.s., RMS Root Mean Square	
EDR Enhanced Data Rate RBW Resolution BandWidth	
e.i.r.p., EIRP Equivalent Isotropically Radiated Power RE Radio Equipment	
EM clamp Electromagnetic clamp REV Reverse	
EMC ElectroMagnetic Compatibility RF Radio Frequency	
EMI ElectroMagnetic Interference RFID Radio Frequency Identi	fier
EMS ElectroMagnetic Susceptibility RNSS Radio Navigation Satel	
EN European Norm RSS Radio Standards Specif	
e.r.p., ERP Effective Radiated Power Rx Receiving	leadons
	e + Distortion) to (Noise + Distortion
EISI European Telecommunications standards institute SINAD Ratio of (Signal + Noise EU European Union S/N Signal to Noise ratio	
Fac. Factor SG Signal Generator ECC Factor SVCWD Site Velters Starting	Vava Datia
FCC Federal Communications Commission SVSWR Site-Voltage Standing	
FHSS Frequency Hopping Spread Spectrum THC(A) Total Harmonic Curren	
FM Frequency Modulation THD(%) Total Harmonic Distort	10n
Freq. Frequency TR, T/R Test Receiver	
FSK Frequency Shift Keying Tx Transmitting	
Fund Fundamental VBW Video BandWidth	
FWD Forward Vert. Vertical	
GFSK Gaussian Frequency-Shift Keying WLAN Wireless LAN	
GNSS Global Navigation Satellite System xDSL Generic term for all type	es of DSL technology
(DSL: Digital Subscrib	<u></u>

CONTENTS

SECTION 2: Equipment under test (EUT) 5 2.1 Identification of EUT 5 SECTION 3: Test standard information 6 3.1 Test Specification 6 3.2 Procedure 6 3.3 Additions or deviations to standard. 6 3.4 Exposure limit. 7 3.5 SAR. 7 3.6 Test Location 7 SECTION 4: Test result. 8 4.1 Result 8 4.2 Stand-alone SAR result 8 SECTION 5: Tune-up tolerance information and software information 8 SECTION 5: Resposure Conditions (Test Configurations) 9 6.1 Summary of the distance between antenna and surface of EUT 9 6.2 SAR test exclusion considerations according to KDB 447498 D01 9 SECTION 7: Description of the Body setup 11 7.1 Procedure for SAR test position determination 11 7.2 Test position for Body setup 11 7.1 Procedure and SAR test required. 11 8.1 Output Power and SAR test required. 11 8.1 Output Power and SAR test required. 13 10.1 For SAR system check. 13 10.1 For SAR system check. <th>SECTION 1: Customer information</th> <th>. 5</th>	SECTION 1: Customer information	. 5
2.1 Identification of EUT 5 SECTION 3: Test standard information 6 3.1 Test Specification 6 3.2 Procedure 6 3.3 Additions or deviations to standard 6 3.4 Exposure limit 7 3.5 SAR 7 3.6 Test Location 7 SECTION 4: Test result 8 4.1 Result 8 4.2 Stand-alone SAR result 8 SECTION 5: Tune-up tolerance information and software information 8 SECTION 5: Tune-up tolerance information and software information 8 SECTION 6: RF Exposure Conditions (Test Configurations) 9 6.1 Summary of the distance between antenna and surface of EUT 9 6.2 SAR test exclusion considerations according to KDB 447498 D01 9 SECTION 7: Description of the Body setup 11 7.1 Procedure for SAR test position determination 11 7.2 Test position for Body setup 11 7.1 Procedure for SAR test required 11 8.1 Output Power and SAR test required 11 8.1 Output Power and SAR test required 11 SECTION 10: Parameter Check 13 10.2 F		
SECTION 3: Test standard information 6 3.1 Test Specification 6 3.2 Procedure 6 3.3 Additions or deviations to standard 6 3.4 Exposure limit 7 3.5 SAR 7 3.6 Test Location 7 SECTION 4: Test result 8 4.1 Result 8 4.2 Stand-alone SAR result 8 SECTION 5: Tune-up tolerance information and software information 8 SECTION 6: RF Exposure Conditions (Test Configurations) 9 6.1 Summary of the distance between antenna and surface of EUT 9 6.2 SAR test exclusion considerations according to KDB 447498 D01 9 9.1 Summary of the distance between antenna and surface of EUT 9 6.1 Summary of the distance between antenna and surface of EUT 9 7.1 Procedure for SAR test position determination 11 7.1 Procedure for SAR test position determination 11 7.2 Test position of the operating mode 11 8.1 Output Power and SAR test required 11 SECTION 9: Test surrounding 12 9.1 Measurement uncertainty 12 9.2 For SAR measurement 13 <td></td> <td></td>		
3.1 Test Specification 6 3.2 Procedure 6 3.3 Additions or deviations to standard 6 3.4 Exposure limit 7 3.5 SAR 7 3.6 Test Location 7 SECTION 4: Test result 8 4.1 Result 8 4.2 Stand-alone SAR result 8 SECTION 5: Tune-up tolerance information and software information 8 SECTION 6: RF Exposure Conditions (Test Configurations) 9 6.1 Summary of the distance between antenna and surface of EUT 9 6.2 SAR test exclusion considerations according to KDB 447498 D01 9 SECTION 7: Description of the Body setup 11 7.1 Procedure for SAR test position determination 11 7.2 Test surrounding 11 8.1 Output Power and SAR test required 11 8.1 Output Power and SAR test required 11 8.1 Output Power and Reported (Scaled) SAR Results 13 10.1 For SAR system check 13 10.1 For SAR measurement 13 10.2 For SAR measurement 13 10.1 For SAR system check 13 10.2 For SAR measurement 13 <td></td> <td></td>		
3.2 Procedure 6 3.3 Additions or deviations to standard 6 3.4 Exposure limit. 7 3.5 SAR 7 3.6 Test Location. 7 SECTION 4: Test result. 8 4.1 Result 8 4.2 Stand-alone SAR result 8 SECTION 5: Tune-up tolerance information and software information 8 SECTION 5: Tune-up tolerance information and software information 9 6.1 Summary of the distance between antenna and surface of EUT 9 6.2 SAR test exclusion considerations according to KDB 447498 D01 9 SECTION 7: Description of the Body setup 11 7.1 Procedure for SAR test position determination 11 7.2 Test position for Body setup 11 8.1 Output Power and SAR test required 11 8.1 Output Power and SAR test required 11 8.1 Output Power and SAR test required 13 10.2 For SAR measurement 15 12.1 Result of Body SAR 16 12.2 Repeated measurement 1		
3.4 Exposure limit. 7 3.5 SAR 7 3.6 Test Location. 7 SECTION 4: Test result. 8 4.1 Result 8 4.2 Stand-alone SAR result. 8 4.2 Stand-alone SAR result. 8 SECTION 5: Tune-up tolerance information and software information 8 SECTION 5: Tune-up tolerance configurations) 9 6.1 Summary of the distance between antenna and surface of EUT 9 6.2 SAR test exclusion considerations according to KDB 447498 D01 9 SECTION 7: Description of the Body setup 11 7.1 Procedure for SAR test position determination 11 7.2 Test position for Body setup 11 SECTION 8: Description of the operating mode 11 8.1 Output Power and SAR test required 11 SECTION 9: Test surrounding 12 9.1 Measurement uncertainty 12 9.2 For SAR measurement 13 10.1 For SAR system Check 13 10.2 For SAR measurement 13 10.2 For SAR measurement 14 SECTION 12: Measured and Reported (Scaled) SAR Results 15 12.1 Result of Body SAR	1	
3.4 Exposure limit. 7 3.5 SAR 7 3.6 Test Location. 7 SECTION 4: Test result. 8 4.1 Result 8 4.2 Stand-alone SAR result. 8 4.2 Stand-alone SAR result. 8 SECTION 5: Tune-up tolerance information and software information 8 SECTION 5: Tune-up tolerance configurations) 9 6.1 Summary of the distance between antenna and surface of EUT 9 6.2 SAR test exclusion considerations according to KDB 447498 D01 9 SECTION 7: Description of the Body setup 11 7.1 Procedure for SAR test position determination 11 7.2 Test position for Body setup 11 SECTION 8: Description of the operating mode 11 8.1 Output Power and SAR test required 11 SECTION 9: Test surrounding 12 9.1 Measurement uncertainty 12 9.2 For SAR measurement 13 10.1 For SAR system Check 13 10.2 For SAR measurement 13 10.2 For SAR measurement 14 SECTION 12: Measured and Reported (Scaled) SAR Results 15 12.1 Result of Body SAR	3.3 Additions or deviations to standard	. 6
3.6 Test Location		
SECTION 4: Test result84.1 Result84.2 Stand-alone SAR result8SECTION 5: Tune-up tolerance information and software information8SECTION 5: Tune-up tolerance information and software information8SECTION 5: RF Exposure Conditions (Test Configurations)96.1 Summary of the distance between antenna and surface of EUT96.2 SAR test exclusion considerations according to KDB 447498 D019SECTION 7: Description of the Body setup117.1 Procedure for SAR test position determination117.2 Test position for Body setup11SECTION 8: Description of the operating mode118.1 Output Power and SAR test required118.1 Output Power and SAR test required119.1 Measurement uncertainty12SECTION 10: Parameter Check1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement1712.1 Result of Body SAR18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	3.5 SAR	. 7
4.1 Result 8 4.2 Stand-alone SAR result 8 SECTION 5: Tune-up tolerance information and software information 8 SECTION 6: RF Exposure Conditions (Test Configurations) 9 6.1 Summary of the distance between antenna and surface of EUT 9 6.2 SAR test exclusion considerations according to KDB 447498 D01 9 SECTION 7: Description of the Body setup 11 7.1 Procedure for SAR test position determination 11 7.2 Test position for Body setup 11 8.1 Output Power and SAR test required 11 8.1 Output Power and SAR test required 11 8.1 Output Power and SAR test required 12 9.1 Measurement uncertainty 12 SECTION 10: Parameter Check. 13 10.1 For SAR system check 13 10.2 For SAR measurement. 13 10.2 For SAR measurement. 14 SECTION 11: System Check confirmation 14 SECTION 12: Measured and Reported (Scaled) SAR Results 15 12.1 Result of Body SAR. 16 12.2 Repeated measurement. 17 SECTION 13: Test instruments 18 APPENDIX 1: System Check. <	3.6 Test Location	. 7
4.2 Stand-alone SAR result8SECTION 5: Tune-up tolerance information and software information8SECTION 6: RF Exposure Conditions (Test Configurations)96.1 Summary of the distance between antenna and surface of EUT96.2 SAR test exclusion considerations according to KDB 447498 D019SECTION 7: Description of the Body setup117.1 Procedure for SAR test position determination117.2 Test position of the operating mode118.1 Output Power and SAR test required11SECTION 9: Test surrounding129.1 Measurement uncertainty129.1 Measurement uncertainty1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	SECTION 4: Test result	. 8
SECTION 5: Tune-up tolerance information and software information8SECTION 6: RF Exposure Conditions (Test Configurations)96.1 Summary of the distance between antenna and surface of EUT96.2 SAR test exclusion considerations according to KDB 447498 D019SECTION 7: Description of the Body setup117.1 Procedure for SAR test position determination117.2 Test position for Body setup11SECTION 8: Description of the operating mode118.1 Output Power and SAR test required11SECTION 9: Test surrounding129.1 Measurement uncertainty12SECTION 10: Parameter Check1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement1612.2 Repeated measurement18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	4.1 Result	. 8
SECTION 6: RF Exposure Conditions (Test Configurations)96.1 Summary of the distance between antenna and surface of EUT96.2 SAR test exclusion considerations according to KDB 447498 D019SECTION 7: Description of the Body setup117.1 Procedure for SAR test position determination117.2 Test position for Body setup118.1 Output Power and SAR test required118.1 Output Power and SAR test required129.1 Measurement uncertainty129.1 Measurement uncertainty129.2 For SAR measurement1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	4.2 Stand-alone SAR result	. 8
6.1 Summary of the distance between antenna and surface of EUT96.2 SAR test exclusion considerations according to KDB 447498 D019SECTION 7: Description of the Body setup117.1 Procedure for SAR test position determination117.2 Test position for Body setup11SECTION 8: Description of the operating mode118.1 Output Power and SAR test required118.1 Output Power and SAR test required119.1 Measurement uncertainty129.1 Measurement uncertainty129.2 For SAR measurement1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measurement1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	SECTION 5: Tune-up tolerance information and software information	. 8
6.1 Summary of the distance between antenna and surface of EUT96.2 SAR test exclusion considerations according to KDB 447498 D019SECTION 7: Description of the Body setup117.1 Procedure for SAR test position determination117.2 Test position for Body setup11SECTION 8: Description of the operating mode118.1 Output Power and SAR test required118.1 Output Power and SAR test required119.1 Measurement uncertainty129.1 Measurement uncertainty129.2 For SAR measurement1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measurement1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	SECTION 6: RF Exposure Conditions (Test Configurations)	.9
SECTION 7: Description of the Body setup117.1 Procedure for SAR test position determination117.2 Test position for Body setup11SECTION 8: Description of the operating mode118.1 Output Power and SAR test required11SECTION 9: Test surrounding129.1 Measurement uncertainty12SECTION 10: Parameter Check1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25		
7.1 Procedure for SAR test position determination.117.2 Test position for Body setup11SECTION 8: Description of the operating mode.118.1 Output Power and SAR test required11SECTION 9: Test surrounding.129.1 Measurement uncertainty.12SECTION 10: Parameter Check.1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	6.2 SAR test exclusion considerations according to KDB 447498 D01	. 9
7.2 Test position for Body setup11SECTION 8: Description of the operating mode.118.1 Output Power and SAR test required11SECTION 9: Test surrounding129.1 Measurement uncertainty12SECTION 10: Parameter Check.1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	SECTION 7: Description of the Body setup1	11
SECTION 8: Description of the operating mode.118.1 Output Power and SAR test required11SECTION 9: Test surrounding129.1 Measurement uncertainty12SECTION 10: Parameter Check1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	7.1 Procedure for SAR test position determination	11
8.1 Output Power and SAR test required11SECTION 9: Test surrounding129.1 Measurement uncertainty12SECTION 10: Parameter Check1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	7.2 Test position for Body setup	11
SECTION 9: Test surrounding129.1 Measurement uncertainty12SECTION 10: Parameter Check1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	SECTION 8: Description of the operating mode1	11
9.1 Measurement uncertainty12SECTION 10: Parameter Check1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	8.1 Output Power and SAR test required	11
SECTION 10: Parameter Check1310.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	SECTION 9: Test surrounding	12
10.1 For SAR system check1310.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	9.1 Measurement uncertainty	12
10.2 For SAR measurement13SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	SECTION 10: Parameter Check	13
SECTION 11: System Check confirmation14SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	10.1 For SAR system check	13
SECTION 12: Measured and Reported (Scaled) SAR Results1512.1 Result of Body SAR1612.2 Repeated measurement17SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	10.2 For SAR measurement	13
12.1 Result of Body SAR	SECTION 11: System Check confirmation1	14
12.1 Result of Body SAR	SECTION 12: Measured and Reported (Scaled) SAR Results	15
SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25		
SECTION 13: Test instruments18APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25	12.2 Repeated measurement.	17
APPENDIX 1: System Check19APPENDIX 2: SAR Measurement data23APPENDIX 3: System specifications25		
APPENDIX 2: SAR Measurement data		
APPENDIX 3: System specifications		
	APPENDIX 4: Photographs of test setup	

PAGE

<u>SECTION 1: Customer information</u>

Company Name	Audio-Technica Corporation
Address	2-46-1 Nishi-naruse, Machida, Tokyo 194-8666, Japan
Telephone Number	042-739-9168
Contact Person	Hirohisa Yamamoto

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages

- SECTION 1: Customer Information

- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date

- SECTION 5: Tune-up tolerance information and software information

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 5.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Description	Handheld transmitter
Model Number	ATW-T3202aEE1
Serial Number	22310087
Condition	Production prototype (Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	August 23, 2022
Test Date	September 1 and 2, 2022

General Specification

Rating	DC 3.0 V (Battery (2 x Alkaline AA Batteries)	
	DC 2.4 V (Battery (2 x Ni-Mh AA Batteries)	
Option battery	N/A	
Body-worn accessory	N/A	

Radio Specification

Radio type	Transmitter
Modulation type	FM
Emission designator	110KF3E
Necessary bandwidth	110kHz
Channel spacing	25 kHz
Frequency of operation	530.000 MHz to 589.975 MHz
RF power	10 mW, 30 mW
Antenna gain	2.14 dBi max
Operating temperature	-5 deg. C to 45 deg. C

SECTION 3: Test standard information

3.1 Test Specification

Title : FCC47CFR 2.1093

Radiofrequency radiation exposure evaluation: portable devices.

ublished Kr exposure KDD procedures		
Z KDB 447498 D01(v06)	RF Exposure Procedures and Equipment Authorization Policies	
. ,	for Mobile and Portable Devices	
□ KDB 447498 D02(v02r01)	SAR Measurement Procedures for USB Dongle Transmitters	
□ KDB 648474 D04(v01r03)	SAR Evaluation Considerations for Wireless Handsets	
□ KDB 941225 D01(v03r01)	3G SAR Measurement Procedures	
□ KDB 941225 D05(v02r05)	SAR Evaluation Considerations for LTE Devices	
□ KDB 941225 D06(v02r01)	SAR Evaluation Procedures for Portable Devices	
	with Wireless Router Capabilities (Hot Spot SAR)	
□ KDB 941225 D07(v01r02)	SAR Evaluation Procedures for UMPC Mini-Tablet Devices	
□ KDB 616217 D04(v01r02)	SAR Evaluation Considerations for Laptop, Notebook,	
\square KDB 010217 D04(v01102)	Netbook and Tablet Computers	
KDB 865664 D01(v01r04)	SAR Measurement Requirements for 100 MHz to 6 GHz	
□ KDB 248227 D01(v02r02)	SAR Guidance for 802.11(Wi-Fi) Transmitters	

Published RF exposure KDB procedures

Reference

[1] SPEAG uncertainty document

[2] IEEE Std 1528-2013

[3] IEC 62209-2:2010 + AMD1:2019 CS

3.2 Procedure

Transmitter	nitter Radio microphone	
Test Procedure	Published RF exposure KDB procedures	
Category	SAR	
Note: UL Japan, Inc.'s SAR Work Procedures: Work Instructions-ULID-003598 and Work Instructions-ULID-		
003599		

3.3 Additions or deviations to standard

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Exposure limit

(A) Limits for Occupational/Controlled Exposure (W/kg)

Spatial Av	erage	Spatial Peak	Spatial Peak
(averaged over the	whole body)	(averaged over any 1 g of tissue)	(hands/wrists/feet/ankles averaged over 10 g)
0.4		8.0	20.0

(B) Limits for General population/Uncontrolled Exposure (W/kg)

Spatial Average	Spatial Peak	Spatial Peak			
(averaged over the whole body	(averaged over any 1 g of tissue)	(hands/wrists/feet/ankles averaged over 10 g)			
0.08	1.6	4.0			

Occupational/Controlled Environments: are defined as locations where there is exposure

that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

NOTE:GENERAL POPULATION/UNCONTROLLED EXPOSURE SPATIAL PEAK(averaged over any 1 g of tissue) LIMIT 1.6 W/kg

3.5 <u>SAR</u>

Specific Absorption Rate (SAR): The time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ), as shown in the following equation:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg) or equivalently milliwatts per gram (mW/g).

SAR is related to the E-field at a point by the following equation:

$$SAR = \frac{\sigma |E|^2}{\rho}$$

where

 $\sigma = \text{conductivity of the tissue (S/m)}$ $\rho = \text{mass density of the tissue (kg/m3)}$ E = rms E-field strength (V/m)

3.6 Test Location

UL Japan, Inc. Ise EMC Lab. Shielded room for SAR testing *A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919 ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8999

 Test report No.
 : 14351608H-G

 Page
 : 8 of 79

SECTION 4: Test result

4.1 Result

Complied Highest values at each band are listed next section.

4.2 Stand-alone SAR result

RF Exposure Co	nditions	Equipment Class - Highest Reported SAR (W/kg) Radio microphone			
Standalone Tx (1-g SAR)	Body-worn	0.426			

*Details are shown at section 12.

SECTION 5: Tune-up tolerance information and software information

Maximum tune-up tolerance limit

Mode	Frequency	Maximum tune-up tolerance limit	Maximum tune-up tolerance limit		
	band [MHz]	[dBm]	[mW]		
Radio microphone	530.000 to 589.975	15.56	36.0	00	

Software setting	
*The power value of t	he EUT was set for testing as follows (setting value might be different from product
specification value);	
[Radio microphone]	
Power settings: 30 n	n W
Software: CPU	J Version: 999.999.001
*This setting of softwa	are is the worst case.
The test was performe	d with condition that obtained the maximum average power in pre-check.
Any conditions under	the normal use do not exceed the condition of setting.
In addition, end users	cannot change the settings of the output power of the product.

SECTION 6: RF Exposure Conditions (Test Configurations)

Test position	Distance
Front	3.16 mm
Rear	5.58 mm
Right	8.63 mm
Left	10.57 mm
Тор	218.38 mm
Bottom	1.33 mm

6.1 Summary of the distance between antenna and surface of EUT

*Details are shown in appendix 4

6.2 SAR test exclusion considerations according to KDB 447498 D01

The following is based on KDB 447498 D01.

1) The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- 1. The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. The result is rounded to one decimal place for comparison
- 4. The test exclusions are applicable only when the minimum test separation distance is ≤ 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion. When the separation of antenna to EUT's surfaces and edges are ≤ 50 mm, the separation distance used for the SAR exclusion calculations is 5 mm.</p>
- 5. "N/A" displayed on below exclusion calculation means not applicable this formula since distance between antenna and surface is > 50 mm.

When the calculated threshold value by a numerical formula above-mentioned in the following table is 3.0 or less, SAR test is excluded.

The following table lists only the highest frequency and the highest tune up limit in each frequency band.

Antenna	T x Interface	Frequency (MHz)	Output	Power	Calculated Threshold Value							
			dBm	mW	Front	Rear	Right	Left	Тор	Bottom		
Main	Radio microphone	589.975	15.56	36	5.5 -MEASURE-	5.5 -MEASURE-	5.5 -MEASURE-	5.5 -MEASURE-	N/A	5.5 -MEASURE-		

SAR exclusion calculations for antenna <50mm from the user

2) At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following.

a) $[(3.50)/(\sqrt{f(GHz)})) + (test separation distance - 50 mm) \cdot (f(MHz)/150)] mW$ at > 100 MHz and $\le 1500 MHz$ b) $[(3.50)/(\sqrt{f(GHz)})) + (test separation distance - 50 mm) \cdot 10] mW$ at > 1500 MHz and $\le 6 GHz$

- 1. The upper frequency of the frequency band was used in order to calculate standalone SAR test exclusion considerations.
- 2. Power and distance are rounded to the nearest mW and mm before calculation
- 3. "N/A" displayed on below exclusion calculation means not applicable this formula since distance between antenna and surface is < 50 mm.

When output power is less than the calculated threshold value by a numerical formula above-mentioned in the following table, SAR test is excluded.

The following table lists only the highest frequency and the highest tune up limit in each frequency band.

Antenna	T x Interface	(MHz)	Output	Power	Calculated Thresh	alculated Threshold Value							
			dBm	mW	Front	Тор	Bottom						
Main	Radio microphone	589.975	15.56	36	N/A	N/A	N/A	N/A	857.6 mW -EXEMP T-	N/A			

SAR exclusion calculations for antenna >50mm from the user

SECTION 7: Description of the Body setup

7.1 Procedure for SAR test position determination

-The tested procedure was performed according to the KDB 447498 D01 (Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies).

7.2 <u>Test position for Body setup</u>

No.	Position	Test	Radio microphone
		distance	Tested
1	Front	0 mm	R
2	Rear	0 mm	N
3	Right	0 mm	$\mathbf{\nabla}$
4	Left	0 mm	N
5	Тор	0 mm	
6	Bottom	0 mm	\square

SECTION 8: Description of the operating mode

8.1 Output Power and SAR test required

Mode	_	T une-up upper Power (dBm) (Burst)	Measured average Power (dBm) (Burst)	Initial test configuration	Note(s)
	530.000	15.56	14.87		
Тx	560.000	15.56	15.49	Yes	1
	589.975	15.56	14.19		

Note(s):

1. SAR test channel was chosen. (shaded blue frame)

SECTION 9: Test surrounding

9.1 Measurement uncertainty

This measurement uncertainty budget is suggested by IEEE Std 1528(2013) and IEC62209-2:2010+AMD1:2019 CSV, and determined by Schmid & Partner Engineering AG (DASY5/6 Uncertainty Budget). Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz Section 2.8.1., when the highest measured SAR(1 g) within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

	Uncert.	Prob.	Div.	(ci)	(ci)	Std. Unc.	Std.Unc.
Error Description	value	Dist.		1 g	10 g	(1 g)	(10 g)
Measurement System							
Probe Calibration	\pm 6.55 %	Ν	1	1	1	± 6.55 %	± 6.55 %
Axial Isotropy	± 4.7 %	R	$\sqrt{3}$	0.7	0.7	± 1.9 %	± 1.9 %
Hemispherical Isotropy	± 9.6 %	R	$\sqrt{3}$	0.7	0.7	± 3.9 %	± 3.9 %
Linearity	± 4.7 %	R	$\sqrt{3}$	1	1	± 2.7 %	± 2.7 %
Modulation Response	± 2.4 %	R	$\sqrt{3}$	1	1	± 1.4 %	± 1.4 %
System Detection Limits	± 1.0 %	R	$\sqrt{3}$	1	1	± 0.6 %	± 0.6 %
Boundary Effects	± 2.0 %	R	$\sqrt{3}$	1	1	± 1.2 %	± 1.2 %
Readout Electronics	± 0.3 %	Ν	1	1	1	± 0.3 %	± 0.3 %
Response Time	\pm 0.8 %	R	$\sqrt{3}$	1	1	± 0.5 %	± 0.5 %
Integration Time	± 2.6 %	R	$\sqrt{3}$	1	1	± 1.5 %	± 1.5 %
RF Ambient Noise	± 3.0 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %
RF Ambient Reflections	± 3.0 %	R	$\sqrt{3}$	1	1	± 1.7 %	± 1.7 %
Probe Positioner	± 0.04 %	R	$\sqrt{3}$	1	1	± 0.0 %	± 0.0 %
Probe Positioning	\pm 0.8 %	R	$\sqrt{3}$	1	1	± 0.5 %	± 0.5 %
Post-processing	± 4.0 %	R	$\sqrt{3}$	1	1	± 2.3 %	± 2.3 %
Test Sample Related							
Device Holder	± 3.6 %	Ν	1	1	1	± 3.6 %	± 3.6 %
Test sample Positioning	± 2.9 %	Ν	1	1	1	± 2.9 %	± 2.9 %
Power Scaling	\pm 0.0 %	R	$\sqrt{3}$	1	1	± 0.0 %	± 0.0 %
Power Drift	± 5.0 %	R	√3	1	1	± 2.9 %	± 2.9 %
Phantom and Setup							
Phantom Uncertainty	± 7.6 %	R	√3	1	1	± 4.4 %	± 4.4 %
SAR correction	± 1.9 %	Ν	1	1	0.84	± 1.9 %	± 1.6 %
Liquid Conductivity (mea.)	- 1.7 %	Ν	1	0.78	0.71	± 1.3 %	± 1.2 %
Liquid Permittivity (mea.)	+ 3.2 %	Ν	1	0.23	0.26	± 0.7 %	± 0.8 %
Temp. unc Conductivity	± 3.4 %	R	$\sqrt{3}$	0.78	0.71	± 1.5 %	± 1.4 %
Temp. unc Permittivity	± 0.4 %	R	$\sqrt{3}$	0.23	0.26	± 0.1 %	± 0.1 %
Combined Std. Uncertainty						± 12.0 %	± 11.9 %
Expanded STD Uncertainty (_K =2)					\pm 24.0 %	± 23.9 %

Note: This uncertainty budget for validation is worst-case. Table of uncertainties are listed for ISO/IEC 17025.

SECTION 10: Parameter Check

The dielectric parameters were checked prior to assessment using the DAK dielectric probe kit. The dielectric parameters measurement is reported in each correspondent section.

According to KDB 865664 D01, +/- 5 % tolerances are required for ε r and σ and then below table which is the target value of the simulated tissue liquid is quoted from KDB 865664 D01.

Target Frequency	Η	ead	В	ody
(MHz)	£r	σ (S/m)	Er	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 - 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

The dielectric parameters are linearly interpolated between the closest pair of target frequencies to determine the applicable dielectric parameters corresponding to the device test frequency.

10.1 For SAR system check

DIELECTRIC	IELECTRIC PARAMETERS MEASUREMENT RESULTS														
Date	Ambient Temp. [deg.c]	Relative Humidity [%]	Liquid type	Liquid Temp. [deg.c]	Measured Frequency [MHz]	Target [σ]	Target [ɛr]	Measure [σ]	Measure [εr]	Deviation σ [%]	Deviation ɛr [%]	Limit [%]	Remark		
2022/9/1	23.0	40	HBBL600-10000	22.5	450.000	0.87	43.5	0.86	44.7	-1.7	2.8	+/- 5			
2022/9/2	23.0	40	HBBL600-10000	22.5	600.000	0.88	42.7	0.88	44.1	-0.6	3.3	+/- 5			

10.2 For SAR measurement

DIELECTRIC	DIELECTRIC PARAMETERS MEASUREMENT RESULTS												
Date	Ambient	Relative	Liquid type	Liquid	M easured	Target	Target	Measure	M easure	Deviation σ	Deviation er	Limit	Remark
	Temp.	Humidity		Temp.	Frequency	[σ]	[ɛr]	[σ]	[ɛr]	[%]	[%]	[%]	
	[deg.c]	[%]		[deg.c]	[MHz]								
2022/9/1	23.0	40	HBBL600-10000	22.5	530.000	0.88	43.1	0.86	44.3	-1.7	2.8	+/- 5	
2022/9/2	23.0	40	HBBL600-10000	22.5	560.000	0.88	42.9	0.87	44.2	-1.3	3.0	+/- 5	
2022/9/2	23.0	40	HBBL600-10000	22.5	589.975	0.88	42.8	0.87	44.1	-0.8	3.2	+/- 5	

Test report No. Page	: 14351608H-G : 14 of 79

SECTION 11: System Check confirmation

The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ± 0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.

The depth of tissue-equivalent liquid in a phantom must be \geq 15.0 cm \pm 0.5 cm for SAR measurements \leq 3 GHz and \geq 10.0 cm \pm 0.5 cm for measurements > 3 GHz.

The DASY system with an E-Field Probe was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom).

The standard measuring distance was 10 mm (above 1 GHz to 6 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.

The coarse grid with a grid spacing of 15 mm (below 2 GHz), 12 mm (2 GHz to 4 GHz) and 10 mm (4 GHz to 6 GHz) was aligned with the dipole.

Distance between probe sensors and phantom surface was set to 1.4 mm.

The dipole input power (forward power) was 100 mW or 250 mW.

The results are normalized to 1 W input power.

Target Value

Freq [MHz]	Model,S/N	Не	ead
		(SPEAG)	(SPEAG)
		1 g [W/kg]	10 g [W/kg]
450	D450V3,1051	4.56	3.06
60) D600V3,1003	6.80	4.44

The target(reference) SAR values can be obtained from the calibration certificate of system validation dipoles(Refer to Appendix 3). The target SAR values are SAR measured value in the calibration certificate scaled to 1 W.

			T.S.		M easur	ed Results	Target	Delta
Date Tested	Test Freq	M odel,S/N	Liqui		Zoom Scan	Normalize to 1 W	(Ref. Value)	± 10 %
2022/9/1	450	D450V3,1051	Head	1 g	1.13	4.52	4.56	-0.9
				10 g	0.76	3.04	3.06	-0.7
2022/9/2	600	D600V3,1003	Head	1 g	1.59	6.36	6.80	-6.5
				10 g	1.05	4.20	4.44	-5.4

SECTION 12: Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows

KDB 447498 D01 (General RF Exposure Guidance):

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- $\Rightarrow \leq 0.8$ W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- ♦ ≤0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- $\Rightarrow \leq 0.4$ W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- According to Notice 2016-DRS001 based on the IEEE1528 and IEC 62209 requirements, the low, mid and high frequency channels for the configuration with the highest SAR value must be tested regardless of the SAR value measured.
- When reported SAR value is exceed 1.2 W/kg(if any), device holder perturbation verification is required; however, since distance between device holder and antenna of EUT is enough, it was not conducted.
- Reported SAR= Measured SAR [W/kg] * Power Scaled factor * Duty Scaled factor Maximum tune-up tolerance limit is by the specification from a customer.
 * Power Scaled factor = Maximum tune-up tolerance limit [mW] / Measured power [mW]
 * Duty Scaled factor = 1 / Duty (%) / 100
- Maximum tune-up tolerance limit is by the specification from a customer.

Note: Measured value is rounded round off to three decimal places

12.1 Result of Body SAR

				Power	(dBm)	Power		Duty	1-g SAF	R (W/kg)		
Test Position	Dist. (mm)	Mode	Freq. (MHz)	Tune-up upper Power	M easured average Power	Scaled factor	Duty (%)	Scaled factor	M easured	Reported	Note	Plot No.
		Radio	530.000	15.56	14.87	1.17	100.0	1.00	0.363	0.426	2	1
Front	0	microphone	560.000	15.56	15.49	1.02	100.0	1.00	0.137	0.139	1	
		merophone	589.975	15.56	14.19	1.37	100.0	1.00	0.082	0.112	2	
	Rear 0	0 Radio microphone	530.000	15.56	14.87	1.17	100.0	1.00				
Rear			560.000	15.56	15.49	1.02	100.0	1.00	0.109	0.111		
			589.975	15.56	14.19	1.37	100.0	1.00				
		Radio	530.000	15.56	14.87	1.17	100.0	1.00				
Right	0	microphone	560.000	15.56	15.49	1.02	100.0	1.00	0.127	0.129		
		merophone	589.975	15.56	14.19	1.37	100.0	1.00				
		Radio	530.000	15.56	14.87	1.17	100.0	1.00				
Left	0	microphone	560.000	15.56	15.49	1.02	100.0	1.00	0.134	0.136		
		merophone	589.975	15.56	14.19	1.37	100.0	1.00				
		Radio	530.000	15.56	14.87	1.17	100.0	1.00				
Bottom	0	microphone	560.000	15.56	15.49	1.02	100.0	1.00	0.112	0.114		
		merophone	589.975	15.56	14.19	1.37	100.0	1.00				

*1: Worst position *2: Frequency change

12.2 <u>Repeated measurement</u>

According to KDB 865664 D1.

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.

2) When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10 % from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Test	Configurat	ion			Meas. SA	.R (W/kg)	Largest to	
Exposure	Position	Dist. (mm)	Mode	Freq. (MHz)	Original	Repeated	Smallest SAR Ratio	Plot No.
Body	Front	0	Radio microphone	530.000	0.363	N/A	N/A	-

Note(s):

N/A: Repeated Measurement is not required since the original highest measured SAR for all band is < 0.80 W/kg.

Local Id	LIM S ID	Description	Manufacturer	Model	Serial	Last Cal Date	Interval
MDAE-03	141484	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE4	1372	2022/04/11	12
MDA-09	141468	Dipole Antenna	Schmid&Partner Engineering AG	D450V3	1051	2021/09/17	12
MDH-03	142488	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	2021/11/01	12
MHDC-21	142561	Dual Directional Coupler	Keysight Technologies Inc	778D	M Y 52180243	-	-
MOS-31	141570	Thermo-Hy grometer	CUSTOM. Inc	CTH-201	3101	2022/07/03	12
COTS-MSAR-04	141182	Dielectric assessment software	Schmid&Partner Engineering AG	DAK	-	-	-
COTS-MPSE-02	173900	Software for MA24106A	Anritsu Corporation	Anritsu PowerXpert	-	-	-
MDPK-03	141471	Dielectric assessment kit	Schmid & Partner Engineering AG	DAKS-3.5	0008	2022/04/19	12
MAT-78	142313	Attenuator	Telegrartner	J01156A0011	42294119	-	-
MPM-15	141811	Power Meter	Keysight Technologies Inc	N1914A	MY53060017	2022/06/16	12
MNA-03	141551	Vector Reflectometer	COPPER MOUNTAIN TECHNOLOGIES	PLANAR R140	0030913	2022/04/18	12
MOS-37	141574	Digital thermometer	LKM electronic	DTM 3000	-	2022/07/03	12
MPF-04	142058	2mm Oval Flat Phantom	Schmid&Partner Engineering AG	QDOVA001BB	1207	2022/05/24	12
MPSE-20	141833	Power sensor	Keysight Technologies Inc	N8482H	M Y 530 50001	2022/06/16	12
MPSE-24	141843	Power sensor	Anritsu Corporation	MA24106A	1026164	2022/03/17	12
MPSE-25	141844	Power sensor	Anritsu Corporation	MA24106A	1031504	2022/03/17	12
MRFA-24	141875	Pre Amplifier	R&K	R&K CGA020M602-2633R	B30550	2022/06/27	12
MHBBL600-10000	176484	Head Simulating Liquid	Schmid & Partner Engineering AG	HBBL600-10000V6	SL AAH U16 BC	-	-
COTS-MSAR-03	141181	Dasy 5	Schmid & Partner Engineering AG	DASY5	-	-	-
MRBT-04	142249	SAR robot	Schmid & Partner Engineering AG	TX60 Lspeag	F13/5PP1A1/A/01	2022/04/26	12
MSG-10	141890	Signal Generator	Keysight Technologies Inc	N5181A	MY47421098	2021/11/18	12
MAT-81	141311	Attenuator	Weinschel Associates	WA1-20-33	100131	2022/04/06	12
MDA-21	141481	Dipole Antenna	Schmid&Partner Engineering AG	D600V3	1003	2019/10/18	36
MRENT-S22	221514	Dosimetric E-Field Probe	Schmid & Partner Engineering AG	EX3DV4	3745	2022/04/19	12

SECTION 13: Test instruments

The expiration date of the calibration is the end of the expired month.

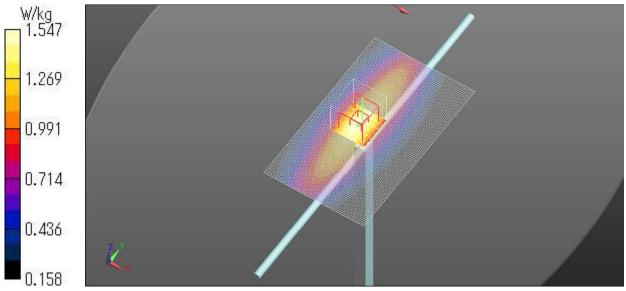
All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

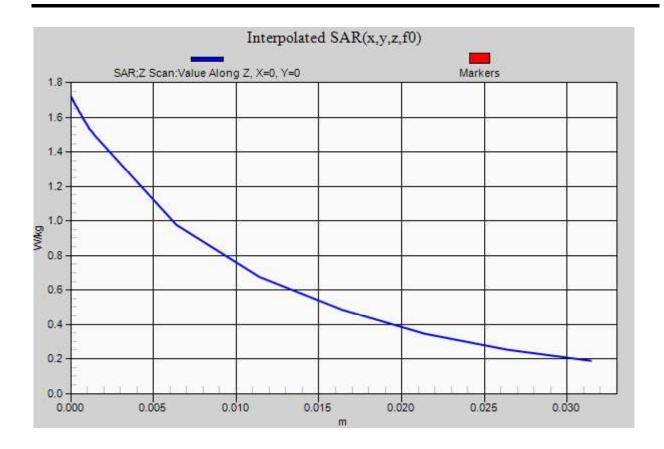
SAR room is checked before every testing and ambient noise is <0.012 W/kg

APPENDIX 1: System Check

450 MHz System check

Communication System: UID 0, #CW (0); Communication System Band: D450 (450.0 MHz); ; Duty Cycle: 1:1 Medium parameters used: f = 450 MHz; $\sigma = 0.855$ S/m; $\varepsilon_r = 44.719$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3745; ConvF(9.78, 9.78, 9.78) @ 450 MHz; Sensor-Surface: 1.4 mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA001BB;Serial: TP:1207 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7501)


System Performance Check at Frequencies 450 MHz/d =15 mm, Pin = 250 mW/Area Scan (61x101x1): Interpolated grid: dx = 1.500 mm, dy = 1.500 mm Maximum value of SAR (interpolated) = 1.51 W/kg

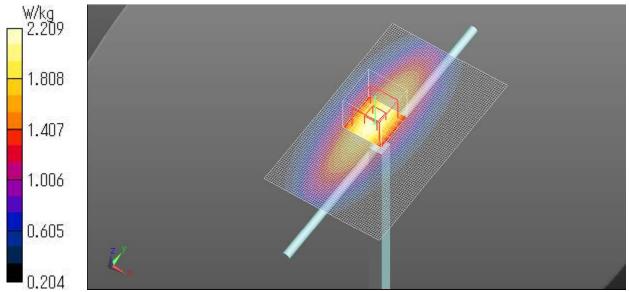

System Performance Check at Frequencies 450 MHz/d =15 mm, Pin = 250 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx = 5 mm, dy = 5 mm, dz = 5 mm Reference Value = 43.46 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.79 W/kg SAR(1 g) = 1.13 W/kg; SAR(10 g) = 0.759 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm) Ratio of SAR at M2 to SAR at M1 = 63.2% Maximum value of SAR (measured) = 1.55 W/kg

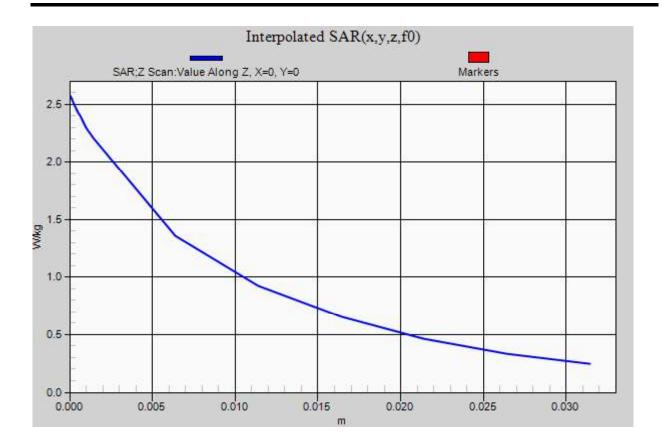
System Performance Check at Frequencies 450 MHz/d =15 mm, Pin = 250 mW/Z Scan (1x1x18): Measurement grid: dx = 20 mm, dy = 20 mm, dz = 5 mm Penetration denth = 13 67 (11 66 14 70) [mm]

Penetration depth = 13.67 (11.66, 14.70) [mm] Maximum value of SAR (interpolated) = 1.72 W/kg

Ambient Temp. : 23.0 degree.C. Liquid Temp.; 22.5 degree.C. Liquid temp. is kept within the 2 degree.C. during the test. Date: 2022/09/01

600 MHz System check


Communication System: UID 0, #CW (0); Communication System Band: D600 (600.0MHz); ; Duty Cycle: 1:1 Medium parameters used: f = 600 MHz; $\sigma = 0.876 \text{ S/m}$; $\varepsilon_r = 44.112$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3745; ConvF(9.61, 9.61, 9.61) @ 600 MHz; Sensor-Surface: 1.4 mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA001BB;Serial: TP:1207 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7501)


System Performance Check at Frequencies 600 MHz/d = 15 mm, Pin = 250 mW/Area Scan (61x101x1): Interpolated grid: dx = 1.500 mm, dy = 1.500 mm Maximum value of SAR (interpolated) = 2.15 W/kg

System Performance Check at Frequencies 600 MHz/d = 15 mm, Pin = 250 mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx = 5 mm, dy = 5 mm, dz = 5 mmReference Value = 50.81 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 2.60 W/kg SAR(1 g) = 1.59 W/kg; SAR(10 g) = 1.05 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 15 mm) Ratio of SAR at M2 to SAR at M1 = 61.4 % Maximum value of SAR (measured) = 2.21 W/kg

System Performance Check at Frequencies 600 MHz/d =15 mm, Pin = 250 mW/Z Scan (1x1x18): Measurement grid: dx = 20 mm, dy = 20 mm, dz = 5 mm Penetration depth = 13.16 (10.29, 14.11) [mm] Maximum value of SAR (interpolated) = 2.57 W/kg

Ambient Temp. : 23.0 degree.C. Liquid Temp.; 22.5 degree.C. Liquid temp. is kept within the 2 degree.C. during the test. Date: 2022/09/02

APPENDIX 2: SAR Measurement data

Evaluation procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the E-field at a fixed location above the ear point or central position of flat phantom was used as a reference value for assessing the power drop.

Step 2: The SAR distribution at the exposed side of head or body position was measured at a distance of each device from the inner surface of the shell. The area covered the entire dimension of the antenna of EUT and the horizontal grid spacing was 15 mm x 15 mm x 12 mm or 10 mm x 10 mm. Based on these data, the area of the maximum absorption was determined by spline interpolation.

Step 3: Around this point found in the Step 2 (area scan), a volume of 30 mm x 30 mm x 30 mm or more was assessed by measuring 7 x 7 x 7 points at least for below 3 GHz and a volume of 28 mm x 28 mm x 22.5 mm or more was assessed by measuring 8 x 8 x 6(ratio step method (*1)) points at least for above 3 GHz band.

And for any secondary peaks found in the Step2 which are within 2 dB of maximum peak and not with this Step3 (Zoom scan) is repeated. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

(1). The data at the surface were extrapolated, since the center of the dipoles is 1 mm(EX3DV4) away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm [4]. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

(2). The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

(3). All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

*1. Ratio step method parameters used;

The first measurement point: 1.4 mm from the phantom surface, the initial grid separation: 1.4 mm, subsequent graded grid ratio: 1.4

These parameters comply with the requirement of the KDB 865664 D01.

Step 4: Re-measurement of the E-field at the same location as in Step 1.

Confirmation after SAR testing

It was checked that the power drift [W] is within ± 5 %. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb) Before SAR testing : Eb [V/m] After SAR testing : Ea [V/m]

Limit of power drift[W] = +/- 5 % X[dB] = $10\log[P] = 10\log(1.05/1) = 10\log(1.05)$ - $10\log(1) = 0.212$ dB

from E-filed relations with power. $p=E^{2/\eta}$ Therefore, The correlation of power and the E-filed X dB = 10log(P) = 10log(E)^2 = 20log(E)

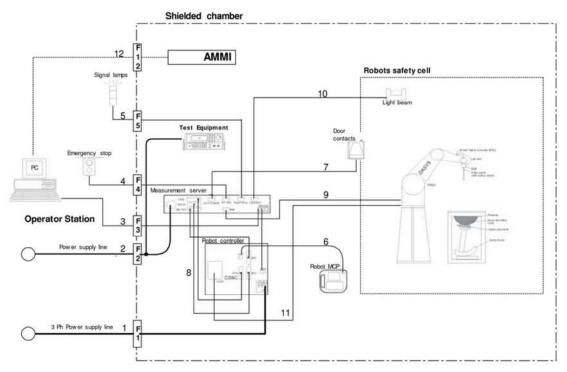
Therefore, The calculated power drift of DASY5 System must be the less than +/- 0.212 dB.

Measurement data

Plot No. 1

Communication System: UID 0, Radio microphone (0); Communication System Band: UC; ; Duty Cycle: 1:1 Medium parameters used: f = 530 MHz; $\sigma = 0.861$ S/m; $\varepsilon_r = 44.281$; $\rho = 1000$ kg/m³ Phantom section: Flat Section DASY5 Configuration Probe: EX3DV4 - SN3745; ConvF(9.78, 9.78, 9.78) @ 530 MHz; Sensor-Surface: 1.4 mm (Mechanical Surface Detection) Electronics: DAE4 Sn1372; Phantom: ELI v5.0 TP1207 (30deg probe tilt); Type: QDOVA001BB;Serial: TP:1207 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7501)

Radio/Front Low ch/Area Scan (41x61x1): Interpolated grid: dx = 1.500 mm, dy = 1.500 mm Maximum value of SAR (interpolated) = 0.752 W/kg


Radio/Front Low ch/Zoom Scan finer (11x11x8)/Cube 0: Measurement grid: dx = 3 mm, dy = 3 mm, dz = 1.4 mmReference Value = 20.79 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 4.78 W/kg SAR(1 g) = 0.363 W/kg; SAR(10 g) = 0.119 W/kg Smallest distance from peaks to all points 3 dB below = 3.5 mm Ratio of SAR at M2 to SAR at M1 = 41.9 % Maximum value of SAR (measured) = 1.27 W/kg

Ambient Temp. : 23.0 degree.C. Liquid Temp.; 22.5 degree.C.. Liquid temp. is kept within the 2 degree.C. during the test. Date: 2022/09/01

APPENDIX 3: System specifications

Configuration and peripherals

The DASY5 system for performing compliance tests consist of the following items: Our system is DASY6; however, it behaves as DASY5.

- a) A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- b) An isotropic field probe optimized and calibrated for the targeted measurement.

c) A data acquisition electronic (DAE), which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

- d) The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- e) The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.

f) The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.

- g) A computer running Windows 10 or 7 and the DASY5/6 software.
- h) Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.
- i) The phantom, the device holder and other accessories according to the targeted measurement.

 Test report No.
 : 14351608H-G

 Page
 : 26 of 79

Specifications

a) Robot TX60L		
Number of Axes	:	6
Nominal Load	:	2 kg
Maximum Load	:	5 kg
Reach	:	920 mm
Repeatability	:	+/-0.03 mm
Control Unit	:	CS8c
Programming Language	:	VAL3
Weight	:	52.2 kg
Manufacture	:	Stäubli Robotics

b) E-Field Probe		
Model	:	EX3DV4
Construction	:	Symmetrical design with triangular core
		Built-in shielding against static charges
		PEEK enclosure material
		(resistant to organic solvents, e.g., glycol ether)
Frequency	:	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	:	+/-0.3 dB in HSL (rotation around probe axis)
		+/-0.5 dB in tissue material (rotation normal probe axis)
Dynamic Range	:	10 uW/g to > 100 mW/g;Linearity
		+/-0.2 dB(noise: typically < 1uW/g)
Dimensions	:	Overall length: 337 mm (Tip: 20 mm)
		Tip diameter: 2.5 mm (Body: 12 mm)
		Typical distance from probe tip to dipole centers: 1 mm
Application	:	Highprecision dosimetric measurement in any exposure scenario
		(e.g., very strong gradient fields). Only probe which enables compliance
		testing for frequencies up to 6 GHz with precision of better 30 %.
Manufacture	:	Schmid & Partner Engineering AG

EX3DV4 E-field Probe

c) Data Acquisition El	lectronic (DAE4)
Features	:	Signal amplifier, multiplexer, A/D converter and control logic
		Serial optical link for communication with DASY5 embedded system (fully remote controlled)
		Two step probe touch detector for mechanical surface detection and emergency robot
	stop	
Measurement Range	:	-100 to +300 mV (16 bit resolution and two range settings: 4 mV, 400 mV)
Input Offset voltage	:	$< 5 \mu V$ (with auto zero)
Input Resistance	:	200 ΜΩ
Input Bias Current	:	< 50 fA
Battery Power	:	> 10 h of operation (with two 9.6 V NiMH accus)
Dimension	:	60 x 60 x 68 mm
Manufacture	:	Schmid & Partner Engineering AG

d) Electro-Optic Co	onverter (EO	C)
Version	:	EOC 61
Description	:	for TX60 robot arm, including proximity sensor
Manufacture	:	Schmid & Partner Engineering AG
e) DASY5 Measure	ment server	
Fasterias	-	Latel LILV Coloner 400 MIL

Features	:	Intel ULV Celeron 400 MHz
		128 MB chip disk and 128 MB RAM
		16 Bit A/D converter for surface detection system
		Vacuum Fluorescent Display
		Robot Interface
		Serial link to DAE (with watchdog supervision)
		Door contact port (Possibility to connect a light curtain)
		Emergency stop port (to connect the remote control)
		Signal lamps port
		Light beam port
		Three Ethernet connection ports
		Two USB 2.0 Ports
		Two serial links
		Expansion port for future applications
Dimensions (L x W x H)	:	440 x 241 x 89 mm
Manufacture	:	Schmid & Partner Engineering AG

f) Light Beam Switche	S	
Version	:	LB5
Dimensions (L x H)	:	110 x 80 mm
Thickness	:	12 mm
Beam-length	:	80 mm
Manufacture	:	Schmid & Partner Engineering AG
g) Software		
Item	:	Dosimetric Assessment System DASY5
Туре No.	:	SD 000 401A, SD 000 402A
Software version No.	:	DASY52, Version 52.6 (1)
Manufacture / Origin	:	Schmid & Partner Engineering AG

h) Robot Control Unit			
Weight	:	70 Kg	
AC Input Voltage	:	selectable	
Manufacturer	:	Stäubli Robotics	

<u>i)</u>	Phantom	and Device	Holder	
-				

<u>Phantom</u>		
Туре	:	SAM Twin Phantom V4.0
Description	:	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.
Material	:	Vinylester, glass fiber reinforced (VE-GF)
Shell Material	:	Fiberglass
Thickness	:	2.0 +/- 0.2 mm
Dimensions	:	Length: 1000 mm Width: 500 mm Height: adjustable feet
Volume	:	Approx. 25 liters
Manufacture	:	Schmid & Partner Engineering AG
Туре	:	2 mm Flat phantom ELI4.0 or 5
Description	:	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4.5 and higher and is compatible with all SPEAG dosimetric probes and dipoles.
Material	:	Vinylester, glass fiber reinforced (VE-GF)
Shell Thickness		$2.0 \pm 0.2 \text{ mm} (\text{sagging:} < 1 \%)$
Filling Volume		Approx. 30 liters
Dimensions	:	Major ellipse axis: 600 mm Minor axis: 400 mm
Manufacture	:	Schmid & Partner Engineering AG

Device Holder

In combination with the Twin SAM Phantom V4.0/V4.0c or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). POM

Material :

Laptio Extensions kit

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM, ELI4 Phantoms.

Material : POM, Acrylic glass, Foam

Urethane

For this measurement, the urethane foam was used as device holder.

<u>j)Simulated Tissues (Liquid)</u> The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Product identifier

Trade name	Broad Band Tissue Simulation Liquid HBBL600-10000V6, MBBL600-6000V6, HU16B, MU16B
Manufacturer/Supplier	Schmid & Partner Engineering AG

Declarable components:

CAS: 107-21-1	Ethanediol	< 5.2%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

System Check Dipole SAR Calibration Certificate -Dipole 450 MHz (D450V3 S/N: 1051)

	witzerland	S Standard Standard Standard S	Swiss Calibration Service
redited by the Swiss Accreditation Swiss Accreditation Service is Itilateral Agreement for the recog	one of the signatories	to the EA	reditation No.: SCS 0108
ent UL Japan (RCC)	gintion of cambration of		D450V3-1051_Sep21
ALIBRATION CE	RTIFICATE		
oject [D450V3 - SN:105	1	
alibration procedure(s) (QA CAL-15.v9 Calibration Proced	dure for SAR Validation Sources	below 700 MHz
Calibration date:	September 17, 20	21	
All calibrations have been conducted	d in the closed laborator	obability are given on the following pages and y facility: environment temperature $(22 \pm 3)^\circ C$	
Il calibrations have been conducter	d in the closed laborator		C and humidity < 70%. Scheduled Calibration
Il calibrations have been conducte calibration Equipment used (M&TE rrimary Standards	d in the closed laborator critical for calibration)	facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292)	C and humidity < 70%. Scheduled Calibration Apr-22
Il calibrations have been conducter calibration Equipment used (M&TE Primary Standards Power meter NRP	d in the closed laboratory critical for calibration) ID # SN: 104778 SN: 103244	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22
Il calibrations have been conducter calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291)	and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22
All calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343)	and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22
All calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-0324) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344)	Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Apr-22
All calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x)	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343)	and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22
All calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: 02252 (20x) SN: 310982 / 06327 SN: 3877	y facility: environment temperature (22 ± 3)°C Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877_Dec20) 28-Jun-21 (No. DAE4-654_Jun21) Check Date (in house)	and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check
All calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	d in the closed laboratory critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877_Dec20) 28-Jun-21 (No. DAE4-654_Jun21) Check Date (in house) 06-Apr-16 (in house check Jun-20)	and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22
All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power sensor NRP-291 Power sensor NRP-291 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	d in the closed laboratory critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: C2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID #	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877_Dec20) 28-Jun-21 (No. DAE4-654_Jun21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22
All calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A	d in the closed laboratory critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: 000110210	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03342) 09-Apr-21 (No. 217-03342) 09-Apr-21 (No. 217-03342) 09-Apr-21 (No. DAE4-654_Jun21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 In house check: Jun-22
All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Power sensor E4412A RF generator HP 8648C	d in the closed laboratory critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3052 / 06327 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700	y facility: environment temperature (22 ± 3)°C Og-Apr-21 (No. 217-03291/03292) Og-Apr-21 (No. 217-03291) Og-Apr-21 (No. 217-03291) Og-Apr-21 (No. 217-03343) Og-Apr-21 (No. 217-03343) Og-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877_Dec20) 28-Jun-21 (No. DAE4-654_Jun21) Check Date (in house) O6-Apr-16 (in house check Jun-20) O6-Apr-16 (in house check Jun-20) O6-Apr-16 (in house check Jun-20) O4-Aug-99 (in house check Jun-20)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22
All calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Power sensor E4412A RF generator HP 8648C	d in the closed laboratory critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: MY41498087 SN: 000110210	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03342) 09-Apr-21 (No. 217-03342) 09-Apr-21 (No. 217-03342) 09-Apr-21 (No. DAE4-654_Jun21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22
All calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Aglient E8358A	d in the closed laboratory critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877_Dec20) 28-Jun-21 (No. DAE4-654_Jun21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 10-Mar-14 (in house check Oct-20) Function	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22
All calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	d in the closed laborator critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 654 ID # SN: GB41293874 SN: GB41293874 SN: WY41498087 SN: 000110210 SN: U3642U01700 SN: U341080477	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877_Dec20) 28-Jun-21 (No. DE4-654_Jun21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 03-1-Mar-14 (in house check Oct-20)	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22
All calibrations have been conducter Calibration Equipment used (M&TE Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Aglient E8358A	d in the closed laboratory critical for calibration) ID # SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US3642U01700 SN: US41080477 Name	Cal Date (Certificate No.) 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877_Dec20) 28-Jun-21 (No. DAE4-654_Jun21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 10-Mar-14 (in house check Oct-20) Function	C and humidity < 70%. Scheduled Calibration Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22

Certificate No: D450V3-1051_Sep21

Page 1 of 8

Test report No. Page : 14351608H-G : 31 of 79

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Sci C Sei S Swi S Swi

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:	
TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D450V3-1051_Sep21

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.8 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.14 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	4.59 W/kg ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	0.764 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.07 W/kg ± 17.6 % (k=2)

Body TSL parameters The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.7	0.94 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.9 ± 6 %	0.95 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.18 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	4.67 W/kg ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	0.795 W/kg

Certificate No: D450V3-1051_Sep21

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transform	ned to feed point	56.0 Ω - 6.8 jΩ
Return Loss		- 21.4 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	53.0 Ω - 9.5 jΩ
Return Loss	- 20.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,350 ns
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.350 fts

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

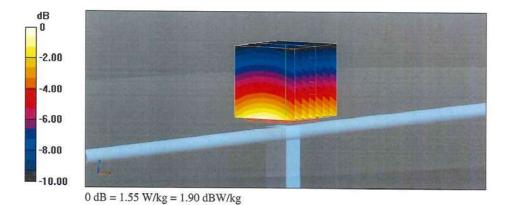
Manufactured by	SPEAC
 	SI LAG

Certificate No: D450V3-1051_Sep21

Page 4 of 8

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

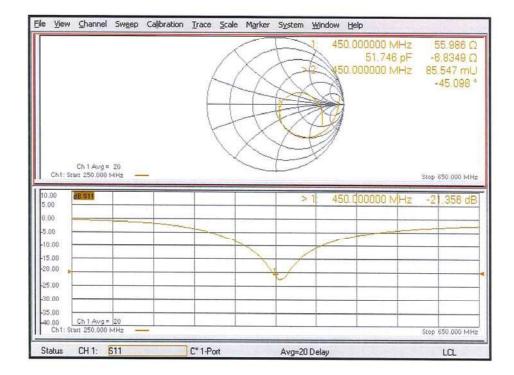

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1051

Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; σ = 0.86 S/m; ϵ_r = 42.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 28.06.2021
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.24 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 1.78 W/kg SAR(1 g) = 1.14 W/kg; SAR(10 g) = 0.764 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30 mm) Ratio of SAR at M2 to SAR at M1 = 64.2% Maximum value of SAR (measured) = 1.55 W/kg



Certificate No: D450V3-1051_Sep21

Page 5 of 8

Date: 17.09.2021

Impedance Measurement Plot for Head TSL

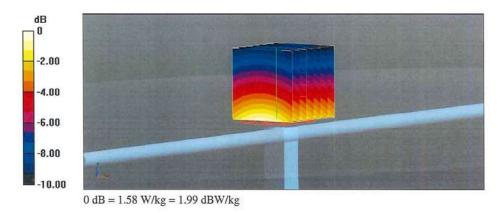
Certificate No: D450V3-1051_Sep21

Page 6 of 8

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1051

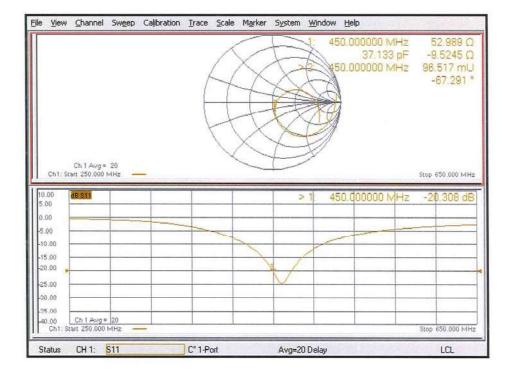

Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; σ = 0.95 S/m; ϵ_r = 55.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 28.06.2021
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 42.43 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.81 W/kg SAR(1 g) = 1.18 W/kg; SAR(10 g) = 0.795 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30 mm) Ratio of SAR at M2 to SAR at M1 = 65.4% Maximum value of SAR (measured) = 1.58 W/kg



Certificate No: D450V3-1051_Sep21

Page 7 of 8

Date: 17.09.2021

Impedance Measurement Plot for Body TSL

Certificate No: D450V3-1051_Sep21

Page 8 of 8

: 14351608H-G

: 38 of 79

System Check Dipole SAR Calibration Certificate -Dipole 600 MHz (D600V3 S/N: 1003)

Calibration Laboratory Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich,		BC MRA	S Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accreditation The Swiss Accreditation Service Multilateral Agreement for the rec	is one of the signatorie		Accreditation No.: SCS 0108
Client UL Japan (KYC)	-		e No: D600V3-1003 Oct19
CALIBRATION C	ERTIFICATE		
Object	D600V3 - SN: 10	03	
Calibration procedure(s)	QA CAL-15.v9 Calibration Proce	dure for SAR Validation Sour	ces below 700 MHz
Calibration date:	October 18, 2019	9	
All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards		y facility: environment temperature (22 ± Cal Date (Certificate No.)	3)°C and humidity < 70%. Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 3877	31-Dec-18 (No. EX3-3877_Dec18)	Dec-19
DAE4	SN: 654	27-Jun-19 (No. DAE4-654_Jun19)	Jun-20
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C Network Analyzer Agilent E8358A	SN: US3642U01700 SN: US41080477	04-Aug-99 (in house check Jun-18) 31-Mar-14 (in house check Oct-18)	In house check: Jun-20 In house check: Oct-19
Network Analyzer Agnesic Coupon	1 314. 0 34 1000477	o r-mar-re (in house check Oct-ray	III HOUSE CHECK, OOL-19
	Name	Function	Signature
Calibrated by:	Michael Weber	Laboratory Technician	Allets
Approved by:	Katja Pokovic	Technical Manager	JUNG
This calibration certificate shall not	be reproduced except in	full without written approval of the labora	Issued: October 18, 2019 tory.

Certificate No: D600V3-1003_Oct19

Page 1 of 8

Test report No. Page : 14351608H-G : 39 of 79

Calibration Laboratory of Schweizerischer Kalibrierdienst S Schmid & Partner Service suisse d'étalonnage С Hac MRA Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Accreditation No.: SCS 0108 The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x.v.z not applicable or not measured N/A Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" Additional Documentation: e) DASY4/5 System Handbook Methods Applied and Interpretation of Parameters: Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. SAR measured: SAR measured at the stated antenna input power. SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D600V3-1003, Oct19 Page 2 of 8

: 14351608H-G

: 40 of 79

Page

Measurement Conditions

DASY Version	DASY5	V52.10.3
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	600 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	42.7	0.88 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.4 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	n. 10. 10. 10.	

SAR result with Head TSL

SAR averaged over 1 cm 3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.70 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.65 W/kg ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.11 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	56.1	0.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.7 ± 6 %	0.98 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.71 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.67 W/kg ± 18.1 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Body TSL SAR measured	condition 250 mW input power	1.13 W/kg

Certificate No: D600V3-1003_Oct19

Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.1 Ω - 3.9 jΩ				
Return Loss	- 24.3 dB				

Antenna Parameters with Body TSL

Impedance, transformed to feed point	51.9 Ω - 5.8 jΩ
Return Loss	- 24.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.155 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

ſ	Manufactured by		SPEAG

Certificate No: D600V3-1003_Oct19

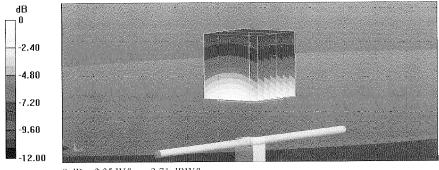
Page 4 of 8

Date: 18.10.2019

DASY5 Validation Report for Head TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 600 MHz; Type: D600V3; Serial: D600V3 - SN: 1003


Communication System: UID 0 - CW; Frequency: 600 MHz Medium parameters used: f = 600 MHz; σ = 0.91 S/m; ϵ_r = 43.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.01, 10.01, 10.01) @ 600 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 27.06.2019
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 51.71 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 2.75 W/kg SAR(1 g) = 1.7 W/kg; SAR(10 g) = 1.11 W/kg Ratio of SAR at M2 to SAR at M1 = 61.8% Maximum value of SAR (measured) = 2.35 W/kg

0 dB = 2.35 W/kg = 3.71 dBW/kg

Certificate No: D600V3-1003_Oct19

Page 5 of 8

Impedance Measurement Plot for Head TSL

Elle	⊻iew	⊆hannel	Sweep	Calibration	<u>Trace S</u> ca	ile Marker	S <u>y</u> stem	Window	Help			
						X		A	68	00 MHz) 009 pF 00 MHz	-3. 61.1	5.097 Ω 9004 Ω 129 mU 35.297 °
	Ch1: St	Ch 1 Avg = ant 400.000 h				<u> </u>		- 			Stop 8	00.000 MHz
10. 5.0	30 0	<u>16 811</u>				1	>	1: 80	10.000	00 MHz	-24	.289 dB
0.0		and a second	· · · · · · · · · · · · · · · · · · ·									
-10					<u> </u>							
-15	.00							4				
-20							$\frac{1}{2}$					
-25						-	1					
-30	1											
-35 -40	an I	Ch 1 Avg = art 400.000 N					l				Stop 8	00.000 MHz
Sta	atus	CH 1: §	611	1	C* 1-Port		Avg=20	Delay				LCL

Certificate No: D600V3-1003_Oct19

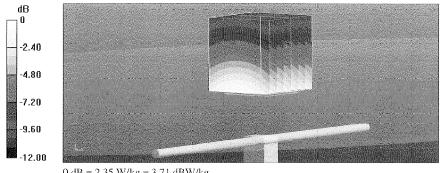
Page 6 of 8

Date: 18.10.2019

DASY5 Validation Report for Body TSL

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 600 MHz; Type: D600V3; Serial: D600V3 - SN: 1003


Communication System: UID 0 - CW; Frequency: 600 MHz Medium parameters used: f = 600 MHz; σ = 0.98 S/m; ϵ_r = 55.7; ρ = 1000 kg/m^3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(10.2, 10.2, 10.2) @ 600 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection) æ
- Electronics: DAE4 Sn654; Calibrated: 27.06.2019
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 c
- DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 49.80 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 2.74 W/kg SAR(1 g) = 1.71 W/kg; SAR(10 g) = 1.13 W/kg

Ratio of SAR at M2 to SAR at M1 = 62.8%Maximum value of SAR (measured) = 2.35 W/kg

0 dB = 2.35 W/kg = 3.71 dBW/kg

Certificate No: D600V3-1003_Oct19

Page 7 of 8