

Starkey Laboratories, Inc.

Muse iQ Power Plus BTE 13
FCC 15.249:2017
902 – 928 MHz Transceiver

Report # STAK0105.1

NVLAP Lab Code: 200881-0

CERTIFICATE OF TEST

Last Date of Test: October 3, 2017 Starkey Laboratories, Inc. Model: Muse iQ Power Plus BTE 13

Radio Equipment Testing

Standards

Specification	Method	
FCC 15.249:2017	ANSI C63.10:2013	

Results

Method Clause	I Lest Description		Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Field Strength of Harmonics and Spurious Radiated Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Matt Nuernberg, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Report No. STAK0105.1 3/16

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

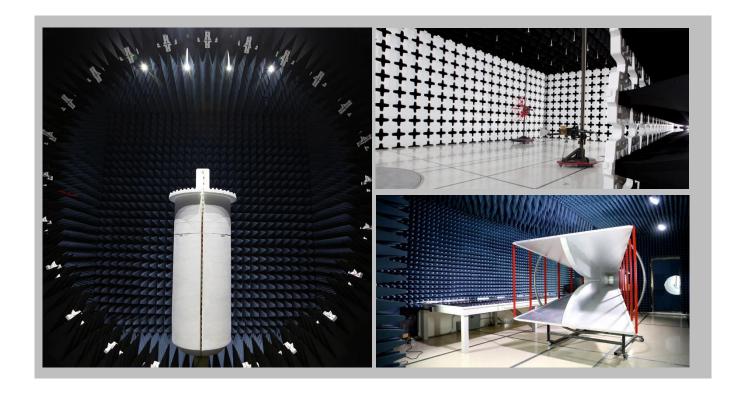
A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

Report No. STAK0105.1

FACILITIES

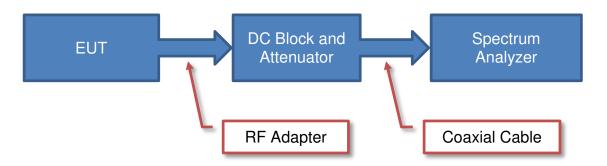

California
Labs OC01-17
41 Tesla
Irvine, CA 92618
(949) 861-8918

MinnesotaLabs MN01-08, MN10
9349 W Broadway Ave.
Brooklyn Park, MN 55445
(612)-638-5136

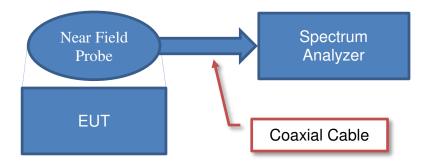
New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

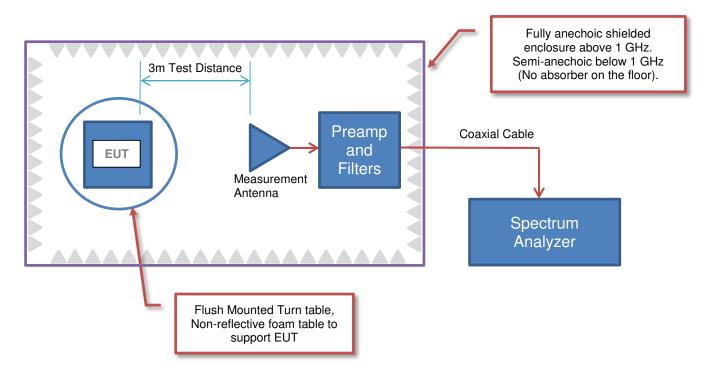
Washington Labs NC01-05 19201 120th Ave NE Bothell, WA 98011 (425)984-6600

Irvine, CA 92618 Brooklyn Park, MN 55445 (949) 861-8918 (612)-638-5136		Elbridge, NY 13060 (315) 554-8214	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600		
	NVLAP						
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innovation, Science and Economic Development Canada						
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1		
		BS	МІ				
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R		
		VC	CI				
A-0029	A-0109	N/A	A-0108	A-0201	A-0110		
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA						
US0158	US0175	N/A	US0017	US0191	US0157		



Report No. STAK0105.1 6/16


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

Report No. STAK0105.1 7/16

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Starkey Laboratories, Inc.
Address:	6600 Washington Ave. SO.
City, State, Zip:	Eden Prairie, MN 55344
Test Requested By:	Bill Mitchell
Model:	Muse iQ Power Plus BTE 13
First Date of Test:	October 2, 2017
Last Date of Test:	October 3, 2017
Receipt Date of Samples:	October 2, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:	
Battery powered hearing aid containing a 915 MHz transceiver	

Testing Objective:

Seeking to demonstrate compliance under FCC 15.249:2017 for operation in the 902 - 928 MHz Band.

Report No. STAK0105.1 8/16

CONFIGURATIONS

Configuration STAK0105-1

Software/Firmware Running during test				
Description	Version			
WEST (Wireless Configuration Software)	3.8.16.0			

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Hearing Aid	Starkey Laboratories, Inc.	Muse iQ Power Plus BTE 13	170714678

Remote Equipment Outside of Test Setup Boundary						
Description Manufacturer Model/Part Number Serial Number						
Laptop	Lenovo	T430	11306			
SurfLink Programmer Starkey Laboratories, Inc. SurfLink Programmer 060731-0446						

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB Cable	Yes	1.8m	No	Laptop	SurfLink Programmer

Report No. STAK0105.1 9/16

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	10/2/2017	Field Strength of Harmonics and Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Element following the test.
2	10/3/2017	Field Strength of Fundamental	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Report No. STAK0105.1 10/16

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2017.06.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting 902.637 MHz (low channel), 914.773 MHz (mid channel) and 926.910 MHz (high channel) modulated

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

STAK0105 - 1

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/1/2016	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	12/22/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was transmitting and while set at the lowest channel, a middle channel, and the highest channel available. While scanning, emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT and EUT antenna in 3 orthogonal planes.

Report No. STAK0105.1 11/16

FIELD STRENGTH OF FUNDAMENTAL

																							EmiR5	2017.07.11			PS	A-ESCI 20	17.06.01	_
	Wo	ork Or			STA)5					ate:			0/03				_/	9	-	0 /		\bigcirc			0			
		Proj				one					perat				22 °				~).	us	th	m	X	Di	av.	2	0	-	
		Job S				N05					Humi					RH							_	(]
	Serial	Num			1707					rome	tric P	res.:		101	15 n	nbar				1	Teste	d by:	Dust	n Spa	arks					_
				Muse	iQ F	owe	r Plu	s BT	E 1	3																				=
	Conti	igurat	ion:	1																										=
		Custon					atorie	es, In	IC.																					=
		ttende				sch																								=
	EU	JT Pov	ver:																											=
Or	erati	ing Mo	de:	Irans	smitti	ng 90)2.63	37 M	Hz (low c	nanne	I), 91	4.//	3 MF	łz (i	mid c	chanr	iel) a	and	926	5.910	MHz	(high	chan	nel) i	modi	ulate	ed		
																														-
	De	eviatio	ns:	None	9																									
_				N I																										=
	٠.	omme		None	•																									
	C	omme	nts:																											
																														1
		ificatio															Meth													=
FCC	15.249	9:2017	,												P	ISNA	C63.	10:2	2013											
R	un #	26	;	Te	st Di	stan	ce (r	m)	3	3	Ant	enna	Hei	ight(s)			1 t	o 4(n	n)			Re	sults			Pas	SS		=
						Otarr	00 (.	••,			7411	0		9(9)				<u> </u>	,				ounto			· uc	,,,		-
	100]																													
										\rightarrow																				
	90 -		_						_	-		-						_	_											
	80 -																													
	٦ ٥٠																													
			- 1 (
	70 -		-	+			-	-	-	+	_	-					-	-	-				-		_					
	60 -																													
⊑	00																													
\$																														
dBuV/m	50 -																													
쁑																														
	40 -		-	-			-	-	_	-		-					-	_	-				-							
	30 -																													
	30																													
	20 -									_		_																		
	10 -											-																		
	0																													
	90	. —–)0			90)5				910				91	5				920	n			-	25				930	n	
	90	,,,			90					510				MH					اعر	•								930		
														IVIF	14									PΚ	•	ΑV		QF	•	
																г.														
													F	xternal		Pola Transo					Dist	tance						Compar	red to	
Fre		Amplit			ctor		nna Hei		Azin		Test Dis		Atte	enuation	1	Тур			etector		Adju	stment		sted		ec. Lim		Spe	c.	
(MF	lz)	(dBu	V)	(d	IB)	(n	neters)		(degi	rees)	(met	ers)		(dB)							(0	dB)	(dBu	V/m)	(d	BuV/m	1)	(dB	3)	Commente
926.	961	42.	1	20	2.9		1.2		16	2.0	3.	0		0.0		Ve	art		QP			0.0	71	5.3		94.0		-18	7	Comments High ch, EUT horz
926.		42.			2.9 2.9		1.0		27		3.			0.0		Ho			QP).0		5.0		94.0		-19		High ch, EUT on side
902.		42.			2.3		1.2		140		3.			0.0		Ve			QP			0.0		1.8		94.0		-19		Low ch, EUT horz
926.	961	40.	9	32	2.9		1.2		328	8.0	3.	0		0.0		Ve	ert		QP		C	0.0	73	3.8		94.0		-20	.2	High ch, EUT vert
914.		41.			2.4		1.2		16		3.			0.0		Ve			QP			0.0		3.8		94.0		-20		Mid ch, EUT horz
926.		38.			2.9		3.4		59		3.			0.0		Ho			QP			0.0		1.1		94.0		-22		High ch, EUT horz
926.9 926.8		37.			2.9		3.5		70		3.			0.0		Ho			QP QP			0.0		0.8		94.0		-23		High ch, EUT vert High ch, EUT on side
92h	505	26.	1	32	2.9		1.0		290	J.Y	3.	U		0.0		Ve	ii L		чr		C	0.0	5	9.6		94.0		-34	.4	riigii cii, EUT off Side

Report No. STAK0105.1 12/16

FIELD STRENGTH OF HARMONICS AND SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.06.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting 902.637 MHz (low channel), 914.773 MHz (mid channel) and 926.910 MHz (high channel) modulated

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

STAK0105 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz Stop Frequency 12400 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	7/12/2017	12 mo
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	2/14/2017	12 mo
Antenna - Standard Gain	ETS Lindgren	3160-07	AXP	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVT	2/14/2017	12 mo
Cable	ESM Cable Corp.	Double Ridge Guide Horn Cables	MNI	12/1/2016	12 mo
Antenna - Double Ridge	ETS Lindgren	3115	AJA	6/23/2016	24 mo
Amplifier - Pre-Amplifier	Miteq	AM-1616-1000	AVO	12/1/2016	12 mo
Cable	ESM Cable Corp.	Bilog Cables	MNH	12/1/2016	12 mo
Antenna - Biconilog	Teseq	CBL 6141B	AYD	1/6/2016	24 mo
Analyzer - Spectrum Analyzer	Keysight	N9010A (EXA)	AFQ	12/22/2016	12 mo
Attenuator	Fairview Microwave	SA18E-10	TYA	9/20/2017	12 mo
Attenuator	Fairview Microwave	SA18E-20	TWZ	9/20/2017	12 mo
Filter - High Pass	Micro-Tronics	HPM50108	LFM	9/20/2017	12 mo
Filter - Low Pass	Micro-Tronics	LPM50003	LFJ	9/20/2017	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

Report No. STAK0105.1 13/16

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector

PK = Peak Detector

AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Measurements at the edges of the allowable band may be presented in an alternative method as provided for in the ANSI C63.10 Marker-Delta method. This method involves performing an in-band fundamental measurement followed by a screen capture of the fundamental and out-of-band emission using reduced measurement instrumentation bandwidths. The amplitude delta measured on this screen capture is applied to the fundamental emission value to show the out-of-band emission level as applied to the limit.

FIELD STRENGTH OF HARMONICS AND SPURIOUS RADIATED EMISSIONS

										EmiR5 2017.07.11		PSA-ESCI 2017.06.0	1
V	Vork Order:		K0105		Date:)2/17	1	7 11			0	
	Project:		lone	Ter	nperature:		4 °C	9	ustr	mx	Dave	20	
Sori	Job Site: al Number:		1N05 714678	Barome	Humidity: etric Pres.:		% RH mbar		Tested by:	Ductin Spa	rke		_
Jen			Power Plus E			1013	IIIDai		resieu by.	Dustiii Opa	uno		_
Cor	nfiguration:												_
			aboratories,	Inc.									_ =
	Attendees:		sch										_
	UT Power:	T.,,,,,,,,,,;,,,;,,,;,,,,;,,,,;,,,,,;,,,,,	ing 902.637	MHz (low c	hannel\ 01	1 773 MHz	(mid chann	nal) and 93	26 Q10 MHz	(high chann	al) modul	atod	_
Opera	ating Mode:	Transmit	ing 302.007	1011 12 (10 VV C	marinery, 5 r	4.775 IVII 12	(IIIIa Cilaili	ici) and 32	20.310 WII IZ	(riigir criarii	iei) iliodui	alcu	
	Deviations:	None											_
	Deviations.												=
	Comments:	None											
	oommonts.												
Test Sne	cifications						Test Meth	nd					=
FCC 15.2							ANSI C63.						_
Run #	# 10	Test D	istance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	F	Pass	=
110117			,		7					11000110			=
80 -													
00 -													
											-		
70 -													
60 -													
_ 50 -													
آھ آ							7 7						
w//ngp								•					
6 40 ·							•	3					
•							•						
30 -													
20 -													
10 -													
10													
0 -	10		100			1000			10000			100000	
			100			MHz			10000				
										■ PK	◆ AV	• QP	
						External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	Attenuation	Type	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Comments
1805.245	53.9	-4.3	1.1	286.9	3.0	0.0	Horz	AV	0.0	49.6	54.0	-4.4	Low ch, EUT horz
1805.278		-4.3	1.0	325.9	3.0	0.0	Vert	AV	0.0	49.0	54.0	-5.0 5.0	Low ch, EUT vert
1829.542 1853.812		-4.2 -3.9	1.0 1.0	281.0 289.0	3.0 3.0	0.0 0.0	Vert Horz	AV AV	0.0 0.0	48.8 48.3	54.0 54.0	-5.2 -5.7	Mid ch, EUT vert High ch, EUT horz
2780.730	49.5	-1.5	1.0	289.9	3.0	0.0	Vert	AV	0.0	48.0	54.0	-6.0	High ch, EUT vert
2780.755 1853.812		-1.5 -3.9	1.2 1.0	112.1 145.1	3.0 3.0	0.0 0.0	Horz Vert	AV AV	0.0 0.0	47.6 47.5	54.0 54.0	-6.4 -6.5	High ch, EUT horz High ch, EUT vert
1853.812	51.0	-3.9	1.0	214.1	3.0	0.0	Horz	AV	0.0	47.1	54.0	-6.9	High ch, EUT on side
1829.575		-4.2 1.7	1.0	102.1	3.0	0.0	Horz	AV	0.0	47.0 46.6	54.0	-7.0 7.4	Mid ch, EUT horz Mid ch, EUT vert
2744.328 2707.893		-1.7 -2.1	1.0 2.2	41.1 283.9	3.0 3.0	0.0 0.0	Vert Horz	AV AV	0.0 0.0	46.6 46.5	54.0 54.0	-7.4 -7.5	Low ch, EUT horz
2744.353	46.4	-1.7	1.2	290.9	3.0	0.0	Horz	AV	0.0	44.7	54.0	-9.3	Mid ch, EUT horz
2707.927 3707.657		-2.1 2.7	1.0 1.0	0.0 158.0	3.0 3.0	0.0 0.0	Vert Vert	AV AV	0.0 0.0	44.5 43.0	54.0 54.0	-9.5 -11.0	Low ch, EUT vert High ch, EUT vert
3659.132		2.7	3.0	107.0	3.0	0.0	Horz	AV	0.0	40.2	54.0	-11.0	Mid ch, EUT horz
3707.590	37.4	2.7	2.5	288.0	3.0	0.0	Horz	AV	0.0	40.1	54.0	-13.9	High ch, EUT horz
3659.073 3610.642		2.3 2.2	1.0 1.0	250.0 151.0	3.0 3.0	0.0 0.0	Vert Vert	AV AV	0.0 0.0	39.9 38.5	54.0 54.0	-14.1 -15.5	Mid ch, EUT vert Low ch, EUT vert

Report No. STAK0105.1 15/16

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
1853.812	41.8	-3.9	1.0	333.0	3.0	0.0	Vert	AV	0.0	37.9	54.0	-16.1	High ch, EUT on side
1853.770	41.7	-3.9	1.0	196.1	3.0	0.0	Vert	AV	0.0	37.8	54.0	-16.2	High ch, EUT horz
3610.442	35.0	2.2	1.0	296.0	3.0	0.0	Horz	AV	0.0	37.2	54.0	-16.8	Low ch, EUT horz
928.000	17.0	11.9	3.8	187.0	3.0	0.0	Horz	QP	0.0	28.9	46.0	-17.1	High ch, EUT horz
928.000	16.9	11.9	3.1	124.1	3.0	0.0	Horz	QP	0.0	28.8	46.0	-17.2	High ch, EUT on side
928.000	16.7	11.9	1.0	106.1	3.0	0.0	Vert	QP	0.0	28.6	46.0	-17.4	High ch, EUT horz
930.597	16.2	12.1	3.9	146.0	3.0	0.0	Vert	QP	0.0	28.3	46.0	-17.7	High ch, EUT vert
928.905	16.2	12.0	1.0	290.9	3.0	0.0	Horz	QP	0.0	28.2	46.0	-17.8	High ch, EUT vert
929.400	16.2	12.0	1.0	69.1	3.0	0.0	Vert	QP	0.0	28.2	46.0	-17.8	High ch, EUT on side
902.000	16.3	11.3	1.0	351.0	3.0	0.0	Horz	QP	0.0	27.6	46.0	-18.4	Low ch, EUT horz
1853.803	38.7	-3.9	1.0	149.1	3.0	0.0	Horz	AV	0.0	34.8	54.0	-19.2	High ch, EUT vert
1805.095	55.5	-4.3	1.1	286.9	3.0	0.0	Horz	PK	0.0	51.2	74.0	-22.8	Low ch, EUT horz
2780.880	52.4	-1.5	1.0	289.9	3.0	0.0	Vert	PK	0.0	50.9	74.0	-23.1	High ch, EUT vert
1805.245	55.1	-4.3	1.0	325.9	3.0	0.0	Vert	PK	0.0	50.8	74.0	-23.2	Low ch, EUT vert
2780.563	52.2	-1.5	1.2	112.1	3.0	0.0	Horz	PK	0.0	50.7	74.0	-23.3	High ch, EUT horz
1829.483	54.6	-4.2	1.0	281.0	3.0	0.0	Vert	PK	0.0	50.4	74.0	-23.6	Mid ch, EUT vert
1853.670	54.2	-3.9	1.0	289.0	3.0	0.0	Horz	PK	0.0	50.3	74.0	-23.7	High ch, EUT horz
2708.152	52.2	-2.1	2.2	283.9	3.0	0.0	Horz	PK	0.0	50.1	74.0	-23.9	Low ch, EUT horz
2744.437	51.7	-1.7	1.0	41.1	3.0	0.0	Vert	PK	0.0	50.0	74.0	-24.0	Mid ch, EUT vert
3707.465	47.1	2.7	1.0	158.0	3.0	0.0	Vert	PK	0.0	49.8	74.0	-24.2	High ch, EUT vert
1853.945	53.6	-3.9	1.0	145.1	3.0	0.0	Vert	PK	0.0	49.7	74.0	-24.3	High ch, EUT vert
1853.745	53.2	-3.9	1.0	214.1	3.0	0.0	Horz	PK	0.0	49.3	74.0	-24.7	High ch, EUT on side
3659.082	47.0	2.3	3.0	107.0	3.0	0.0	Horz	PK	0.0	49.3	74.0	-24.7	Mid ch, EUT horz
2744.545	50.8	-1.7	1.2	290.9	3.0	0.0	Horz	PK	0.0	49.1	74.0	-24.9	Mid ch, EUT horz
1829.517	53.1	-4.2	1.0	102.1	3.0	0.0	Horz	PK	0.0	48.9	74.0	-25.1	Mid ch, EUT horz
2707.718	50.9	-2.1	1.0	0.0	3.0	0.0	Vert	PK	0.0	48.8	74.0	-25.2	Low ch, EUT vert
3658.607	45.6	2.3	1.0	250.0	3.0	0.0	Vert	PK	0.0	47.9	74.0	-26.1	Mid ch, EUT vert
3707.765	45.2	2.7	2.5	288.0	3.0	0.0	Horz	PK	0.0	47.9	74.0	-26.1	High ch, EUT horz
3610.983	45.5	2.2	1.0	151.0	3.0	0.0	Vert	PK	0.0	47.7	74.0	-26.3	Low ch, EUT vert
3610.550	45.1	2.2	1.0	296.0	3.0	0.0	Horz	PK	0.0	47.3	74.0	-26.7	Low ch, EUT horz
1853.978	47.2	-3.9	1.0	196.1	3.0	0.0	Vert	PK	0.0	43.3	74.0	-30.7	High ch, EUT horz
1853.778	47.1	-3.9	1.0	333.0	3.0	0.0	Vert	PK	0.0	43.2	74.0	-30.8	High ch, EUT on side
1854.028	46.2	-3.9	1.0	149.1	3.0	0.0	Horz	PK	0.0	42.3	74.0	-31.7	High ch, EUT vert

Report No. STAK0105.1 16/16