FCC SAR TEST REPORT FCC ID : XMR2021EM05G2 Equipment : LTE Module Brand Name : Quectel Wireless Solutions Co., Ltd. Model Name : EM05-G Applicant : Quectel Wireless Solutions Co., Ltd. Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China, 20023 Manufacturer : LCFC (HeFei) Electronics Technology Co., Ltd. No. 3188-1, Yungu Road (Hefei Export Processing Zone), Hefei **Economics & Technology Development Area, Anhui, CHINA** **Standard** : FCC 47 CFR Part 2 (2.1093) The product was installed into Notebook Computer (Brand Name: Lenovo, Model Name: TP00135C) during test. The product was received on May 15, 2023 and testing was started from May 16, 2023 and completed on May 16, 2023. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample provide by manufacturer and the test data has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been pass the FCC requirement. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. Laboratory, the test report shall not be reproduced except in full. Approved by: Cona Huang / Deputy Manager Gua Guarg. Report No.: FA2N1103-04 Sporton International Inc. Wensan Laboratory TEL: 886-3-327-3456 Page 1 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 # **Table of Contents** | 1. Statement of Compliance | | |---|-----| | 2. Guidance Applied | | | 3. Equipment Under Test (EUT) Information | 5 | | 3.1 General Information | | | 3.2 General LTE SAR Test and Reporting Considerations | 6 | | 4. RF Exposure Limits | 9 | | 4.1 Uncontrolled Environment | 9 | | 4.2 Controlled Environment | 9 | | 5. Specific Absorption Rate (SAR) | .10 | | 5.1 Introduction | .10 | | 5.2 SAR Definition | .10 | | 6. System Description and Setup | .11 | | 6.1 Test Site Location | .11 | | 6.2 E-Field Probe | .12 | | 6.3 Data Acquisition Electronics (DAE) | .12 | | 6.4 Phantom | | | 6.5 Device Holder | .14 | | 7. Measurement Procedures | .15 | | 7.1 Spatial Peak SAR Evaluation | .15 | | 7.2 Power Reference Measurement | .16 | | 7.3 Area Scan | | | 7.4 Zoom Scan | .17 | | 7.5 Volume Scan Procedures | .17 | | 7.6 Power Drift Monitoring | | | 8. Test Equipment List | .18 | | 9. System Verification | .19 | | 9.1 Tissue Verification | .19 | | 9.2 System Performance Check Results | .19 | | 10. UMTS/LTE Output Power (Unit: dBm) | | | 11. SAR Test Results | .23 | | 11.1 Body SAR | .23 | | 11.2 Repeated SAR Measurement | .24 | | 12. Simultaneous Transmission Analysis | .25 | | 12.1 Body Exposure Conditions | | | 13. Uncertainty Assessment | .26 | | 14. References | .26 | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of High SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Test Setup Photos and Antenna Location | | TEL: 886-3-327-3456 # History of this test report Report No. : FA2N1103-04 | Report No. | Version | Description | Issued Date | |-------------|---------|-------------------------|---------------| | FA2N1103-04 | 01 | Initial issue of report | Jun. 02, 2023 | TEL: 886-3-327-3456 Page 3 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) for Quectel Wireless Solutions Co., Ltd., LTE Module, EM05-G, are as follows. Report No.: FA2N1103-04 | Equipment
Class | Fr | requency
Band | Highest SAR Summary
Body
1g SAR (W/kg) | Highest Simultaneous
Transmission
1g SAR (W/kg) | |--------------------|-----------------|------------------|--|---| | | | WCDMA II | 1.18 | | | | WCDMA | WCDMA IV | 1.19 | | | | | WCDMA V | 0.99 | | | | LTE | LTE Band 7 | 1.18 | | | | | LTE Band 12 | 0.86 | | | Licensed | | LTE Band 13 | 0.97 | 1.19 | | Licerised | | LTE Band 14 | 0.95 | 1.19 | | | | LTE Band 2/25 | 1.16 | | | | | LTE Band 5/26 | 0.99 | | | | | LTE Band 38/41 | 1.03 | | | | | LTE Band 4/66 | 0.96 | | | | | LTE Band 71 | 0.73 | | | | Date of Testing | j : | 2023 | /5/16 | Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation and the FCC designation No. TW3786 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg for Partial-Body 1g SAR) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications. Reviewed by: <u>Jason Wang</u> Report Producer: <u>Carlie Tsai</u> ## 2. Guidance Applied The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards, the below KDB standard may not including in the TAF code without accreditation. - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2013 - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 865664 D02 SAR Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v06 - FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02 - FCC KDB 616217 D04 SAR for laptop and tablets v01r02 - FCC KDB 941225 D01 3G SAR Procedures v03r01 - FCC KDB 941225 D05 SAR for LTE Devices v02r05 TEL: 886-3-327-3456 Page 4 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 # 3. Equipment Under Test (EUT) Information ### 3.1 General Information | | Product Feature & Specification | |--|--| | Equipment Name | LTE Module | | Brand Name | Quectel Wireless Solutions Co., Ltd. | | Model Name | EM05-G | | FCC ID | XMR2021EM05G2 | | Wireless Technology a
Frequency Range | WCDMA Band II: 1850 MHz ~ 1910 MHz WCDMA Band IV: 1710 MHz ~ 1755 MHz WCDMA Band V: 824 MHz ~ 849 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 13: 777 MHz ~ 787 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 25: 1850 MHz ~ 1915 MHz LTE Band 26: 814 MHz ~ 849 MHz LTE Band 38: 2570 MHz ~ 2620 MHz LTE Band 41: 2496 MHz ~ 2690 MHz LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 71: 663 MHz ~ 698 MHz RMC 12.2Kbps HSDPA HSUPA DC-HSDPA LTE: QPSK, 16QAM | | Remark: | and the stage of t | Report No.: FA2N1103-04 For this application that the output power and the sensor detection all the same original report No.: FA2N1103. | | WWAN Antenna Information | | | | | | | | |--------------|--------------------------|-------------|----------------|------|--|--|--|--| | | Manufacturer | Amphenol | Peak gain(dBi) | 1.86 | | | | | | Main Antenna | Part number | DC33001YA00 | Туре | PIFA | | | | | | Main Antenna | Manufacturer | Speed | Peak gain(dBi) | 1.86 | | | | | | | Part number | DC33001Y900 | Type | PIFA | | | | | | | Host Information | | | | | |--|--|--|--|--|--| | Equipment Name | Notebook Computer | | | | | | Brand Name | Lenovo | | | | | | Model Name | TP00135C | | | | | | Integrated WLAN Module 1 | Brand Name: Qualcomm
Model Name: QCNFA725 | | | | | |
Integrated WLAN Module 2 Brand Name: MediaTeK Model Name: MT7922A12L | | | | | | | Integrated NFC Module Brand Name: Foxconn Model Name: T77H747 | | | | | | | Wireless Technology and
Frequency Range | WLAN 2.4GHz Band: 2400 MHz ~ 2483.5 MHz WLAN 5.2GHz Band: 5150 MHz ~ 5250 MHz WLAN 5.3GHz Band: 5250 MHz ~ 5350 MHz WLAN 5.6GHz Band: 5470 MHz ~ 5725 MHz WLAN 5.6GHz Band: 5725 MHz ~ 5850 MHz WLAN 5.8GHz Band: 5725 MHz ~ 6850 MHz WLAN 66Hz: 5925 MHz ~ 6425 MHz, 6425 MHz ~ 6525 MHz, 6525 MHz ~ 6875 MHz, 6875 MHz ~ 7125 MHz Bluetooth: 2400 MHz ~ 2483.5 MHz NFC: 13.56MHz | | | | | | Mode | WLAN: 802.11a/b/g/n/ac/ax HT20/HT40/VHT20/VHT40/VHT80/VHT160/HE20/HE40/HE80/HE160
Bluetooth BR/EDR/LE
NFC: ASK | | | | | | EUT Stage | Production Unit | | | | | TEL: 886-3-327-3456 Page 5 of 26 FAX: 886-3-328-4978 Issued Date \pm Jun. 02, 2023 Variant report to spot check worst case found in original report test data, which can be referred to Sporton SAR Test Report, Report No. FA2N1103, the max SAR summary was list highest SAR result between original report and this report. The Qualcomm QCNFA725 and MediaTeK MT7922A12L WLAN/Bluetooth modules are also integrated into this host, WLAN/Bluetooth SAR testing data, which can be referred to Sporton SAR Test Report, Report No.: FA2N1103 and FA1O1602-03 and the results are used to do simultaneous transmission analysis. ### 3.2 General LTE SAR Test and Reporting Considerations | Summarize | d necessary ite | ms addres | sed in KD | B 94122 | 5 D05 v02 | r05 | | | |---|--|-----------|--|---------|-----------|-----|--|-------------------------------| | FCC ID | XMR2021EM05 | G2 | | | | | | | | Equipment Name | LTE Module | | | | | | | | | Operating Frequency Range of each LTE transmission band | LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 13: 777 MHz ~ 787 MHz LTE Band 13: 777 MHz ~ 788 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 25: 1850 MHz ~ 1915 MHz LTE Band 26: 814 MHz ~ 849 MHz LTE Band 38: 2570 MHz ~ 2620 MHz LTE Band 41: 2496 MHz ~ 2690 MHz LTE Band 66: 1710 MHz ~ 1780 MHz LTE Band 71: 663 MHz ~ 698 MHz | | | | | | | | | Channel Bandwidth | LTE Band 2:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 4:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 5:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 7: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 12:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 13: 5MHz, 10MHz LTE Band 14: 5MHz, 10MHz LTE Band 25:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 26:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz LTE Band 38: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 41: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 66:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 66:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 71: 5MHz, 10MHz, 15MHz, 20MHz | | | | | | | | | uplink modulations used | QPSK / 16QAM | | | | | | | | | LTE Voice / Data requirements | Data only | | | | | | | | | LTE MPR permanently built-in by design | Modulation QPSK 16 QAM 16 QAM 64 QAM 64 QAM | | um Power nnel bandw 3.0 MHz ≤ 4 ≤ 4 ≤ 4 ≤ 4 | | , , | | | MPR (dB) ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3 | | | 256 QAM | | | | ≥ 1 | | | ≤ 5 | | LTE A-MPR Spectrum plots for RB configuration | In the base station simulator configuration, Network Setting value is set to NS_01 to disable A-MPR during SAR testing and the LTE SAR tests was transmitting on all TTI frames (Maximum TTI) A properly configured base station simulator was used for the SAR and power measurement; therefore, spectrum plots for each RB allocation and offset configuration are not included in the SAR report. | | | | | | | | | Power reduction applied to satisfy SAR compliance | Yes, Proximity S | Sensor. | | | | | | | Report No. : FA2N1103-04 TEL: 886-3-327-3456 Page 6 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 Transmission (H, M, L) channel numbers and frequencies in each LTE band LTE Band 2 Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Bandwidth 10 MHz Bandwidth 15 MHz Bandwidth 20 MHz Freq. Freq. Freq. Freq. Freq. Freq. Ch. # Ch. # Ch. # Ch. # Ch. # Ch. # (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) 18607 1850.7 18615 1851.5 18625 1852.5 18650 1855 18675 1857.5 18700 1860 18900 1880 18900 1880 18900 1880 18900 1880 18900 1880 18900 1880 Н 19193 1909.3 19185 1908.5 19175 1907.5 19150 1905 19125 1902.5 19100 1900 LTE Band 4 Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Bandwidth 10 MHz Bandwidth 15 MHz Bandwidth 20 MHz Ch. # Ch. # Ch. # Ch. # Ch. # Ch. # (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) 19957 19965 19975 20000 20025 20050 1720 1710.7 1711.5 1712.5 1715 1717.5 20175 1732.5 20175 1732.5 20175 1732.5 20175 1732.5 20175 1732.5 20175 1732.5 Н 20393 1754.3 20385 1753.5 20375 1752.5 20350 1750 20325 1747.5 20300 1745 LTE Band 5 Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Bandwidth 10 MHz Ch. # Freq. (MHz) Ch. # Freq. (MHz) Ch. # Freq. (MHz) Ch. # Freq. (MHz) 20407 824.7 20415 825.5 20425 826.5 20450 829 20525 20525 836.5 20525 836.5 20525 836.5 Μ 836.5 20643 848.3 20635 847.5 20625 846.5 20600 844 LTE Band 7 Bandwidth 5 MHz Bandwidth 10 MHz Bandwidth 15 MHz Bandwidth 20 MHz Ch. # Freq. (MHz) Ch. # Freq. (MHz) Ch. # Freq. (MHz) Ch. # Freq. (MHz) 20775 2502.5 20800 2505 20825 2507.5 20850 2510 Μ 2535 2535 21100 2535 21100 21100 2535 21100 Н 21425 2567.5 21400 2565 21375 2562.5 21350 2560 LTE Band 12 Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Bandwidth 10 MHz Freq. (MHz) Freq. (MHz) Freq. (MHz) Freq. (MHz) Ch. # Ch. # Ch. # Ch. # 23017 23025 23035 23060 699.7 700.5 701.5 704 23095 707.5 23095 707.5 23095 707.5 23095 707.5 Н 23173 715.3 23165 714.5 23155 713.5 23130 711 LTE Band 13 Bandwidth 5 MHz Bandwidth 10 MHz Freq.(MHz) Freq.(MHz) Channel # Channel # 23205 779.5 М 23230 782 23230 782 784.5 Н 23255 LTE Band 14 Bandwidth 5 MHz Bandwidth 10 MHz Channel # Freq.(MHz) Channel # Channel # 23305 790.5 793 23330 M 23330 793 Н 23355 795.5 LTE Band 25 Bandwidth 1.4 MHz Bandwidth 3 MHz Bandwidth 5 MHz Bandwidth 10 MHz Bandwidth 15 MHz Bandwidth 20 MHz Freq. Freq. Freq. Freq Freq. Freq Ch. # Ch. # Ch. # Ch. # Ch. # Ch. # (MHz) (MHz) (MHz) (MHz) (MHz) (MHz) 26047 1850.7 26055 1851.5 26065 1852.5 26090 1855 26115 1857.5 26140 1860 26340 1880 26340 1880 26340 1880 26340 1880 26340 1880 26340 1880 26683 1914.3 26675 26665 26640 26615 26590 1905 1913.5 1912.5 1910 1907.5 Report No.: FA2N1103-04 TEL: 886-3-327-3456 Page 7 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 # SPORTON LAB. FCC SAR TEST REPORT | | LTE Band 26 | | | | | | | | | | | | | | | | | |--------|-------------|------------|------------|----------------|----------------|----------------|-------|----------------|------------|----------|------------|--------------------|-------------|--------------|------------|----------------|--| | | Bandwi | dth 1. | 4 MHz | Ва | andwidth : | 3 MHz | | Bandwid | th 5 MHz | | Bandwid | th 10 M | Hz | Baı | ndwidth | 15 MHz | | | | Ch. # | Fre | eq. (MH | łz) Ch | n. # Fr | eq. (Mł | Hz) | Ch. # | Freq. (MH: | z) | Ch. # | Freq. | (MHz) | Ch | . # | Freq. (MHz) | | | L | 26697 | | 814.7 | 267 | 705 | 815.5 | | 26715 | 816.5 | | 26740 | 26740 81 | | 19 26765 | | 821.5 | | | М | 26865 | | 831.5 | 268 | 365 | 831.5 | | 26865 | 831.5 | | 26865 | 83 | 1.5 | 268 | 365 | 831.5 | | | Н | 27033 | | 848.3 | 270 | 025 | 847.5 | | 27015 | 846.5 | | 26990 | 84 | 14 | 269 | 965 | 841.5 | | | | | | | | | | | LTE Baı | nd 38 | | | | | | | | | | | | | th 5 MH | | | andwidt | | | | | h 15 MHz | | | | vidth 20 | | | | | Ch. # | | Freq | . (MHz) | Ch. | # | Fre | eq. (MHz) | Ch. # | | Freq. (| MHz) | C | Ch. # | F | req. (MHz) | | | L | 37775 | | | 72.5 | 3780 | | | 2575 | 37825 | | 257 | | | 7850 | | 2580 | | | М | 38000 | | 2 | 595 | 380 | | | 2595 | 38000 | | 259 | | _ | 8000 | | 2595 | | | Н | 38225 | | 26 | 317.5 | 382 | 00 | | 2615 | 38175 | <u> </u> | 2612 | 2.5 | 3 | 8150 | | 2610 | | | | | | | | | | | LTE Baı | | | | | | | | | | | Ļ | | ndwid | th 5 MF | | | Bandwidth 10 M | | | | | h 15 MHz | | Bandwidth | | | | | | | Ch. # | | | . (MHz) | Ch. | | Fre | eq. (MHz) | Ch. # | | Freq. (| | _ | Ch. # | | req. (MHz) | | | L | 39675 | | 24 | 198.5 | 3970 | 00 | | 2501 | 39725 | · | 2503.5 | | 3 | 39750 | | 2506 | | | M | 40148 | | 25 | 545.8 | 4010 | 60 | | 2547 | 40173 | 3 | 2548.3 | | 40185 | | | 2549.5 | | | М | 40620 | | 2 | 593 | 406 | 20 | | 2593 | 40620 |) | 2593 | | 40620 | | | 2593 | | | H
M | 41093 | | 26 | 340.3 | 410 | 30 | | 2639 | 41068 | 3 | 2637.8 | | 41055 | | | 2636.5 | | | Н | 41565 | | 26 | 87.5 | 415 | 10 | | 2685 | 41515 | 5 | 2682 | 2.5 | 41490 | | | 2680 | | | | | | | | | | | LTE Baı | nd 66 | | | | | | | | | | | Bandwidth | | | Bandwid | th 3 MHz | Ва | ndwid | lth 5 MHz | Bandwidt | h 10 l | MHz B | ndwidth 15 MHz Bar | | Bandwid | dth 20 MHz | | | | | Ch. # | Fre
(MI | eq.
Hz) | Ch. # | Freq.
(MHz) | Cł | n. # | Freq.
(MHz) | Ch. # | | eq.
Hz) | Ch. # | Fred
(MH | | Ch. # | Freq.
(MHz) | | | L | 131979 | 171 | 0.7 | 131987 | 1711.5 | 131 | 997 | 1712.5 | 132022 | 17 | '15 13 | 32047 | 1717 | 7.5 <i>′</i> | 132072 | 1720 | | | М | 132322 | 17 | 45 | 132322 | 1745 | 132 | 322 | 1745 | 132322 | 17 | '45 13 | 32322 | 174 | 5 ′ | 132322 | 1745 | | | Н | 132665 | 177 | 9.3 | 132657 | 1778.5 | 132 | 647 | 1777.5 | 132622 | 17 | 75 13 | 32597 | 1772 | 2.5
 132572 | 1770 | | | | | | | | | | | LTE Baı | nd 71 | | | | | | | | | | | Bar | ndwid | th 5 MF | l z | Ва | andwidt | | | | | h 15 MHz | | | Bandw | idth 20 | MHz | | | | Ch. # | | Freq | . (MHz) | Ch. | # | Fre | eq. (MHz) | Ch. # | | Freq. (| MHz) | Ch. # | | F | req. (MHz) | | | L | 133147 | | _ | 65.5 | 1331 | | | 668 | 13319 | | 670 | | _ | 33222 | | 673 | | | М | 133297 | | | 80.5 | 1332 | | | 680.5 | 13329 | | 680 | | _ | 33297 | | 680.5 | | | Н | 133447 | 7 | 6 | 95.5 | 1334 | 22 | | 693 | 13339 | 7 | 690 | .5 | 133372 | | | 688 | | Report No. : FA2N1103-04 TEL: 886-3-327-3456 Page 8 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 4. RF Exposure Limits #### 4.1 Uncontrolled Environment Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity. Report No.: FA2N1103-04 #### 4.2 Controlled Environment Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means. #### Limits for Occupational/Controlled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.4 | 8.0 | 20.0 | #### Limits for General Population/Uncontrolled Exposure (W/kg) | Whole-Body | Partial-Body | Hands, Wrists, Feet and Ankles | |------------|--------------|--------------------------------| | 0.08 | 1.6 | 4.0 | 1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. TEL: 886-3-327-3456 Page 9 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 5. Specific Absorption Rate (SAR) #### 5.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. Report No.: FA2N1103-04 #### 5.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. TEL: 886-3-327-3456 Page 10 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 6. System Description and Setup #### The DASY system used for performing compliance tests consists of the following items: Report No.: FA2N1103-04 - The DASY system in SAR Configuration is shown above - A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic Field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running windows software and the DASY software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. #### 6.1 Test Site Location The SAR measurement facilities used to collect data are within both Sporton Lab list below test site location are accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190 and 3786) and the FCC designation No. TW1190 and TW3786 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. | | Test Site | EMC & Wireless Comm | unications Laboratory | V | Wensan Laboratory | | | | |---|--------------------|---|---|----------|-------------------|----------|--|--| | ٦ | Fest Site Location | TW1 ⁻
No.52, Huaya 1st R
Taoyuan (| TW3786
No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd.,
Guishan Dist., Taoyuan City 333010 | | | | | | | | | SAR01-HY | SAR03-HY | SAR08-HY | SAR09-HY | SAR15-HY | | | | | Test Site No. | SAR04-HY | SAR05-HY | SAR11-HY | SAR12-HY | SAR16-HY | | | | | | SAR06-HY | SAR10-HY | SAR13-HY | SAR14-HY | SAR17-HY | | | TEL: 886-3-327-3456 Page 11 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 6.2 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### <ES3DV3 Probe> | Construction | Symmetric design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | |---------------|---| | Frequency | 10 MHz – 4 GHz;
Linearity: ±0.2 dB (30 MHz – 4 GHz) | | Directivity | ± 0.2 dB in TSL (rotation around probe axis) ± 0.3 dB in TSL (rotation normal to probe axis) | | Dynamic Range | 5 μW/g – >100 mW/g;
Linearity: ±0.2 dB | | Dimensions | Overall length: 337 mm (tip: 20 mm) Tip diameter: 3.9 mm (body: 12 mm) Distance from probe tip to dipole centers: 3.0 mm | Report No.: FA2N1103-04 #### <EX3DV4 Probe> | Construction | Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic | |---------------|---| | | solvents, e.g., DGBE) | | Frequency | 10 MHz – >6 GHz | | | Linearity: ±0.2 dB (30 MHz – 6 GHz) | | Directivity | ±0.3 dB in TSL (rotation around probe axis) | | | ±0.5 dB in TSL (rotation normal to probe axis) | | Dynamic Range | 10 μW/g – >100 mW/g | | | Linearity: ±0.2 dB (noise: typically <1 µW/g) | | Dimensions | Overall length: 337 mm (tip: 20 mm) | | | Tip diameter: 2.5 mm (body: 12 mm) | | | Typical distance from probe tip to dipole centers: 1 | | | mm | #### 6.3 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Fig 5.1 Photo of DAE TEL: 886-3-327-3456 Page 12 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 6.4 Phantom #### <SAM Twin Phantom> | Shell Thickness | 2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm | | |-------------------|---|-----| | Filling Volume | Approx. 25 liters | 1 | | Dimensions | Length: 1000 mm; Width: 500 mm; Height: adjustable
feet | 7 5 | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | | Report No.: FA2N1103-04 The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI Phantom> | VEET I Halltonia | | | |------------------|--|--| | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | | The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. TEL: 886-3-327-3456 Page 13 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 6.5 Device Holder #### <Mounting Device for Hand-Held Transmitter> In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm. Report No.: FA2N1103-04 Mounting Device for Hand-Held Transmitters Mounting Device Adaptor for Wide-Phones #### <Mounting Device for Laptops and other Body-Worn Transmitters> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Mounting Device for Laptops TEL: 886-3-327-3456 Page 14 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 7. Measurement Procedures The measurement procedures are as follows: (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. Report No.: FA2N1103-04 - (b) Place the EUT in the positions as Appendix D demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 7.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g TEL: 886-3-327-3456 Page 15 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 #### 7.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. Report No.: FA2N1103-04 #### 7.3 Area Scan The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | |--|--|--| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | $3 - 4 \text{ GHz:} \le 12 \text{ mm}$
$4 - 6 \text{ GHz:} \le 10 \text{ mm}$ | | Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area} | When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test of measurement point on the test | on, is smaller than the above,
must be \leq the corresponding
device with at least one | TEL: 886-3-327-3456 Page 16 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 #### 7.4 Zoom Scan Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Report No.: FA2N1103-04 Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz. | | | | ≤ 3 GHz | > 3 GHz | |--|---|---|--|--| | Maximum zoom scan s | patial reso | lution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm [*] | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | | | uniform | grid: $\Delta z_{Zoom}(n)$ | ≤ 5 mm | $3 - 4 \text{ GHz: } \le 4 \text{ mm}$
$4 - 5 \text{ GHz: } \le 3 \text{ mm}$
$5 - 6 \text{ GHz: } \le 2 \text{ mm}$ | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | $\begin{array}{c} \text{atial resolution,} \\ \text{rmal to phantom} \\ \text{face} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | | Δz _{Zoom} (n>1): between subsequent points | ≤ 1.5·∆z | Zoom(n-1) | | Minimum zoom scan
volume | x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### 7.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency
bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 7.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. TEL: 886-3-327-3456 Page 17 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. ### 8. Test Equipment List | Manufacturan | Name of Equipment | Turno/Mandal | Carial Number | Calib | ration | |---------------|--|-----------------|---------------|---------------|---------------| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | SPEAG | 750MHz System Validation Kit ⁽²⁾ | D750V3 | 1117 | Mar. 24, 2022 | Mar. 22, 2024 | | SPEAG | 835MHz System Validation Kit ⁽²⁾ | D835V2 | 499 | Aug. 18, 2021 | Aug. 16, 2023 | | SPEAG | 1750MHz System Validation Kit ⁽²⁾ | D1750V2 | 1120 | Mar. 25, 2022 | Mar. 23, 2024 | | SPEAG | 1900MHz System Validation Kit | D1900V2 | 5d185 | Jun. 17, 2022 | Jun. 16, 2023 | | SPEAG | 2600MHz System Validation Kit | D2600V2 | 1078 | Jun. 23, 2022 | Jun. 22, 2023 | | SPEAG | Data Acquisition Electronics | DAE4 | 1399 | Feb. 21, 2023 | Feb. 20, 2024 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 7694 | Nov. 15, 2022 | Nov. 14, 2023 | | Testo | Hygro meter | 608-H1 | 45196600 | Nov. 02, 2022 | Nov. 01, 2023 | | Anritsu | Radio Communication Analyzer | MT8821C | 6201341950 | Oct. 31, 2022 | Oct. 30, 2023 | | Keysight | Wireless Communication Test Set | E5515C | MY50267236 | Mar. 12, 2023 | Mar. 11, 2024 | | SPEAG | Device Holder | N/A | N/A | N/A | N/A | | Anritsu | Signal Generator | MG3710A | 6201502524 | Oct. 12, 2022 | Oct. 11, 2023 | | Keysight | ENA Network Analyzer | E5071C | MY46316648 | Jul. 25, 2022 | Jul. 24, 2023 | | SPEAG | Dielectric Probe Kit | DAK-3.5 | 1126 | Sep. 28, 2022 | Sep. 27, 2023 | | LINE SEIKI | Digital Thermometer | DTM3000-spezial | 3252 | Jul. 25, 2022 | Jul. 24, 2023 | | Anritsu | Power Meter | ML2495A | 1419002 | Aug. 16, 2022 | Aug. 15, 2023 | | Anritsu | Power Meter | ML2495A | 1804003 | Oct. 17, 2022 | Oct. 16, 2023 | | Anritsu | Power Sensor | MA2411B | 1911176 | Aug. 16, 2022 | Aug. 15, 2023 | | Anritsu | Power Sensor | MA2411B | 1726150 | Oct. 17, 2022 | Oct. 16, 2023 | | Anritsu | Spectrum Analyzer | N9010A | MY53470118 | Jan. 10, 2023 | Jan. 09, 2024 | | Agilent | Spectrum Analyzer | E4408B | MY44211028 | Aug. 19, 2021 | Aug. 17, 2023 | | Mini-Circuits | Power Amplifier | ZVE-8G+ | 6418 | Oct. 14, 2022 | Oct. 13, 2023 | | Mini-Circuits | Power Amplifier | ZVE-8G+ | 479102029 | Sep. 15, 2022 | Sep. 14, 2023 | | ATM | Dual Directional Coupler | C122H-10 | P610410z-02 | No | te 1 | | Warison | Directional Coupler | WCOU-10-50S-10 | WR889BMC4B1 | No | te 1 | | Woken | Attenuator 1 | WK0602-XX | N/A | No | te 1 | | PE | Attenuator 2 | PE7005-10 | N/A | No | te 1 | | PE | Attenuator 3 | PE7005- 3 | N/A | No | te 1 | Report No.: FA2N1103-04 #### **General Note:** - 1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source. - 2. The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole. TEL: 886-3-327-3456 Page 18 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 9. System Verification ### 9.1 Tissue Verification The tissue dielectric parameters of tissue-equivalent media used for SAR measurements must be characterized within a temperature range of 18° C to 25° C, measured with calibrated instruments and apparatuses, such as network analyzers and temperature probes. The temperature of the tissue-equivalent medium during SAR measurement must also be within 18° C to 25° C and within \pm 2° C of the temperature when the tissue parameters are characterized. The tissue dielectric measurement system must be calibrated before use. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The liquid tissue depth was at least 15cm in the phantom for all SAR testing #### <Tissue Dielectric Parameter Check Results> | Frequency
(MHz) | Liquid Temp.
(°C) | Conductivity (σ) | Permittivity
(ε _r) | Conductivity
Target (σ) | Permittivity
Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit (%) | Date | |--------------------|----------------------|------------------|-----------------------------------|----------------------------|--|------------------|--------------------------------|-----------|-----------| | 750 | 22.8 | 0.893 | 43.006 | 0.89 | 41.90 | 0.34 | 2.64 | ±5 | 2023/5/16 | | 835 | 22.8 | 0.928 | 42.710 | 0.90 | 41.50 | 3.11 | 2.92 | ±5 | 2023/5/16 | | 1750 | 22.8 | 1.384 | 40.744 | 1.37 | 40.10 | 1.02 | 1.61 | ±5 | 2023/5/16 | | 1900 | 22.8 | 1.401 | 40.491 | 1.40 | 40.00 | 0.07 | 1.23 | ±5 | 2023/5/16 | | 2600 | 22.8 | 2.005 | 40.259 | 1.96 | 39.00 | 2.30 | 3.23 | ±5 | 2023/5/16 | #### 9.2 System Performance Check Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Test Site | Date | Frequency
(MHz) | Input
Power
(mW) | Dipole
S/N | Probe
S/N | DAE
S/N | Measured
1g SAR
(W/kg) | Targeted
1g SAR
(W/kg) | Normalized
1g SAR
(W/kg) | Deviation
(%) | |-----------|-----------|--------------------|------------------------|---------------|-----------------|-------------|------------------------------|------------------------------|--------------------------------|------------------| | SAR14 | 2023/5/16 | 750 | 50 | D750V3-1117 | EX3DV4 - SN7694 | DAE4 Sn1399 | 0.422 | 8.520 | 8.44 | -0.94 | | SAR14 | 2023/5/16 | 835 | 50 | D835V2-499 | EX3DV4 - SN7694 | DAE4 Sn1399 | 0.525 | 9.680 | 10.5 | 8.47 | | SAR14 | 2023/5/16 | 1750 | 50 | D1750V2-1120 | EX3DV4 - SN7694 | DAE4 Sn1399 | 1.760 | 36.400 | 35.2 | -3.30 | | SAR14 | 2023/5/16 | 1900 | 50 | D1900V2-5d185 | EX3DV4 - SN7694 | DAE4 Sn1399 | 1.950 | 39.000 | 39 | 0.00 | | SAR14 | 2023/5/16 | 2600 | 50 | D2600V2-1078 | EX3DV4 - SN7694 | DAE4 Sn1399 | 2.870 | 55.400 | 57.4 | 3.61 | Fig 8.3.1 System Performance Check Setup Fig 8.3.2 Setup Photo Report No.: FA2N1103-04 TEL: 886-3-327-3456 Page 19 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 10. <u>UMTS/LTE Output Power (Unit: dBm)</u> # **Default Power Mode** Report No. : FA2N1103-04 #### <LTE Band 7> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|---------------| | | Cha | nnel | | 20850 | 21100 | 21350 | (dBm) | | | Frequen | cy (MHz) | | 2510 | 2535 | 2560 | | | 20 | QPSK | 1 | 0 | 23.50 | 23.68 | 23.67 | 25.5 | #### <LTE Band 12> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|---------------| | | Cha | nnel | | 23060 | 23095 | 23130 | (dBm) | | | Frequen | cy (MHz) | | 704 | 707.5 | 711 | | | 10 | QPSK | 1 | 25 | 23.67 | 23.93 | 23.86 | 25.5 | #### <LTE Band 71> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|---------------| | | Cha | nnel | | 133222 | 133297 | 133372 | (dBm) | | | Frequen | cy (MHz) | | 673 | 680.5 | 688 | | | 20 | QPSK | 1 | 0 | 24.06 | 23.55 | 23.50 | 25.5 | TEL: 886-3-327-3456 Page 20 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### **Reduced Power Mode** Report No. : FA2N1103-04 #### <WCDMA> | В | and | V | VCDMA | II | | WCDMA IV | | | | ,
 WCDMA V | <i>'</i> | | |-------------|--------------|--------|-------|--------|------------------|----------|--------|--------|------------------|-------|---------|----------|------------------| | TXC | hannel | 9262 | 9400 | 9538 | Tune-up
Limit | 1312 | 1413 | 1513 | Tune-up
Limit | 4132 | 4182 | 4233 | Tune-up
Limit | | Rx C | hannel | 9662 | 9800 | 9938 | (dBm) | 1537 | 1638 | 1738 | (dBm) | 4357 | 4407 | 4458 | (dBm) | | Frequer | ncy (MHz) | 1852.4 | 1880 | 1907.6 | | 1712.4 | 1732.6 | 1752.6 | | 826.4 | 836.4 | 846.6 | ` ′ | | 3GPP Rel 99 | RMC 12.2Kbps | 19.00 | 18.96 | 19.22 | 20.00 | 19.30 | 19.26 | 19.22 | 20.00 | 22.74 | 22.84 | 22.66 | 23.50 | #### <LTE Band 2> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|---------------| | | Cha | nnel | | 18700 | 18900 | 19100 | (dBm) | | | Frequen | cy (MHz) | | 1860 | 1880 | 1900 | | | 20 | QPSK | 1 | 0 | 19.04 | 19.04 19.29 | | 20 | #### <LTE Band 4> | | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | |---|----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|---------------| | ı | | Cha | nnel | | 20050 | 20175 | 20300 | (dBm) | | | | Frequen | cy (MHz) | | 1720 | 1732.5 | 1745 | | | | 20 | QPSK | 1 | 0 | 17.74 | 18.12 | 18.31 | 19 | #### <LTE Band 5> | BW [MHz] | Modulation | RB Size RB Offset | | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | | |----------|------------|-------------------|---|-----------------------------|--------------------------------|------------------------------|---------------|--| | | Cha | nnel | | 20450 | 20525 | 20600 | (dBm) | | | | Frequen | cy (MHz) | | 829 | 836.5 | 844 | | | | 10 | QPSK | 1 | 0 | 22.74 | 22.75 | 22.85 | 24 | | #### <LTE Band 13> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|---------------| | | Cha | nnel | | | (dBm) | | | | | Frequen | cy (MHz) | | | 782 | | | | 10 | QPSK | 1 | 0 | | 23.55 | | 24 | #### <LTE Band 14> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|---------------| | | Cha | nnel | | | (dBm) | | | | | Frequen | cy (MHz) | | | 793 | | | | 10 | QPSK | 1 | 0 | | 23.39 | | 23.5 | #### <LTE Band 25> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|---------------| | | Cha | nnel | | 26140 | 26340 | 26590 | (dBm) | | | Frequen | cy (MHz) | | 1860 | 1880 | 1905 | | | 20 | QPSK | 1 | 49 | 19.18 | 19.20 | 19.22 | 20 | TEL: 886-3-327-3456 Page 21 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 #### <LTE Band 26> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|---------------| | | Cha | nnel | | 26765 | 26865 | 26965 | (dBm) | | | Frequen | cy (MHz) | | 821.5 | 831.5 | 841.5 | | | 15 | QPSK | 1 | 0 | 22.86 | 22.98 | 22.96 | 24 | Report No. : FA2N1103-04 #### <LTE Band 66> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | |----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|---------------| | | Cha | innel | | 132072 | 132322 | 132572 | (dBm) | | | Frequen | cy (MHz) | | 1720 | 1745 | 1770 | | | 20 | QPSK | 1 | 49 | 17.58 | 17.89 | 18.14 | 19 | #### <LTE Band 38> | | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | |---|----------|------------|----------|-----------|-----------------------------|--------------------------------|------------------------------|---------------| | | | Cha | nnel | | 37850 | 38000 | 38150 | (dBm) | | I | | Frequen | cy (MHz) | | 2580 | 2595 | 2610 | | | | 20 | QPSK | 1 | 0 | 18.63 | 18.60 | 18.53 | 20 | #### <LTE Band 41> | BW [MHz] | Modulation | RB Size | RB Offset | Power
Low
Ch. / Freq. | Power
Low Middle
Ch. / Freq. | Power
Middle
Ch. / Freq. | Power
High Middle
Ch. / Freq. | Power
High
Ch. / Freq. | Tune-up limit | |----------|-----------------|---------|-----------|-----------------------------|------------------------------------|--------------------------------|-------------------------------------|------------------------------|---------------| | | Chanr | nel | | 39750 | 40185 | 40620 | 41055 | 41490 | (dBm) | | | Frequency (MHz) | | | | 2549.5 | 2593 | 2636.5 | 2680 | | | 20 | QPSK | PSK 1 0 | | 18.08 | 18.70 | 18.49 18.82 | | 18.62 | 20 | TEL: 886-3-327-3456 Page 22 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 11. SAR Test Results #### **General Note:** - 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. Report No.: FA2N1103-04 - b. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - c. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The Reported TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix. - 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. ### 11.1 Body SAR #### <WCDMA SAR> | Plot
No. | Band | Mode | Test
Position | Gap
(mm) | Power
Reduction | Ch. | Freq.
(MHz) | Antenna
Vendor | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|----------|--------------|------------------|-------------|--------------------|------|----------------|-------------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------|------------------------------| | 01 | WCDMA II | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 9262 | 1852.4 | AMP | 19.00 | 20.00 | 1.259 | -0.09 | 0.934 | 1.176 | | | WCDMA II | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 9400 | 1880 | AMP | 18.96 | 20.00 | 1.271 | 0.04 | 0.900 | 1.144 | | | WCDMA II | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 9538 | 1907.6 | AMP | 19.22 | 20.00 | 1.197 | 0.01 | 0.881 | 1.054 | | 02 | WCDMA IV | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 1312 | 1712.4 | AMP | 19.30 | 20.00 | 1.175 | -0.12 | 1.010 | 1.187 | | | WCDMA IV | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 1413 | 1732.6 | AMP | 19.26 | 20.00 | 1.186 | -0.08 | 0.993 | 1.177 | | | WCDMA IV | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 1513 | 1752.6 | AMP | 19.22 | 20.00 | 1.197 | -0.04 | 0.987 | 1.181 | | 03 | WCDMA V | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 4233 | 846.6 | AMP | 22.66 | 23.50 | 1.213 | -0.02 | 0.813 | 0.986 | | | WCDMA V | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 4132 | 826.4 | AMP | 22.74 | 23.50 | 1.191 | -0.07 | 0.793 | 0.945 | | | WCDMA V | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 4182 | 836.4 | AMP | 22.84 | 23.50 | 1.164 | -0.02 | 0.797 | 0.928 | #### <FDD LTE SAR> | Plot
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | Power
Reduction | Ch. | | Antenna
Vendor | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |-------------|-------------|-------------|------------|------------|--------------|------------------|-------------|--------------------|--------|-------|-------------------|---------------------------|---------------------------|------------------------------|------------------------|------------------------------
------------------------------| | 04 | LTE Band 7 | 20M | QPSK | 1 | 0 | Bottom of Laptop | 10mm | OFF | 20850 | 2510 | AMP | 23.50 | 25.50 | 1.585 | -0.11 | 0.542 | 0.859 | | | LTE Band 7 | 20M | QPSK | 1 | 0 | Bottom of Laptop | 10mm | OFF | 21100 | 2535 | AMP | 23.68 | 25.50 | 1.521 | -0.04 | 0.501 | 0.762 | | | LTE Band 7 | 20M | QPSK | 1 | 0 | Bottom of Laptop | 10mm | OFF | 21350 | 2560 | AMP | 23.67 | 25.50 | 1.524 | -0.1 | 0.531 | 0.809 | | 05 | LTE Band 12 | 10M | QPSK | 1 | 25 | Bottom of Laptop | 0mm | OFF | 23095 | 707.5 | AMP | 23.93 | 25.50 | 1.435 | -0.11 | 0.599 | 0.860 | | 06 | LTE Band 13 | 10M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | ON | 23230 | 782 | AMP | 23.55 | 24.00 | 1.109 | -0.12 | 0.699 | 0.775 | | 07 | LTE Band 14 | 10M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | ON | 23330 | 793 | AMP | 23.39 | 23.50 | 1.026 | -0.1 | 0.678 | 0.695 | | 08 | LTE Band 25 | 20M | QPSK | 1 | 49 | Bottom of Laptop | 0mm | ON | 26140 | 1860 | AMP | 19.18 | 20.00 | 1.208 | -0.11 | 0.717 | 0.866 | | | LTE Band 25 | 20M | QPSK | 1 | 49 | Bottom of Laptop | 0mm | ON | 26340 | 1880 | AMP | 19.20 | 20.00 | 1.202 | -0.02 | 0.710 | 0.854 | | | LTE Band 25 | 20M | QPSK | 1 | 49 | Bottom of Laptop | 0mm | ON | 26590 | 1905 | AMP | 19.22 | 20.00 | 1.197 | -0.12 | 0.678 | 0.811 | | 09 | LTE Band 26 | 15M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | ON | 26865 | 831.5 | AMP | 22.98 | 24.00 | 1.265 | -0.12 | 0.656 | 0.830 | | 10 | LTE Band 66 | 20M | QPSK | 1 | 49 | Bottom of Laptop | 0mm | ON | 132572 | 1770 | AMP | 18.14 | 19.00 | 1.219 | -0.12 | 0.630 | 0.768 | | 11 | LTE Band 71 | 20M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | OFF | 133297 | 680.5 | Speed | 23.55 | 25.50 | 1.567 | -0.09 | 0.466 | 0.730 | TEL: 886-3-327-3456 Page 23 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 #### <TDD LTE SAR> | Plo
No. | Band | BW
(MHz) | Modulation | RB
Size | RB
offset | Test
Position | Gap
(mm) | Power
Reduction | Ch. | | Antenna | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | Duty
Cycle
% | Duty
Cycle
Scaling
Factor | Power
Drift
(dB) | Measured
1g SAR
(W/kg) | Reported
1g SAR
(W/kg) | |------------|-------------|-------------|------------|------------|--------------|------------------|-------------|--------------------|-------|--------|---------|---------------------------|---------------------------|------------------------------|--------------------|------------------------------------|------------------------|------------------------------|------------------------------| | 12 | LTE Band 41 | 20M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | ON | 41490 | 2680 | AMP | 18.62 | 20.00 | 1.374 | 62.9 | 1.006 | -0.12 | 0.440 | 0.608 | | | LTE Band 41 | 20M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | ON | 39750 | 2506 | AMP | 18.08 | 20.00 | 1.556 | 62.9 | 1.006 | 0.02 | 0.381 | 0.596 | | | LTE Band 41 | 20M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | ON | 40185 | 2549.5 | AMP | 18.70 | 20.00 | 1.349 | 62.9 | 1.006 | -0.16 | 0.430 | 0.584 | | | LTE Band 41 | 20M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | ON | 40620 | 2593 | AMP | 18.49 | 20.00 | 1.416 | 62.9 | 1.006 | 0.08 | 0.417 | 0.594 | | | LTE Band 41 | 20M | QPSK | 1 | 0 | Bottom of Laptop | 0mm | ON | 41055 | 2636.5 | AMP | 18.82 | 20.00 | 1.312 | 62.9 | 1.006 | -0.01 | 0.432 | 0.570 | Report No.: FA2N1103-04 ### 11.2 Repeated SAR Measurement | No. | Band | Mode | Test
Position | Gap
(mm) | Power
Reduction | Ch. | | Antenna
Vendor | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Tune-up
Scaling
Factor | | Measured
1g SAR
(W/kg) | Ratio | Reported
1g SAR
(W/kg) | |-----|----------|--------------|------------------|-------------|--------------------|------|--------|-------------------|---------------------------|---------------------------|------------------------------|-------|------------------------------|-------|------------------------------| | 1st | WCDMA II | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 9262 | 1852.4 | AMP | 19.00 | 20.00 | 1.259 | -0.09 | 0.934 | - | 1.176 | | 2nd | WCDMA II | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 9262 | 1852.4 | AMP | 19.00 | 20.00 | 1.259 | -0.05 | 0.894 | 1.04 | 1.125 | | 1st | WCDMA IV | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 1312 | 1712.4 | AMP | 19.30 | 20.00 | 1.175 | -0.12 | 1.010 | - | 1.187 | | 2nd | WCDMA IV | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 1312 | 1712.4 | AMP | 19.30 | 20.00 | 1.175 | 0.07 | 0.995 | 1.02 | 1.169 | | 1st | WCDMA V | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 4233 | 846.6 | AMP | 22.66 | 23.50 | 1.213 | -0.02 | 0.813 | - | 0.986 | | 2nd | WCDMA V | RMC 12.2Kbps | Bottom of Laptop | 0mm | ON | 4233 | 846.6 | AMP | 22.66 | 23.50 | 1.213 | 0.06 | 0.795 | 1.02 | 0.965 | #### **General Note:** - 1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. - 2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The ratio is the difference in percentage between original and repeated measured SAR. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. TEL: 886-3-327-3456 Page 24 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 12. Simultaneous Transmission Analysis | <qcnfa725></qcnfa725> | NO. | Simultaneous Transmission Configurations | Body | |-----------------------|-----|---|------| | CQCNFA123> | 1. | WWAN + 2.4GHz WLAN Ant 1+2 + 5G/6GHz WLAN Ant 1+2 | Yes | | | 2. | WWAN + 5G/6GHz WLAN Ant 1+2 + Bluetooth Ant 2 | Yes | Report No.: FA2N1103-04 | <mt7922a12l></mt7922a12l> | NO. | Simultaneous Transmission Configurations | Body | |---------------------------|-----|---|------| | <w17922a12l></w17922a12l> | 1. | WWAN + 2.4GHz WLAN Ant 1+2 | Yes | | | 2. | WWAN + 5G/6GHz WLAN Ant 1+2 + Bluetooth Ant 2 | Yes | #### **General Note:** - The Qualcomm QCNFA725 and MediaTeK MT7922A12L WLAN/Bluetooth modules are also integrated into this host, WLAN/Bluetooth SAR testing data, which can be referred to Sporton SAR Test Report, Report No.: FA2N1103 and FA1O1602-03 and the results are used to do simultaneous transmission analysis. - 2. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if, - i) Scalar SAR summation < 1.6W/kg. - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)² + (y1-y2)² + (z1-z2)²], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary. - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. #### 12.1 Body Exposure Conditions #### <QCNFA725> | | 1 | 2 | 3 | 4 | 5 | | | |-------------------------|------------------|-----------------|---------------------------|----------------------------|--------------------|--------------------------|--------------------------| | Exposure Position | Maximum
WWAN | Maximum
WWAN | 2.4GHz
WLAN
Ant 1+2 | 5G/6GHz
WLAN
Ant 1+2 | Bluetooth
Ant 2 | 2+3+4
Summed
Ratio | 2+4+5
Summed
Ratio | | | 1g SAR
(W/kg) | SAR Ratio | PD Ratio | PD Ratio | PD Ratio | | | | Bottom of Laptop at 0mm | 1.187 | 0.742 | 0.055 | 0.046 | 0.011 | 0.843 | 0.799 | #### <MT7922A12L> | | 1 | 1 2 3 | | 4 | 5 | | | | |-------------------------|------------------|-----------------|-------------|-------------|--------------------|------------------------|--------------------------|--| | Exposure Position | Maximum
WWAN | Maximum
WWAN | | | Bluetooth
Ant 2 | 2+3
Summed
Ratio | 2+4+5
Summed
Ratio | | | | 1g SAR
(W/kg) | SAR
Ratio | PD
Ratio | PD
Ratio | PD
Ratio | | | | | Bottom of Laptop at 0mm | 1.187 | 0.742 | 0.022 | 0.023 | 0.005 | 0.764 | 0.770 | | Test Engineer: Kevin Guo, Randy Lin and Jeff Tsao TEL: 886-3-327-3456 Page 25 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023 ### 13. <u>Uncertainty Assessment</u> Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be $\le 30\%$, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg. Therefore, the measurement uncertainty table is not required in this report. Report No.: FA2N1103-04 #### **Declaration of Conformity:** The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers. Comments and Explanations: The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification. ### 14. References - [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013 - [4] SPEAG DASY System Handbook - [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015. - [6] FCC KDB
447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015 - [7] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015 - [8] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015 - [9] FCC KDB 616217 D04 v01r02, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", Oct 2015 - [10] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015. - [11] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015. TEL: 886-3-327-3456 Page 26 of 26 FAX: 886-3-328-4978 Issued Date: Jun. 02, 2023