TEST REPORT

FCC ID: 2AWC3-MG-S01A Product: Android dongle Model No.: MG-S01 Additional Model No.: N/A Trade Mark: N/A Report No.: TCT210331E012 Issued Date: Apr. 23, 2021

Issued for:

UBRIDGE Co., Ltd. 1-1704, Ace Hightech City, 775, Gyeongin-ro, Yeongdeungpo-gu, Seoul, South Korea

Issued By:

Shenzhen Tongce Testing Lab TCT Testing Industrial Park, Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

FAX: +86-755-27673332

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen Tongce Testing Lab This document may be altered or revised by Shenzhen Tongce Testing Lab. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

TCT 通测检测 TESTING CENTRE TECHNOLOGY

						(.G)
1.	Test Certification.					3
2.	Test Result Summ	ary			 	4
3.	EUT Description				 	5
4.	General Informatio	n				7
	4.1. Test environment	t and mode				7
	4.2. Description of Su	pport Units	s		 	8
5.	Facilities and Accr	editation	s			9
	5.1. Facilities					
	5.2. Location					
	5.3. Measurement Un	certainty				9
6.	Test Results and M					
	6.1. Antenna requiren					
	6.2. Conducted Emiss	sion				11
	6.3. Maximum Condu					
	6.4. Emission Bandwi					
	6.5. Power Spectral D					
	6.6. Conducted Band					
G	6.7. Radiated Spuriou				 	20
	ppendix A: Test Res			est		
Α	ppendix B: Photogr	aphs of T	est Setup			
Α	ppendix C: Photogr	aphs of E	UT			
						(, c)
					Page 2 of	68

通测检测 TESTING CENTRE TECHNOLOGY **Test Certification**

Report No.: TCT210331E012

Product:	Android dongle	.c			
Model No.:	MG-S01				
Additional Model No.:	N/A				
Trade Mark:	N/A				
Applicant:	UBRIDGE Co., Ltd.				
Address:	1-1704, Ace Hightech City, 775, Gyeongin-ro, Yeongdeungpo-gu, Seoul, South Korea				
Manufacturer:	Shenzhen Tomato Technology Co., Ltd				
Address:	Room 1106, Huatong Building, SunGangDong Road, LuoHu District, Shenzhen, Guangdong Province, P.R.China 518022				
Date of Test:	Apr. 01, 2021 – Apr. 22, 2021				
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013	Ś			

The above equipment has been tested by Shenzhen Tongce Testing Lab and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

arm Aaron Mo

Reviewed By:

Beryl Zhao

Approved By:

Tomsin

msn

Page 3 of 68

2. Test Result Summary

CT 通测检测 TESTING CENTRE TECHNOLOGY

Report	No.:	TCT210331E012
--------	------	---------------

		(G)	
Requirement	CFR 47 Section	Result	
Antenna requirement	§15.203/§15.247 (c)	PASS	
AC Power Line Conducted Emission	§15.207	PASS	
Conducted Peak Output Power	§15.247 (b)(3)	PASS	.c
6dB Emission Bandwidth	§15.247 (a)(2)	PASS	
Power Spectral Density	§15.247 (e)	PASS	
Band Edge	§15.247(d)	PASS	
Spurious Emission	§15.205/§15.209	PASS	

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 68

Report No.: TCT210331E012

Page 5 of 68

3. EUT Description

Product:	Android dongle
Model No.:	MG-S01
Additional Model No.:	N/A
Trade Mark:	N/A
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20)
Modulation Technology (IEEE 802.11b):	Direct Sequence Spread Spectrum (DSSS)
Modulation Technology (IEEE 802.11g/802.11n):	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna Gain:	2.14dBi
Power Supply:	DC 5V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

Oneration	Frequency es	ich of chann	A For 802	.11b/g/n(HT20)
	I I EQUEILE Y EC			

(Operation Frequency each of channel For 802.11b/g/n(HT20)							
	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Report No.: TCT210331E012

4. General Information

4.1. Test environment and mode

Operating	Environment:
-----------	--------------

Condition	Conducted Emission	Radiated Emission			
Temperature:	25.0 °C	25.0 °C			
Humidity:	55 % RH	55 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			

Test Mode:

Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(H20)	6.5Mbps

Final Test Mode:

Operation mode:

Keep the EUT in continuous transmitting with modulation

1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20). Duty cycle setting during the transmission is 98.46% with maximum power setting for all modulations.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Notebook Computer	XiaoXin CHAO5000	PF0WZYD9	/	Lenovo

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

5. Facilities and Accreditations

5.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

Shenzhen Tongce Testing Lab.

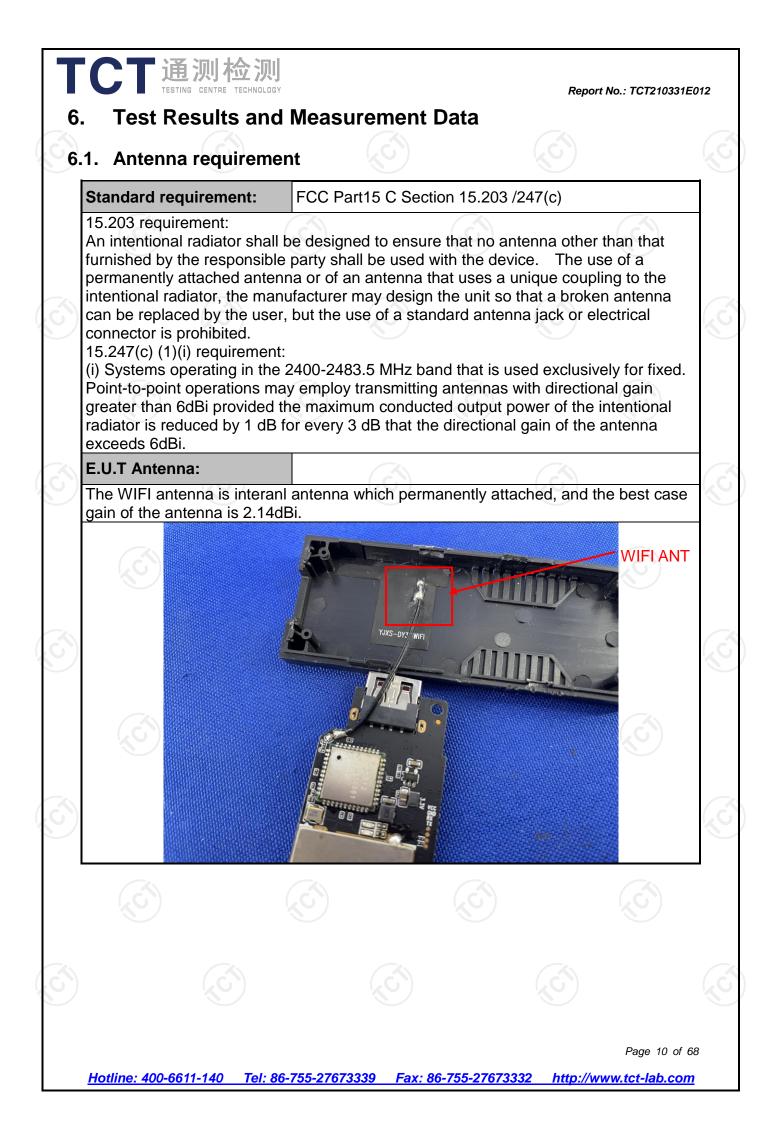
The 3m Semi-anechoic chamber has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

 IC - Registration No.: 10668A-1 The 3m Semi-anechoic chamber of SHENZHEN TONGCE TESTING LAB has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

5.2. Location

Shenzhen Tongce Testing Lab

Address: TCT Testing Industrial Park, Fuqiao 5th Industrial Zone, Fuhai Street,


Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

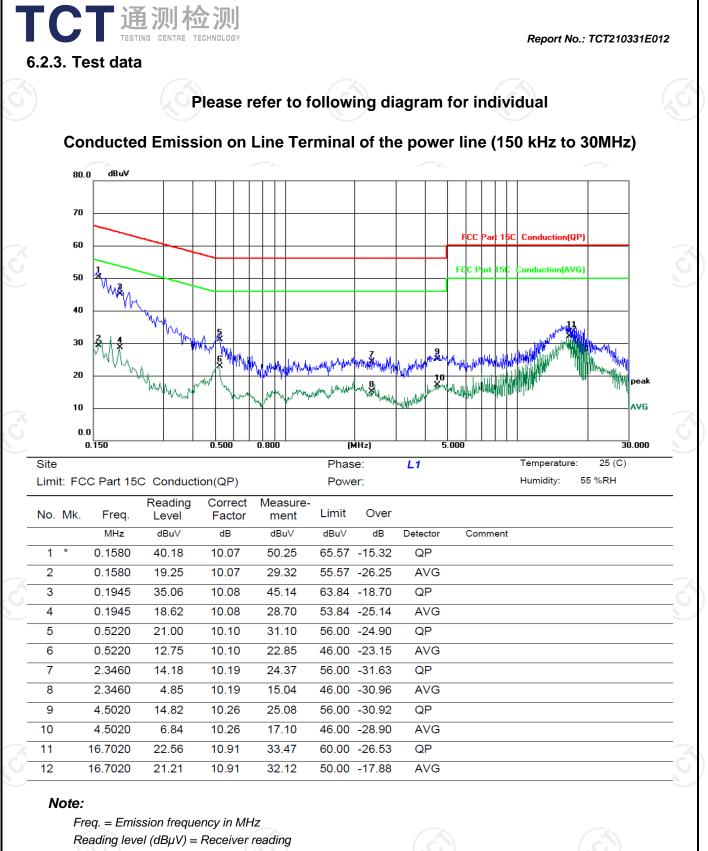
TEL: +86-755-27673339

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	• ±2.56dB
2	RF power, conducted	±0.12dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.92dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

2. Conducted Emise .1. Test Specification	sion		
Test Requirement:	FCC Part15 C Section	15.207	
Test Method:	ANSI C63.10:2013	$\langle \mathcal{O} \rangle$	(\mathcal{C})
Frequency Range:	150 kHz to 30 MHz		
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	=auto
_imits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (o Quasi-peak 66 to 56* 56 60	BuV) Average 56 to 46* 46 50
Гest Setup:	40cm E.U.T AC powe Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Nation Test table height=0.8m	EMI Receiver	— AC power
Test Mode:	Charging + transmittin	g with modulation	
Test Procedure:	 The E.U.T is connelline impedance stal provides a 500hm/s measuring equipme The peripheral device power through a Lice coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables 	bilization network 50uH coupling im nt. ces are also conne ISN that provides with 50ohm term diagram of the line are checkence. In order to fir e positions of equi s must be chang	(L.I.S.N.). This pedance for the ected to the main a 500hm/50uH hination. (Please test setup and d for maximum d the maximum ipment and all of ed according to
	ANSI C63.10: 2013	on conducted mea	asurement.



6.2.2. Test Instruments

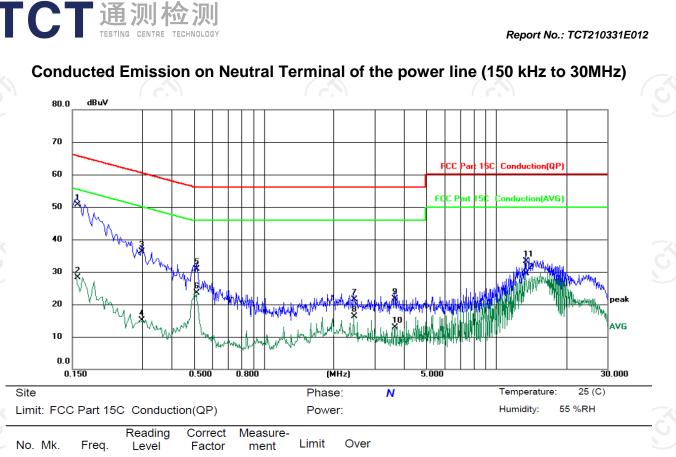
Cond	lucted Emission	Shielding R	oom Test Site (8	43)
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	R&S	ESCI3	100898	Jul. 27, 2021
LISN-2	Schwarzbeck	NSLK 8126	8126453	Sep. 11, 2021
Line-5	тст	CE-05	N/A	Sep. 02, 2021
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Page 12 of 68

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$


 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 13 of 68

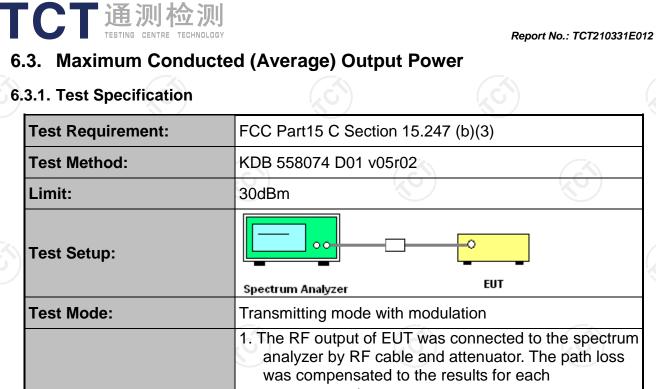
	No.	Mk.	Freq.	Level	Factor	ment	Limit	Over			
			MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	Comment	
-	1	*	0.1580	40.52	10.11	50.63	65.57	-14.94	QP		
-	2		0.1580	18.13	10.11	28.24	55.57	-27.33	AVG		
	3		0.2980	26.19	10.12	36.31	60.30	-23.99	QP		
	4		0.2980	5.01	10.12	15.13	50.30	-35.17	AVG		
	5		0.5140	20.74	10.14	30.88	56.00	-25.12	QP		
~	6		0.5140	13.35	10.14	23.49	46.00	-22.51	AVG		~
	7		2.4380	11.13	10.28	21.41	56.00	-34.59	QP		0
	8		2.4380	5.93	10.28	16.21	46.00	-29.79	AVG		
	9		3.6580	11.46	10.34	21.80	56.00	-34.20	QP		
	10		3.6580	2.49	10.34	12.83	46.00	-33.17	AVG		
-	11		13.3780	22.40	10.85	33.25	60.00	-26.75	QP		
	12		13.3780	18.72	10.85	29.57	50.00	-20.43	AVG		

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ - Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 14 of 68


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

FCC Part15 C Section 1	5.247 (b)(3)	
KDB 558074 D01 v05r02	2	
30dBm		
Spectrum Analyzer	EUT	
Transmitting mode with	modulation	
 analyzer by RF cable was compensated to measurement. 2. Set to the maximum p EUT transmit continue 3. Measure the conducted 	e and attenuator. The the results for each ower setting and ena ously. ed output power and r	path loss
PASS		
	KDB 558074 D01 v05r02 30dBm Spectrum Analyzer Transmitting mode with r 1. The RF output of EUT analyzer by RF cable was compensated to measurement. 2. Set to the maximum p EUT transmit continu 3. Measure the conducted results in the test rep	 Spectrum Analyzer Spectrum Analyzer Transmitting mode with modulation 1. The RF output of EUT was connected to th analyzer by RF cable and attenuator. The was compensated to the results for each measurement. 2. Set to the maximum power setting and enal EUT transmit continuously. 3. Measure the conducted output power and results in the test report.

6.3.2. Test Instruments

	RI	F Test Room	I	
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2021
Antenna Connector	ТСТ	RFC-01	N/A	Sep. 11, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

TCT 通测检测 6.4. Emission Bandwidt 6.4.1. Test Specification	Report No.: TCT210331E0	012
Test Requirement:	FCC Part15 C Section 15.247 (a)(2)]
Test Method:	KDB 558074 D01 v05r02	
Limit:	>500kHz	
Test Setup:	Spectrum Analyzer EUT	
Test Mode:	Transmitting mode with modulation	
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 	Ś
Test Result:	PASS	

6.4.2. Test Instruments

	RI	F Test Room)	
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
RF Cable (9KHz-26.5GHz)	тст	RE-06	N/A	Sep. 11, 2021
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

CT 通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT210331E012
.5. Power Spectral Den	sity
5.1. Test Specification	
Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

6.5.2. Test Instruments

	RI	F Test Room	ı	
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
RF Cable (9KHz-26.5GHz)	ТСТ	RE-06	N/A	Sep. 11, 2021
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2021

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

Report No.: TCT210331E012

6.6. Conducted Band Edge and Spurious Emission Measurement

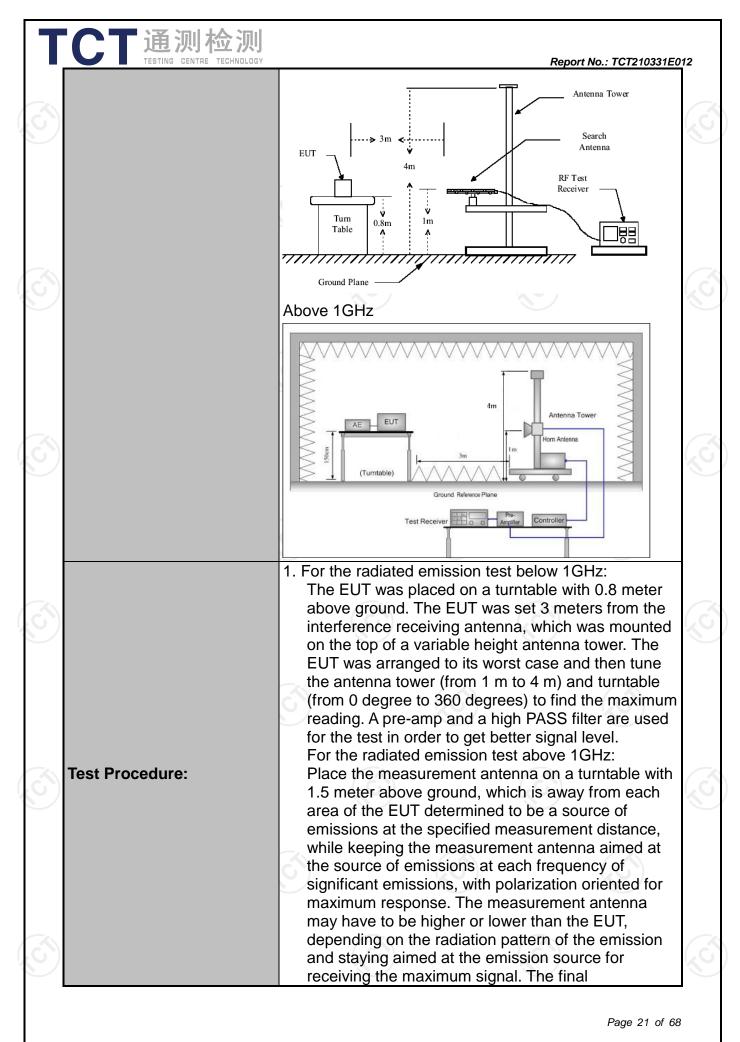
6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

Page 18 of 68

6.6.2. Test Instruments

TCT 通测检测 TESTING CENTRE TECHNOLOGY

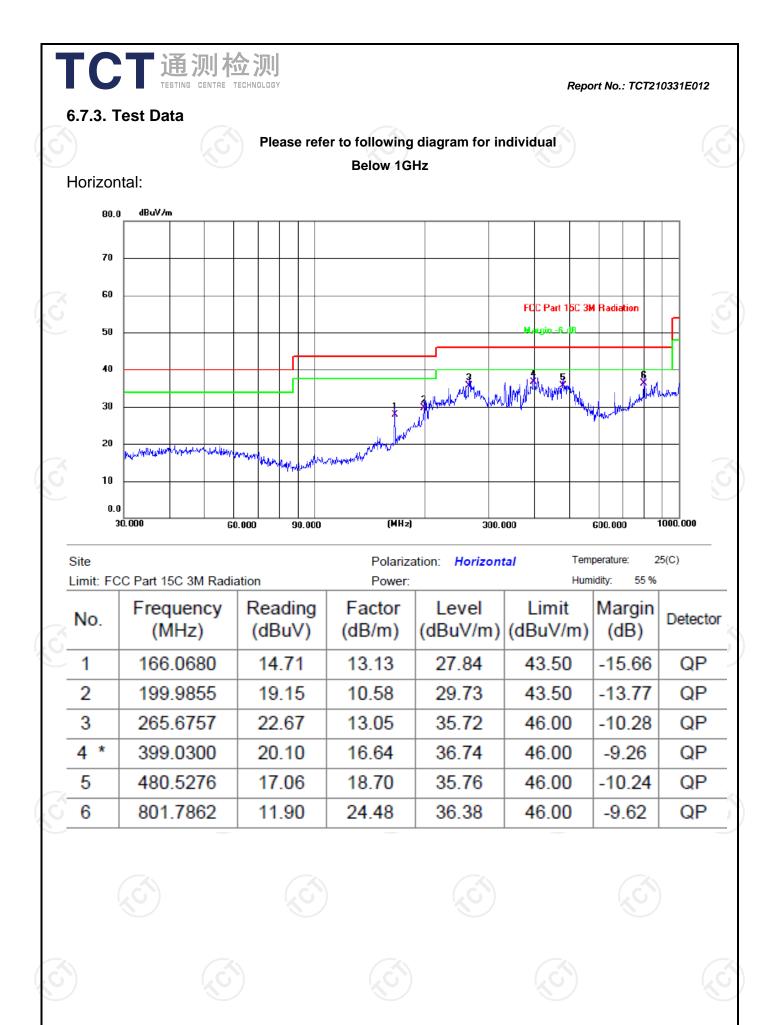

Equipment	Manufacturer	Test Roon	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Sep. 11, 2021
RF Cable (9KHz-26.5GHz)	ТСТ	RE-06	N/A	Sep. 11, 2021
Antenna Connector	тст	RFC-01	N/A	Sep. 11, 2021
ote: The calibration intervation intervational system		truments is 12 n	nonths and the calibratic	ns are traceable to
				Page 19 of 6

6.7. Radiated Spurious Emission Measurement

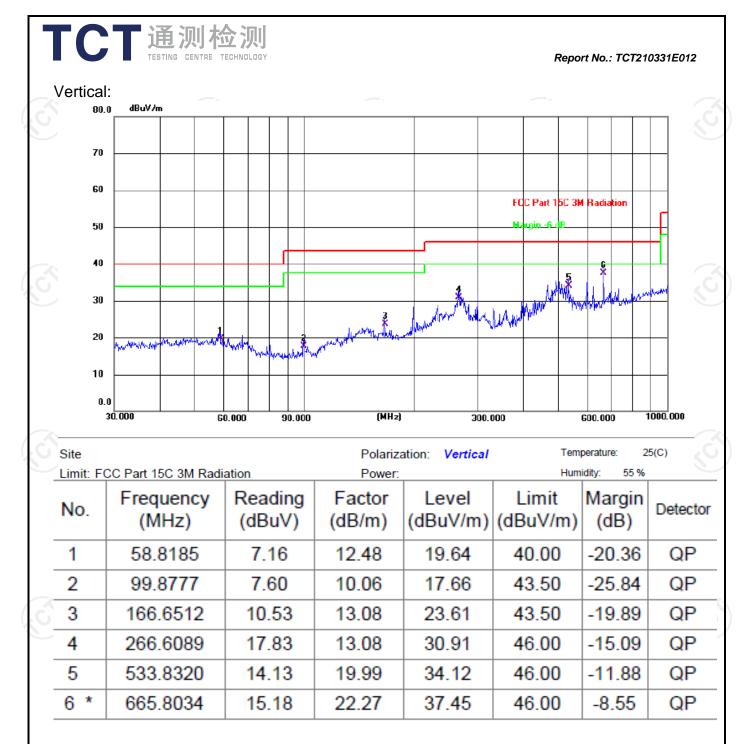
6.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209			
Test Method:	ANSI C63.10): 2013				
Frequency Range:	9 kHz to 25 (GHz	\mathcal{D}			
Measurement Distance:	3 m					
Antenna Polarization:	Horizontal &	Vertical				
Operation mode:	Transmitting	mode with	n modulat	ion		
	Frequency	Detector	RBW	VBW	Remark	
Receiver Setup:	9kHz- 150kHz 150kHz- 30MHz	Quasi-peak Quasi-peak		1kHz 30kHz	Quasi-peak Value Quasi-peak Value	
•	30MHz-1GHz	Quasi-peak		300KHz	Quasi-peak Value	
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value	
	Frequen	су	Field Stre (microvolts		Measurement Distance (meters)	
	0.009-0.4		2400/F(I		300	
	0.490-1.7		24000/F((KHz)	30	
	1.705-3		<u> </u>		30 3	
	88-216		150		3	
Limit:	216-96	200		3		
	Above 9	60		3		
	Frequency		Strength /olts/meter)	Measure Distan (mete	ance Detector	
	Above 1GHz	2	500 5000	3	Average Peak	
Toot ootup.		emissions	- 		Computer	
Test setup:	0.8m	Turn table Ground	Plane	_	leceiver	
Test setup:	<u>+</u>	Ground		- [leceiver	
Test setup:	<u>+</u>	Ground			leceiver	


TCT 1	STING CENTRE TECHNO	maximiz antenna restricte above th 3. Correcte Read Le 4. For meas of the E lower th	ement antenna elev es the emissions. d lo a range of height of to a range of height a ground or referend d Reading: Antenna evel - Preamp Factor surement below 10 UT measured by the an the applicable li	vation shall to The measure mum emission ghts of from Ince ground a Factor + C or = Level GHz, If the er ne peak dete mit, the peal	ement ons shall be 1 m to 4 m plane. able Loss + nission level ctor is 3 dB k emission	012
<u>حَنْ</u>		measure detector 5. Use the f (1) Span emis (2) Set F Swee max (3) Set F peak For ave duty cyc when du the mini	RBW = 1 MHz, VBV measurement. rage measurement the is no less than 9 uty cycle is less that mum transmission	ated using th analyzer set to fully capt ed; < 1 GHz; VE function = p V= 3MHz for : VBW = 10 8 percent. V n 98 percent duration ove	e quasi-peak ttings: ture the $BW \ge RBW;$ peak; Trace = f >1 GHz for Hz, when /BW \ge 1/T, t where T is er which the	
Test results	s.	power c	ter is on and is trar ontrol level for the			_
Test results	s:					
Test results	s:	power c				
Test results	s:	power c				
Test results	s:	power c				

6.7.2. Test Instruments


		ission Test Site		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Test Receiver	ROHDE&SCHW ARZ	ESIB7	100197	Jul. 27, 2021
Spectrum Analyzer	ROHDE&SCHW ARZ	FSQ40	200061	Sep. 11, 2021
Pre-amplifier	EM Electronics Corporation CO.,LTD	EM30265	07032613	Sep. 02, 2021
Pre-amplifier	HP	8447D	2727A05017	Sep. 02, 2021
Loop antenna	ZHINAN	ZN30900A	12024	Oct. 27, 2020
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	A-INFO	LB-180400-KF	J211020657	Sep. 04, 2022
Antenna Mast	Keleto	RE-AM	N/A	N/A
Line-4	ТСТ	RE-high-04	N/A	Sep. 02, 2021
Line-8	ТСТ	RE-01	N/A	Jul. 27, 2021
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

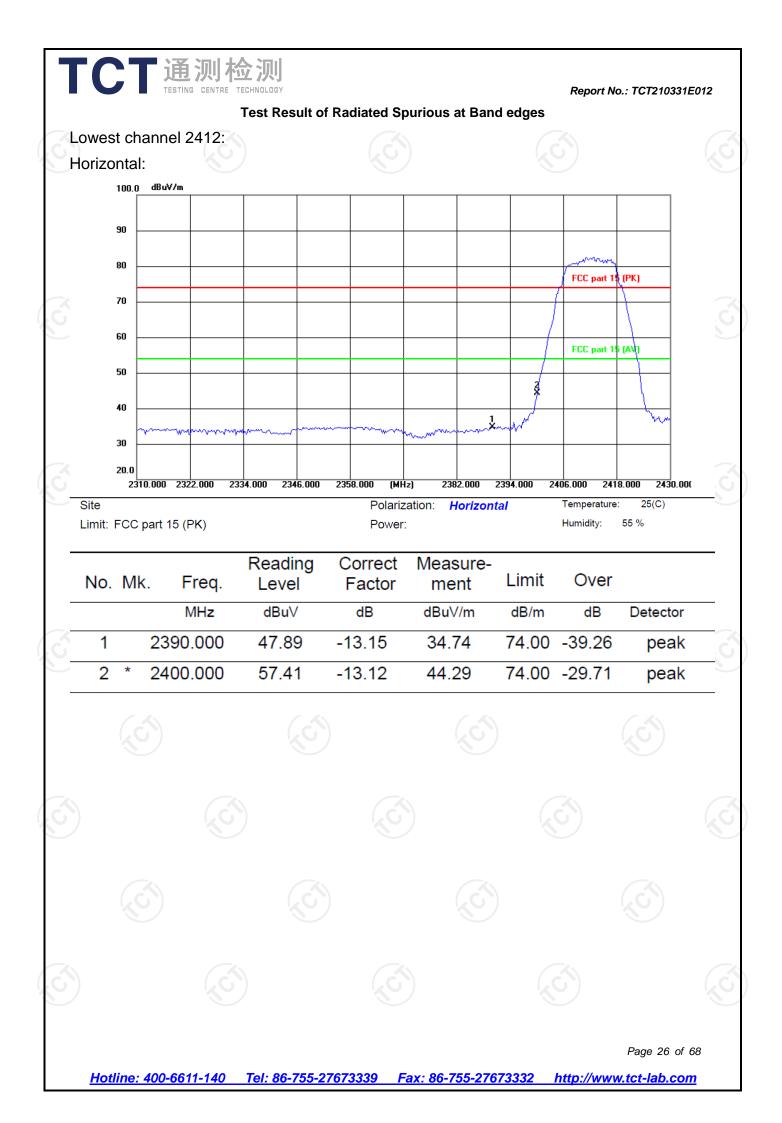
Page 23 of 68

Page 24 of 68

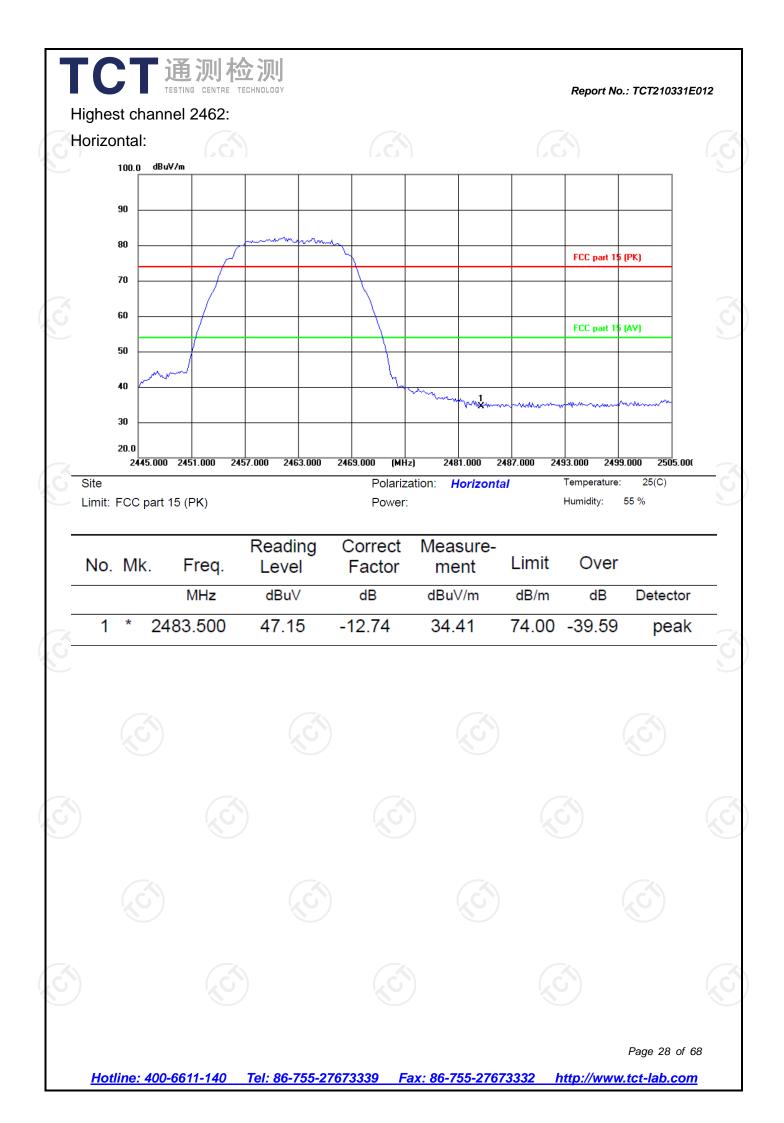
Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

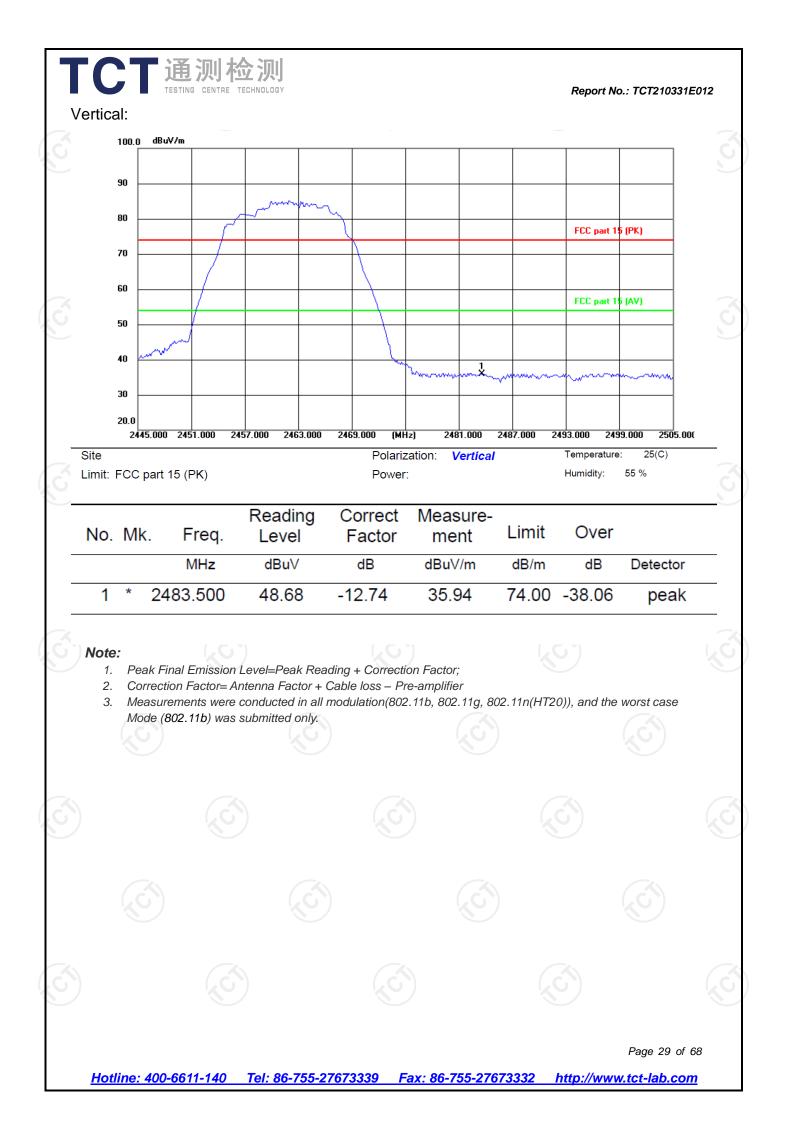
2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode (middle channel and 802.11b) was submitted only.

3. Freq. = Emission frequency in MHz


- Measurement $(dB\mu V/m) = Reading \ level \ (dB\mu V) + Corr. \ Factor \ (dB)$
- Correction Factor= Antenna Factor + Cable loss Pre-amplifier

Limit $(dB\mu V/m) = Limit$ stated in standard


Margin (dB) = Measurement (dB μ V/m) – Limits (dB μ V/m)


Any value more than 10dB below limit have not been specifically reported

* is meaning the worst frequency has been tested in the test frequency range.

	Vert	ical										o.: TCT210331	
	von	100.0	dBuV/	'n									
		Γ											
		90 -											
		80 -									my		
		-									FCC part 1	5 (PK)	
		70 -											
		60 -									FCC part 1		
		50									FUC part 1		
										2			
		40						a normalization of the second s	1	- El			
		30	www.v	"VNW"YL-man		whet	www.						
		20.0											
_		231	0.000	2322.000 233	34.000 234	6.000		-		2394.000 24		8.000 2430.00	00
	Site imit:	FCC	part 15	5 (PK)			Polari Powe	zation: r:	Vertical		Temperature Humidity:	: 25(C) 55 %	
				()									
	No.	М	,	Freq.	Readi		Correct		easure-	Limit	Over		
	NU.	IVII	\ .		Leve		Factor		nent				
				MHz	dBu∖		dB		8uV/m	dB/m	dB	Detector	
	1		239	90.000	48.9	6	-13.15	3	5.81	74.00	-38.19	peak	<
	2	*	240	00.000	53.1	9	-13.12	4	0.07	74.00	-33.93	peak	<
											_		

					e 1GHz				
			N	Iodulation T	ype: 802.1	1b			
			l	_ow channe					
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	H	47.12		0.75	47.87		74	54	-6.13
7236	Ĥ	37.38		9.87	47.25		74	54	-6.75
	н					<u> </u>			
4824	V	46.91		0.75	47.66		74	54	-6.34
7236	V	37.88		9.87	47.75		74	54	-6.25
	V			(d					(
,				N.					X
			N	liddle chanr	nel: 2437MF	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	,СH	48.29		0.97	49.26	\mathcal{C}^{+}	74	54	-4.74
7311	H	38.36		9.83	48.19		74	54	-5.81
	Н								
4874	V	46.55		0.97	47.52		74	54	-6.48
7311	V	35.84		9.83	45.67		74	54	-8.33

			F	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	Ĥ	47.32		1.18	48.50		74	54	-5.50
7386	Н	35.61		10.07	45.68		74	54	-8.32
	Н								
X.					X				
4924	V	46.23		1.18	47.41		74	54	-6.59
7386	V	36.48		10.07	46.55		74	54	-7.45
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

Page 30 of 68

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT210331E0	012
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Modulation Type: 802.11g	•	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Lambda/$ reading $\Lambda/$ reading Factor Peak AV		gin 3)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		74 54 -5.5	59
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V 48.74 0.75 49.49	74 54 -4.5	51
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V 37.57 9.87 47.44	74 54 -6.5	56
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	/		-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Middle channel: 2437MHz		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AV reading Factor Peak AV		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		74 54 -5.2	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H 38.48 9.83 48.31	74 54 -5.6	69
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	+ +	(. .G)	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
V	√ 46.95 0.97 47.92	74 54 -6.0)8
High channel: 2462 MHzFrequency (MHz)Ant. Pol. H/VPeak reading (dBµV)AV reading (dBµV)Correction Factor 		74 54 -7.0)6
Frequency (MHz)Ant. Pol. H/VPeak reading (dBµV)AV reading (dBµV)Correction Factor (dBµW)Emission Level Peak (dBµV)m)Peak limit (dBµV/m)AV limit (dBµV/m)N4924H48.281.1849.4674547386H38.7410.0748.817454H	V		•
Frequency (MHz)Ant. Pol. H/VPeak reading (dBµV)AV reading (dBµV)Correction Factor (dBµW)Emission Level Peak (dBµV)m)Peak limit (dBµV/m)AV limit (dBµV/m)N4924H48.281.1849.4674547386H38.7410.0748.817454H			
Frequency (MHz)Ant. Pol. H/Vreading (dB μ V)Av reading (dB μ V)Factor (dB/m)Peak (dB μ V/m)Peak limit (dB μ V/m)Av	High channel: 2462 MHz		Ň
4924 H 48.28 1.18 49.46 74 54 7386 H 38.74 10.07 48.81 74 54 H 10.07 48.81 74 54	AV reading AV reading Factor Peak AV		gin 3)
H		74 54 -4.5	54
	H 38.74 10.07 48.81	74 54 -5.1	9
			-
4974 I V I 40.37 I I 118 I 47.50 I I 74 I 54 I	V 46.32 1.18 47.50	74 54 -6.5	50
V			- /

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

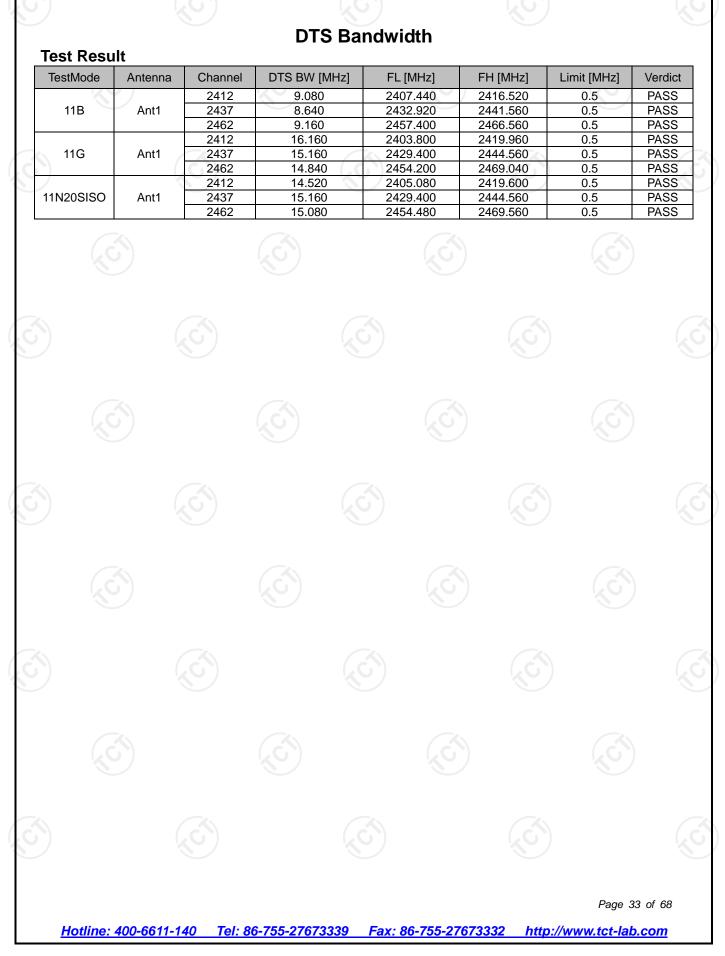
6. All the restriction bands are compliance with the limit of 15.209.

	通 TESTING	CENTRE TECH	NOLOGY				Rep	ort No.: TCT21	0331E012	
					: 802.11n (H					
			L	ow channe	I: 2412 MH	Z				
Frequency	Ant. Pol.	Peak	AV reading	Correction	Emissic	on Level	Peak limit	AV limit	Margin	
(MHz)	H/V	reading (dBµV)	(dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)		(dB)	
4824	Н	48.33		0.75	49.08		74	54	-4.92	
7236	Н	38.45		9.87	48.32		74	54	-5.68	
	Н									
((
4824	V	46.74	×	0.75	47.49	~~	74	54	-6.51	
7236	V	35.37		9.87	45.24		74	54	-8.76	
	V									
\sim			М	iddle chanr	nel: 2437MF	Ηz			(
Frequency	Ant. Pol.	Peak	AV reading	Correction		on Level	Peak limit	AV/ limit	limit AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)		(dB)	
4874	Н	47.72		0.97	48.69		74	54	-5.31	
7311	H	37.96	-7	9.83	47.79		74	54	-6.21	
(.CH		(-C)		(.C 1		[6]		
				/						
4874	V	47.51		0.97	48.48		74	54	-5.52	
7311	V	37.68		9.83	47.51		74	54	-6.49	
	V									
		(\dot{c})		(.0					(.	
			H	ligh channe	el: 2462 MH	Z			Ň	
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)	
4924	H	46.94		1.18	48.12		74	54	-5.88	
7386	<u>G</u> H	36.13	(<u></u> C)	10.07	46.20	<u>,0:</u>	74	54	-7.80	
	H		<u></u>							
4924	V	46.22		1.18	47.40		74	54	-6.60	
7386	V	36.85		10.07	46.92		74	54	-7.08	
	V	(. C		(. C					(.	

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

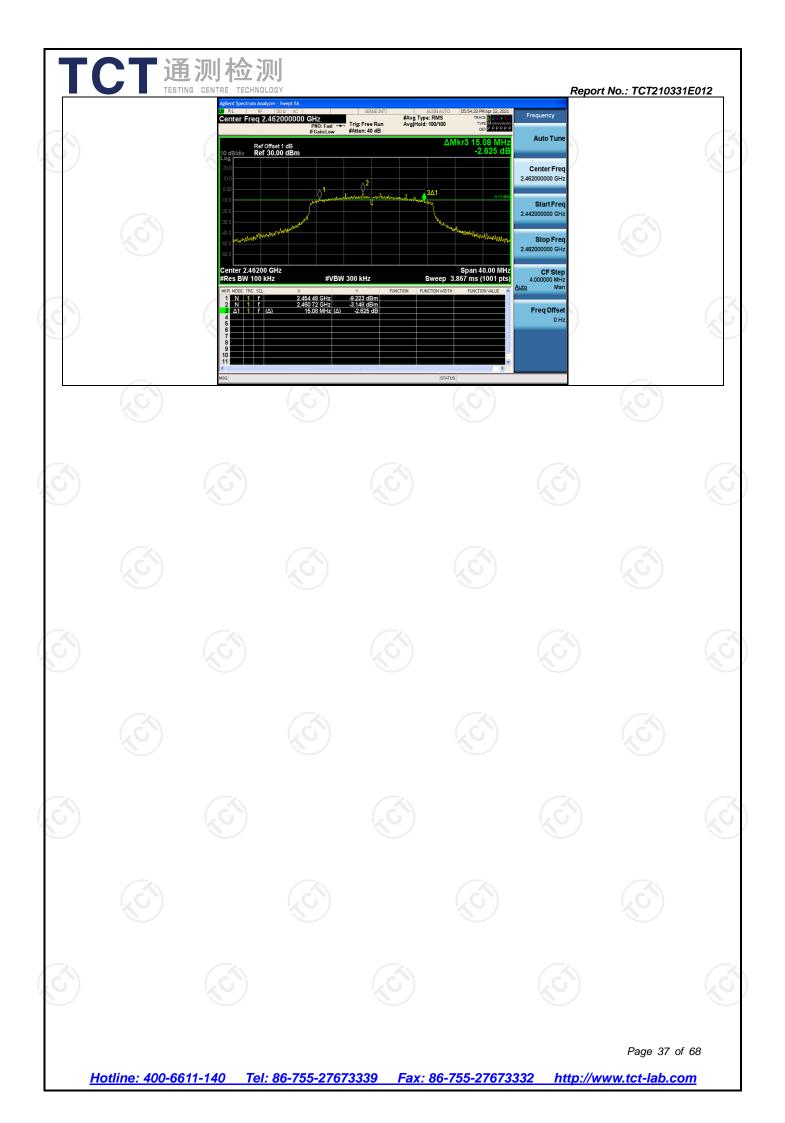
3. The emission levels of other frequencies are very lower than the limit and not show in test report.

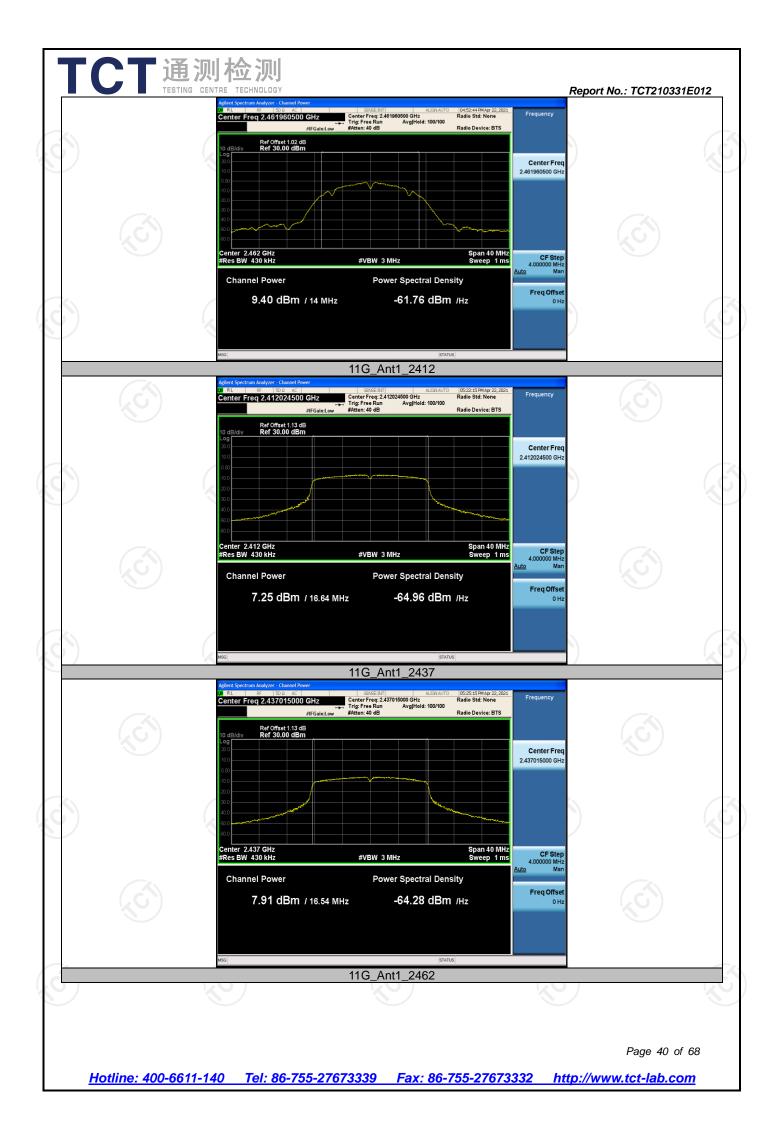

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

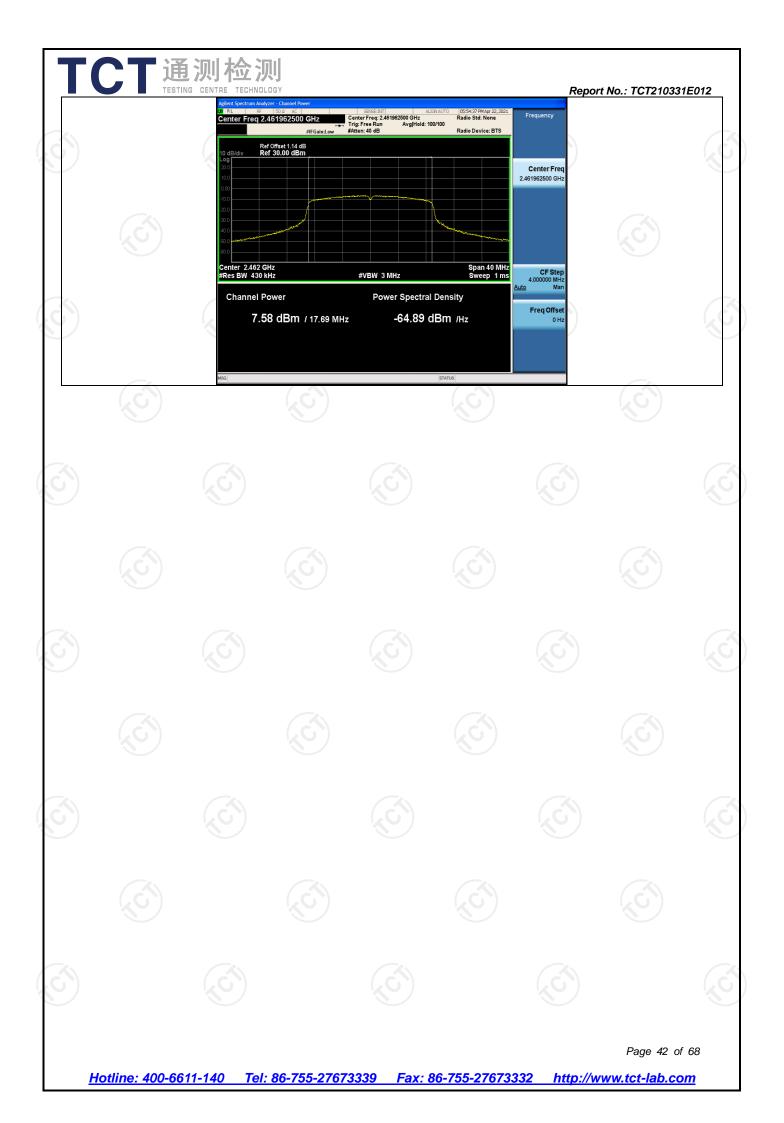
6. All the restriction bands are compliance with the limit of 15.209.

Page 32 of 68

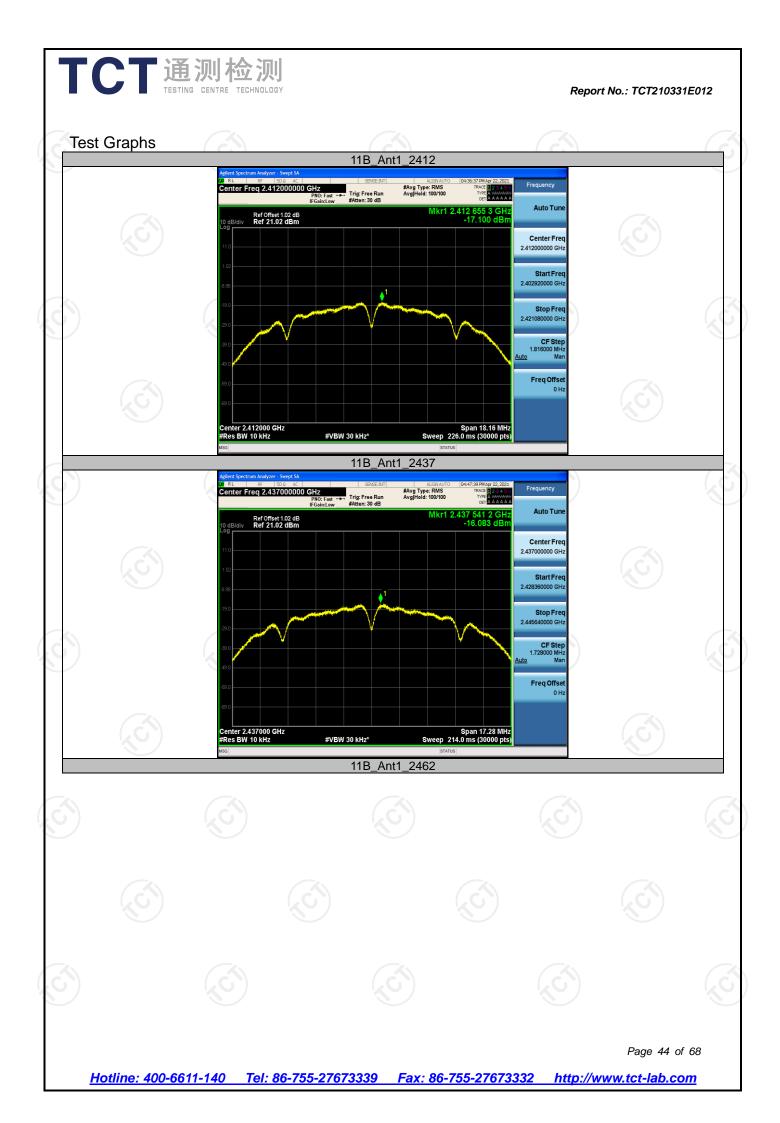

Appendix A: Test Result of Conducted Test



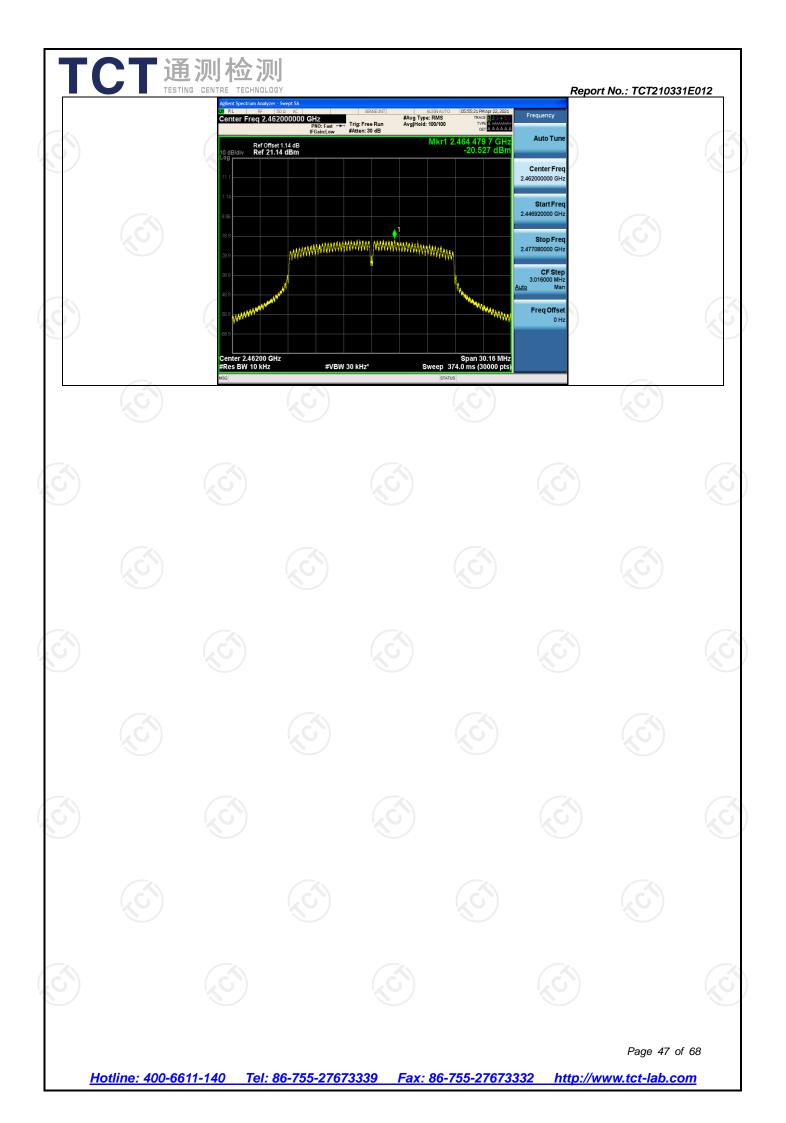




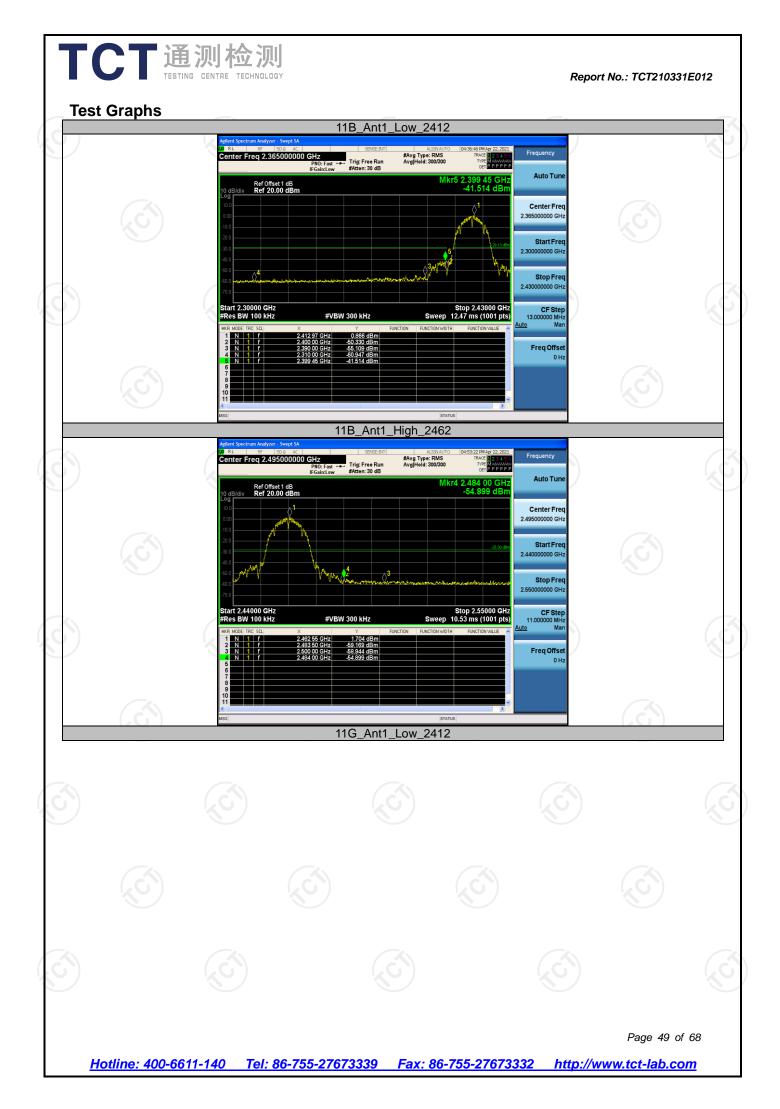
est Result TestMode	Antenna	Channel	Result [dBm]	Limit [dBm]] Verdic
11B	Ant1	2412 2437 2462	8.86 9.58 9.40	<=30 <=30 <=30	PASS PASS PASS
11G	Ant1	2412 2437 2462	7.25 7.91 8.11	<=30 <=30 <=30	PASS PASS PASS
11N20SISO	Ant1	2412 2437 2462	6.80 7.37 7.58	<=30 <=30 <=30	PASS PASS PASS

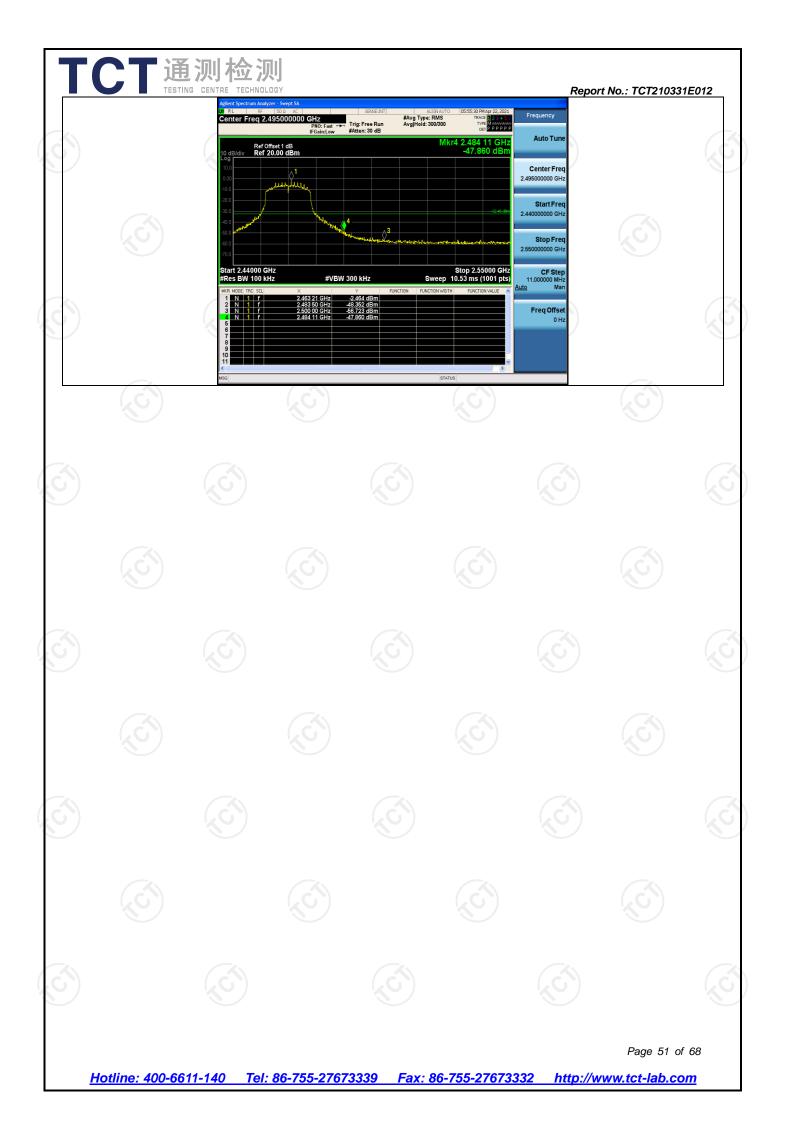


TestMode Antenna Channel Result [dBm/10kHz] Result [dBm/3kHz] [d] 11B Ant1 2412 -17.10 -22.33	Bm/3kHz] Verdia <=8 PASi <=8 PASi
11G Ant1 2412 -21.04 -26.27 2437 -20.33 -25.56 2462 -20.06 -25.29 2412 -20.91 -26.14 1N20SISO Ant1 2437 -20.78 -26.01	<=8
1N20SISO Ant1 2437 -20.78 -26.01	<=8 PAS


TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT210331E012





Test	Resu /lode	Antenna	ChName	Channe	I RefLev	vel [dBm]	Result [dBm]	Limit [dBm]	Verdict
11	в	Ant1	Low High	2412		.87 .70	-41.51 -54.90	<=-29.13 <=-28.30	PASS PASS
11	G	Ant1	Low	2402 2412 2462	-2	2.79	-36.93 -48.85	<=-32.79 <=-32.00	PASS PASS
11N20	SISO	Ant1	Low High	2412 2462	-3	3.32 2.46	-35.01 -47.86	<=-33.32 <=-32.46	PASS PASS

