

FCC Test Report

Report No.: AGC05877231206FR01

FCC ID : 2APA9-CMSXJ68A

APPLICATION PURPOSE : Original Equipment

PRODUCT DESIGNATION: IMILAB EC6 Dual Outdoor Security Camera

BRAND NAME : imilab

MODEL NAME : CMSXJ68A

APPLICANT: Shanghai Imilab Technology Co., Ltd.

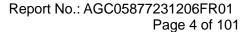
DATE OF ISSUE : Jan. 23, 2024

STANDARD(S) : FCC Part 15 Subpart C §15.247

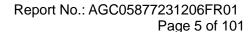
REPORT VERSION: V1.0

Attestation of Global Conclude (Shenzhen) Co., Ltd

Page 2 of 101


Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	Jan. 23, 2024	Valid	Initial Release	


Table of Contents

1. General Information	5
2. Product Information	6
2.1 Product Technical Description	6
2.2 Table of Carrier Frequency	7
2.3 IEEE 802.11n Modulation Scheme	8
2.4 IEEE 802.11ax Modulation Scheme	9
2.5 Related Submittal(S) / Grant (S)	11
2.6 Test Methodology	11
2.7 Special Accessories	11
2.8 Equipment Modifications	11
2.9 Antenna Requirement	11
2.10 Description of Test Software	12
3. Test Environment	13
3.1 Address of The Test Laboratory	13
3.2 Test Facility	13
3.3 Environmental Conditions	14
3.4 Measurement Uncertainty	14
3.5 List of Equipment Used	15
4.System Test Configuration	17
4.1 EUT Configuration	17
4.2 EUT Exercise	17
4.3 Configuration of Tested System	17
4.4 Equipment Used in Tested System	17
4.5 Summary of Test Results	18
5. Description of Test Modes	19
6. Duty Cycle Measurement	20
7. RF Output Power Measurement	22
7.1 Provisions Applicable	
7.2 Measurement Procedure	22
7.3 Measurement Setup (Block Diagram of Configuration)	22
7.4 Measurement Result	23
8. 6dB Bandwidth Measurement	24
8.1 Provisions Applicable	24
8.2 Measurement Procedure	24
8.3 Measurement Setup (Block Diagram of Configuration)	24
8.4 Measurement Result	25

9. Power Spectral Density Measurement	38
9.1 Provisions Applicable	38
9.2 Measurement Procedure	38
9.3 Measurement Setup (Block Diagram of Configuration)	39
9.4 Measurement Result	39
10. Conducted Band Edge and Out-of-Band Emissions	46
10.1 Provisions Applicable	46
10.2 Measurement Procedure	46
10.3 Measurement Setup (Block Diagram of Configuration)	46
10.4 Measurement Result	47
11. Radiated Spurious Emission	63
11.1 Measurement Limits	63
11.2 Measurement Procedure	63
11.3 Measurement Setup (Block Diagram of Configuration)	66
11.4 Measurement Result	67
12. AC Power Line Conducted Emission	97
12.1 Measurement Limits	97
12.2 Block Diagram of Line Conducted Emission Test	97
12.3 Preliminary Procedure of Line Conducted Emission Test	98
12.4 Final Procedure of Line Conducted Emission Test	98
12.5 Test Result of Line Conducted Emission Test	99
Appendix I: Photographs of Test Setup	101
Appendix II: Photographs of EUT	101

1. General Information

Applicant	Shanghai Imilab Technology Co., Ltd.			
Address	Room 001A, Floor 11, Block 1, No. 588 Zixing Road, Minhang District, Shangh China			
Manufacturer	Shanghai Imilab Technology Co., Ltd.			
Address	Room 001A, Floor 11, Block 1, No. 588 Zixing Road, Minhang District, Shanghai, China			
Factory	N/A			
Address	N/A			
Product Designation	IMILAB EC6 Dual Outdoor Security Camera			
Brand Name	imilao			
Test Model	CMSXJ68A			
Series Model(s)	N/A			
Difference Description	N/A			
Date of receipt of test item	Dec. 12, 2023			
Date of Test	Dec. 12, 2023 to Jan. 22, 2024			
Deviation from Standard	No any deviation from the test method			
Condition of Test Sample	Normal			
Test Result	Pass			
Test Report Form No	AGCER-FCC-2.4GWLAN-V1			

Note: The test results of this report relate only to the tested sample identified in this report.

Reviewed By

Calvin Liu
(Reviewer)

Approved By

Max Zhang
(Authorized Officer)

Jan. 23, 2024

Jan. 23, 2024

Page 6 of 101

2. Product Information

2.1 Product Technical Description

Equipment Type	WLAN 2.4G					
Frequency Band	2400MHz ~ 2483.5MHz					
Operation Frequency	2412MHz ~ 2462MHz					
Output Power (Average)	IEEE 802.11b: 13.33dBm; IEEE 802.11g: 11.94dBm;					
Output i ower (Average)	IEEE 802.11n(HT20): 11.37dBm; IEEE 802.11ax (HE20): 11.14dBm					
Output Power (Peak)	IEEE 802.11b: 15.99dBm; IEEE 802.11g: 19.60dBm;					
Cutput i ower (i care)	IEEE 802.11n(HT20): 19.05dBm; IEEE 802.11ax (HE20): 20.98dBm					
	802.11b:(DQPSK, DBPSK, CCK) DSSS					
Modulation	802.11g/n:(64-QAM,16-QAM, QPSK, BPSK) OFDM					
	802.11ax:(1024-QAM,256-QAM,64-QAM,16-QAM,QPSK,BPSK)OFDMA					
	802.11b:1/2/5.5/11Mbps					
Data Rate	802.11g: 6/9/12/18/24/36/48/54Mbps					
Dala Nale	802.11n: up to 150Mbps					
	802.11ax: up to 574Mbps					
Number of channels	11					
Hardware Version	LSAM105D1-1					
Software Version	5.3.1_0414					
Antenna Designation	PCB+cable Antenna					
Antenna Gain	Please refer to report section 2.9description					
Power Supply	DC 12V by adapter					

Page 7 of 101

2.2 Table of Carrier Frequency For 2412-2462MHz:

11 channels are provided for 802.11b/g/n(HT20)/ax(HE20):

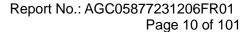
Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10	2457 MHz	11	2462 MHz		

Page 8 of 101

2.3 IEEE 802.11n Modulation Scheme

MCS	MCS				N _C	DDC	No	DDC	Data Rate(Mbps)		
Index	Nss	Modulation	R	N_{BPSC}		BP3	ייי	N_{DBPS}		800nsGI	
Пасх					20MHz	40MHz	20MHz	40MHz	20MHz	40MHz	
0	1	BPSK	1/2	1	52	108	26	54	6.5	13.5	
1	1	QPSK	1/2	2	104	216	52	108	13.0	27.0	
2	1	QPSK	3/4	2	104	216	78	162	19.5	40.5	
3	1	16-QAM	1/2	4	208	432	104	216	26.0	54.0	
4	1	16-QAM	3/4	4	208	432	156	324	39.0	81.0	
5	1	64-QAM	2/3	6	312	648	208	432	52.0	108.0	
6	1	64-QAM	3/4	6	312	648	234	489	58.5	121.5	
7	1	64-QAM	5/6	6	312	648	260	540	65.0	135.0	

Symbol	Explanation
NSS	Number of spatial streams
R	Code rate
NBPSC	Number of coded bits per single carrier
NCBPS	Number of coded bits per symbol
NDBPS	Number of data bits per symbol
GI	Guard interval



2.4 IEEE 802.11ax Modulation Scheme

HE-MCSs for 242-tone RU, N_{SS}=1

								Da	ita rate (Mb/	s)	
HE-MCS Index	DCM	Modulation	R	N _{BPSCS}	N _{SD}	N _{CBPS}	N _{DBPS}	0.8µsGl	1.6µsGl	3.2µsGl	
	1	DDOL	1/2		117	117	58	4.3	4.0	3.6	
0	0	BPSK	1/2	1	234	234	117	8.6	8.1	7.3	
4	1		1/2		117	234	117	8.6	8.1	7.3	
1	0	QPSK	1/2	2	234	468	234	17.2	16.3	14.6	
2	N/A		3/4		234	468	351	25.8	24.4	21.9	
	1		1/2		117	468	234	17.2	16.3	14.6	
3	0	1/2	1/2	1/2 3/4 3/4	234	936	468	34.4	32.5	29.3	
	1	16-QAM	3/4		4	117	468	351	25.8	24.4	21.9
4	0		3/4		234	936	702	51.6	48.8	43.9	
5			2/3				936	68.8	65.0	58.5	
6		64-QAM	3/4	6		1404	1053	77.4	73.1	65.8	
7			5/6				1170	86.0	81.3	73.1	
8	N/A	050 041	M 3/4 5/6		234	4076	1404	103.2	97.5	87.8	
9		256-QAM		8		1872	1560	114.7	108.3	97.5	
10		4004 044	3/4	40		00.40	1755	129.0	121.9	109.7	
11		1024-QAM	5/6	10		2340	1950	143.4	135.4	121.9	

Symbol	Explanation
NSS	Number of spatial streams
R	Code rate
NBPSC	Number of coded bits per single carrier
NCBPS	Number of coded bits per symbol
NDBPS	Number of data bits per symbol
GI	Guard interval

HE-MCSs for 484-tone RU, N_{SS}=1

								Da	ata rate (Mb/s	s)
HE-MCS Index	DCM	Modulation	R	N _{BPSCS}	N _{SD}	N _{CBPS}	N _{DBPS}	0.8µsGl	1.6µsGl	3.2µsGl
	1	DDOL	1/2		234	234	117	8.6	8.1	7.3
0	0	BPSK	1/2	1	468	468	234	17.2	16.3	14.6
	1		1/2		234	468	234	17.2	16.3	14.6
1	0	QPSK	1/2	2	468	936	468	34.4	32.5	29.3
2	N/A		3/4		468	936	702	51.6	48.8	43.9
	1		1/2 1/2 3/4	1/2 4	234	936	468	34.4	32.5	29.3
3	0	40.044			468	1872	936	68.8	65.0	58.5
4	1	16-QAM			234	936	702	51.6	48.8	43.9
4	0		3/4		468	1872	1404	103.2	97.5	87.8
5			2/3				1872	137.6	130.0	117.0
6		64-QAM	3/4	6		2808	2106	154.9	146.3	131.6
7			5/6				2340	172.1	162.5	146.3
8	N/A		3/4		468		2808	206.5	195.0	175.5
9		256-QAM 5/6	5/6	8		3744	3120	229.4	216.7	195.0
10		4004 04:	3/4	40		4006	3510	258.1	243.8	219.4
11		1024-QAM	5/6	10		4680	3900	286.8	270.8	243.8

Symbol	Explanation
NSS	Number of spatial streams
R	Code rate
NBPSC	Number of coded bits per single carrier
NCBPS	Number of coded bits per symbol
NDBPS	Number of data bits per symbol
GI	Guard interval

Page 11 of 101

2.5 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for **FCC ID: 2APA9-CMSXJ68A**, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.6 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations
2	FCC 47 CFR Part 15	Radio Frequency Devices
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

2.7 Special Accessories

Refer to section 4.4.

2.8 Equipment Modifications

Not available for this EUT intended for grant.

2.9 Antenna Requirement

Standard Requirement

15.203 requirement:

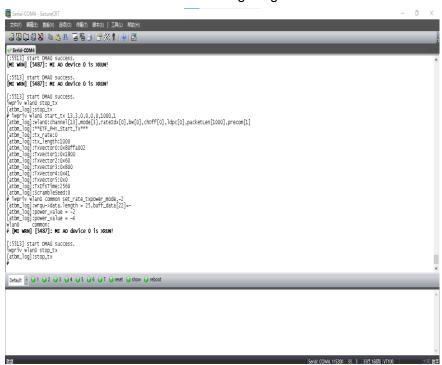
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 2.6dBi.



2.10 Description of Test Software

For IEEE 802.11 mode:

The test utility software used during testing was "Secure CRT".

Software Setting Diagram

Test Mode	Channel	Power Index		
rest wode	Chamei	Chain 1	Chain 2	
802.11b	L/M/H	0	N/A	
802.11g	L/M/H	-1	N/A	
802.11n-HT20	L/M/H	-2	N/A	
802.11ax-HE20	L/M/H	-2	N/A	

Page 13 of 101

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories).

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

Page 14 of 101

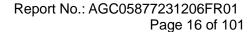
3.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106

3.4 Measurement Uncertainty

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%

Item	Measurement Uncertainty
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$
Uncertainty of spurious emissions, conducted	$U_c = \pm 2 \%$
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$



Page 15 of 101

3.5 List of Equipment Used

• R	RF Conducted Test System						
Used	Hand Favirus at No.	To at Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date	Next Cal. Date
Useu	Equipment No.	Test Equipment	iviariuiaciuiei	woder No.	Seliai No.	(YY-MM-DD)	(YY-MM-DD)
\boxtimes	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023-06-01	2024-05-31
\boxtimes	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2023-03-03	2024-03-02
\boxtimes	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2023-03-03	2024-03-02
\boxtimes	AGC-EM-A152	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08
\boxtimes	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2023-06-01	2024-05-31
\boxtimes	N/A	RF Connection	N/A	1#	N/A	Each time	N/A
	IV/A	Cable	IN/A	1#	IN/A	Lacii iiiile	IN/A
	N/A	RF Connection	N/A	2#	N/A	Each time	N/A
	IN/A	Cable	IN//A	2#	IN/A	Lacir tillic	IN/A

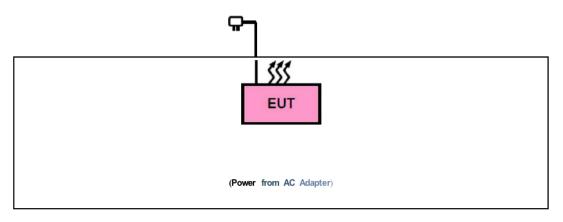
• F	Radiated Spu	rious Emission					
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date	Next Cal. Date
Useu	Equipment No.	rest Equipment	Manuacturei	Model No.	Seliai No.	(YY-MM-DD)	(YY-MM-DD)
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2023-02-18	2024-02-17
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2023-06-03	2024-06-02
\boxtimes	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2023-06-01	2024-05-31
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2022-03-12	2024-03-11
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10
	AGC-EM-E029	Broadband Ridged	ETS	3117	00034609	2023-03-23	2024-03-22
	AGC-EM-E029	Horn Antenna	E13	3117	00034009	2023-03-23	2024-03-22
\boxtimes	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03
\boxtimes	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2023-06-01	2024-05-31
\boxtimes	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08

A	AC Power Line Conducted Emission						
Used	Equipment No.	Toot Equipment	Manufacturer	Model No. Serial No.		Last Cal. Date	Next Cal. Date
USEG	Equipment No.	Test Equipment	Manufacturer	woder No.	Seliai No.	(YY-MM-DD)	(YY-MM-DD)
	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2023-06-03	2024-06-02
\boxtimes	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2024-06-08
	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2023-06-03	2024/06/02

• Te	Test Software					
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information	
\boxtimes	AGC-EM-S003	RE Test System	FARA	EZ-EMC	V.RA-03A	
\boxtimes	AGC-EM-S011	RSE Test System	Tonscend	TS ⁺ Ver2.1(JS36-RSE)	4.0.0.0	
\boxtimes	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71	
\boxtimes	AGC-ER-S009	BT/WIFI Test System	Tonscend	JS1120-3	2.6.77.0518	

Page 17 of 101

4.System Test Configuration


4.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement:

☐ Test Accessories Come From The Laboratory

No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
1					


No.	Equipment	Model No.	Manufacturer	Specification Information	Cable
			Dong Guan City GangQi Electronic	Input: 100-240V~50/60Hz	
1	ADAPTER 1	GQ12-120100-CC	Co., Ltd	0.4A	3m
			Co., Liu	Output: 12.0V, 1.0A	
		DSA-12PFT-12		Input: 100-240V~50/60Hz	
2	ADAPTER 2	FUS	DEE VAN ENTERPRISE CO., LTD	0.5A	3m
		1 03		Output: 12.0V, 1.0A	

Page 18 of 101

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§15.203&15.247(b)(4)	Antenna Equipment	Pass
2	§15.247 (b)(1)	RF Output Power	Pass
3	§15.247 (a)(1)	6 dB Bandwidth	Pass
4	§15.247 (e)	Power Spectral Density	Pass
5	§15.247 (d)	Conducted Band Edge and Out-of-Band Emissions	Pass
6	§15.247 (d)&15.209	Radiated Spurious Emission	Pass
7	§15.207	AC Power Line Conducted Emission	Pass

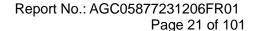
5. Description of Test Modes

Summary table of Test Cases
Data Rate / Modulation
2.4G WLAN - 802.11b/g/n/ax (DSSS/OFDM/OFDMA)
Mode 1: 802.11b_TX CH01_2412 MHz_1 Mbps
Mode 2: 802.11b_TX CH06_2437 MHz_1 Mbps
Mode 3: 802.11b_TX CH11_2462 MHz_1 Mbps
Mode 4: 802.11g_TX CH01_2412 MHz_6 Mbps
Mode 5: 802.11g_TX CH06_2437 MHz_6 Mbps
Mode 6: 802.11g_TX CH11_2462 MHz_6 Mbps
Mode 7: 802.11n-HT20_TX CH01_2412 MHz_MCS0 Mbps
Mode 8: 802.11n-HT20_TX CH06_2437 MHz_ MCS0 Mbps
Mode 9: 802.11n-HT20_TX CH11_2462 MHz_ MCS0 Mbps
Mode 10: 802.11ax-HE20_TX CH01_2412 MHz_MCS0 Mbps
Mode 11: 802.11ax-HE20_TX CH06_2437 MHz_ MCS0 Mbps
Mode 12: 802.11ax-HE20_TX CH11_2462 MHz_ MCS0 Mbps
Mode 1: 2.4G WLAN Link (Charging from AC Adapter)

Note:

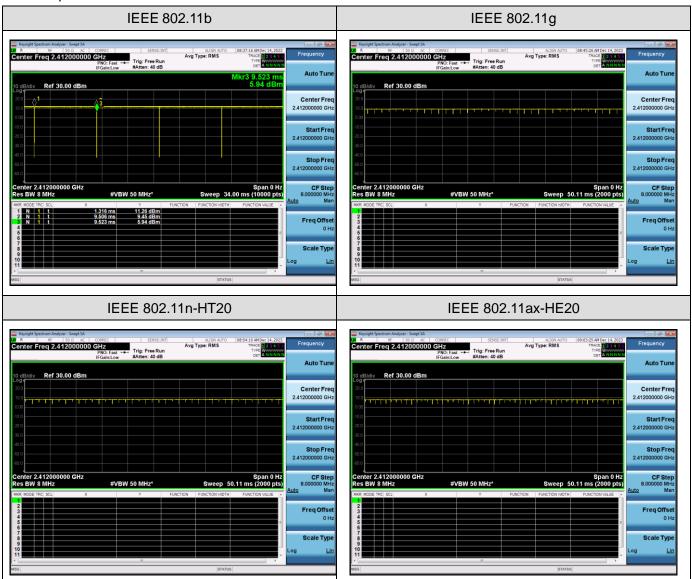
- 1. The battery is full-charged during the test.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.
- 3. For Conducted Test method, a temporary antenna connector is provided by the manufacture.
- There are two adapters of EUT. All adapters have been tested and only the worst adapter (GQ12-120100-CC) test data was recorded in the test report

Page 20 of 101


6. Duty Cycle Measurement

2.4GHz WLAN (DTS) operation is possible in 20MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = Peak. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Operating mode	Data rates	Duty Cycle	Duty Cycle Factor	1/ T Minimum	Average Factor
	(Mbps)	(%)	(dB)	VBW (kHz)	(dB)
IEEE 802.11b	1	99.79			
IEEE 802.11g	6	100			
IEEE 802.11n-HT20	MCS0	100			
IEEE 802.11ax-HE20	MCS0	100			


Remark:

- 1. Duty Cycle factor = 10 * log (1/ Duty cycle)
- 2. Average factor = 20 log10 Duty Cycle
- 3. The duty cycle of each frequency band mode reflects the determination requirements of the low channel measurement value.

The test plots as follows:

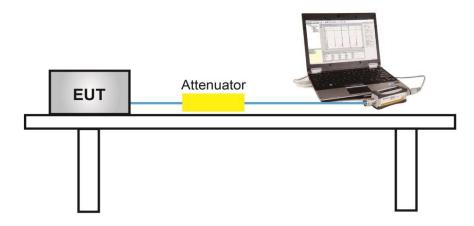
Page 22 of 101

7. RF Output Power Measurement

7.1 Provisions Applicable

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W.

7.2 Measurement Procedure


Method PM is Measurement using an RF Peak power meter. The procedure for this method is as follows:

- 1. The testing follows the ANSI C63.10 Section 11.9.1.3
- The maximum peak conducted output power may be measured using a broadband peak RF power meter.
 The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

Method PM is Measurement using an RF average power meter. The procedure for this method is as follows:

- 1. The testing follows the ANSI C63.10 Section 11.9.2.3
- 2. Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:
- 3. The EUT is configured to transmit continuously, or to transmit with a constant duty cycle.
- 4. At all times when the EUT is transmitting, it shall be transmitting at its maximum power control level.
- 5. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- 6. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below.
- 7. Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.
- 8. Adjust the measurement in dBm by adding [10 log (1 / D)], where D is the duty cycle {e.g., [10 log (1 / 0.25)], if the duty cycle is 25%}.
- 9. Record the test results in the report.

7.3 Measurement Setup (Block Diagram of Configuration)

Page 23 of 101

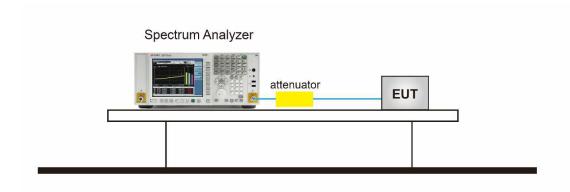
7.4 Measurement Result

Test Data of Conducted Output Power-ANT 1							
Test Mode	Test Frequency (MHz)	Average Power (dBm)	Peak Power (dBm)	Limits (dBm)	Pass or Fail		
802.11b	2412	12.83	15.43	≤30	Pass		
	2437	13.33	15.99	≤30	Pass		
	2462	12.68	15.31	≤30	Pass		
802.11g	2412	11.49	19.19	≤30	Pass		
	2437	11.94	19.60	≤30	Pass		
	2462	11.19	18.85	≤30	Pass		
802.11n20	2412	10.87	18.60	≤30	Pass		
	2437	11.37	19.05	≤30	Pass		
	2462	10.63	18.32	≤30	Pass		
802.11ax20	2412	10.68	20.35	≤30	Pass		
	2437	11.14	20.98	≤30	Pass		
	2462	10.46	20.08	≤30	Pass		

Page 24 of 101

8. 6dB Bandwidth Measurement

8.1 Provisions Applicable

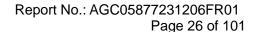

The minimum 6dB bandwidth shall be 500 kHz.

8.2 Measurement Procedure

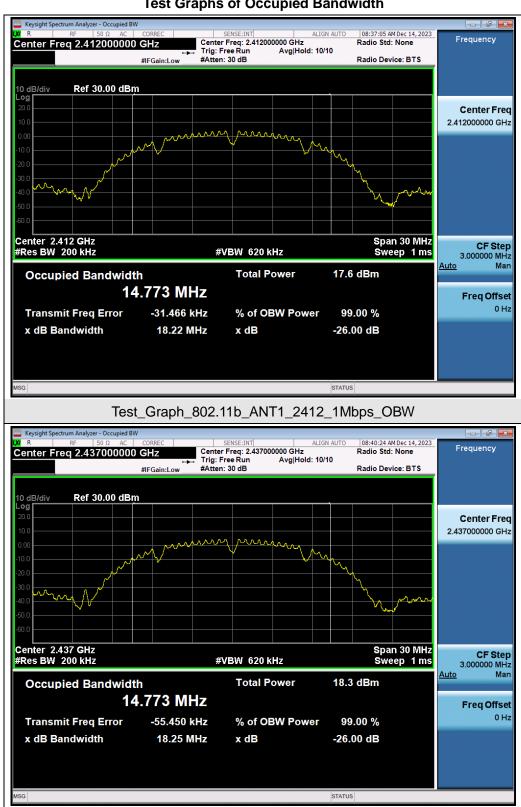
The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. For 6dB Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) = 200 kHz. Set the Video bandwidth (VBW) = 620 kHz. In order to make an accurate measurement.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the OBW and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 5. Detector = peak
- 6. Trace mode = max hold.
- 7. Sweep = auto couple.
- 8. Allow the trace to stabilize.
- 9. Measure and record the results in the test report.

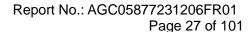
8.3 Measurement Setup (Block Diagram of Configuration)



Page 25 of 101

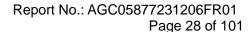

8.4 Measurement Result

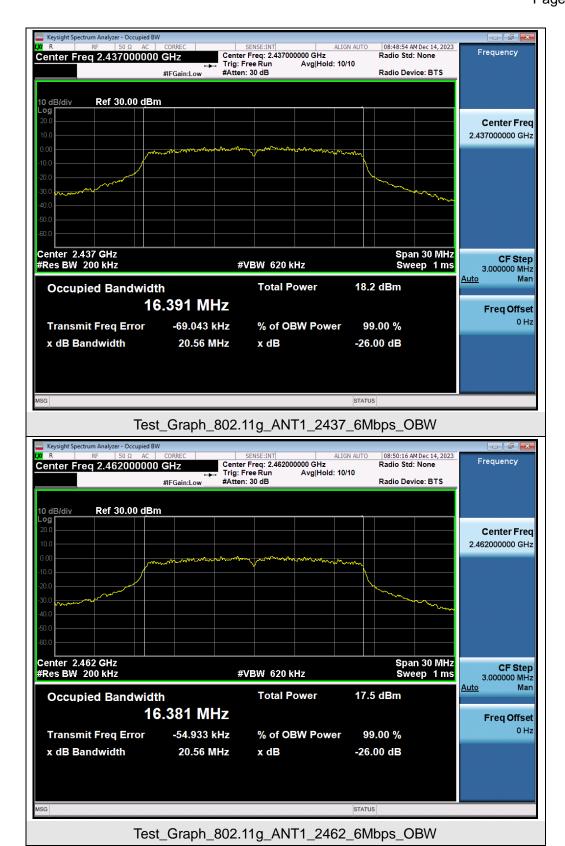
Test Data of Occupied Bandwidth and DTS Bandwidth								
Test Mode	Test Frequency (MHz)	99% Occupied Bandwidth (MHz)	DTS Bandwidth (MHz)	DTS Bandwidth Limits (MHz)	Pass or Fail			
802.11b	2412	14.773	10.062	≥0.5	Pass			
	2437	14.773	10.033	≥0.5	Pass			
	2462	14.819	10.054	≥0.5	Pass			
802.11g	2412	16.391	15.106	≥0.5	Pass			
	2437	16.391	15.106	≥0.5	Pass			
	2462	16.381	15.094	≥0.5	Pass			
802.11n20	2412	17.515	15.120	≥0.5	Pass			
	2437	17.516	15.104	≥0.5	Pass			
	2462	17.511	15.106	≥0.5	Pass			
802.11ax20	2412	18.708	15.107	≥0.5	Pass			
	2437	18.709	16.339	≥0.5	Pass			
	2462	18.729	15.112	≥0.5	Pass			

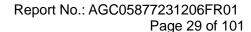

Test Graphs of Occupied Bandwidth

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

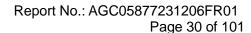
Test_Graph_802.11b_ANT1_2437_1Mbps_OBW

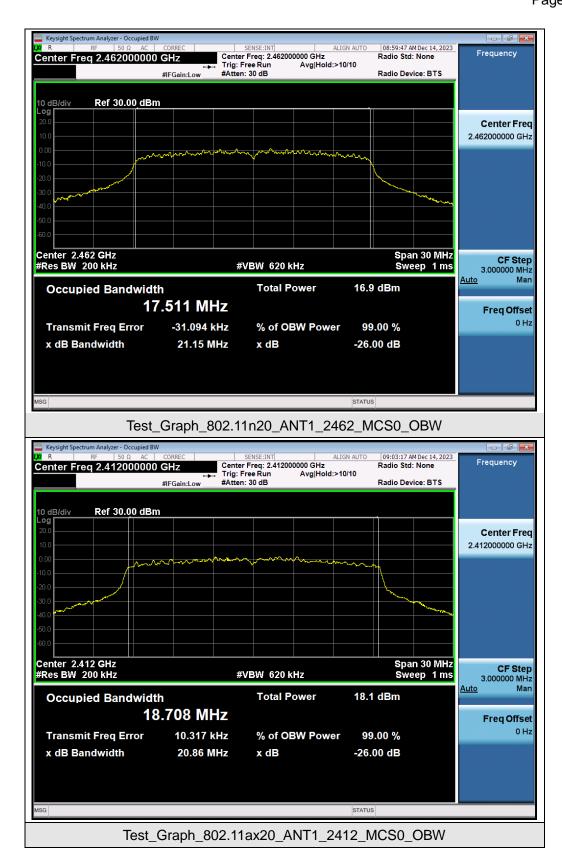

Web: http://www.agccert.com/

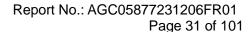


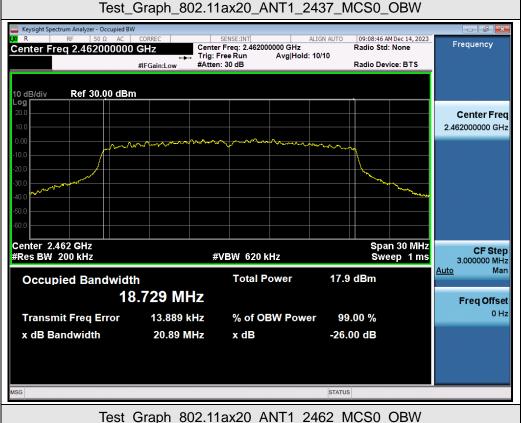


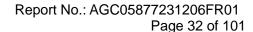
Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

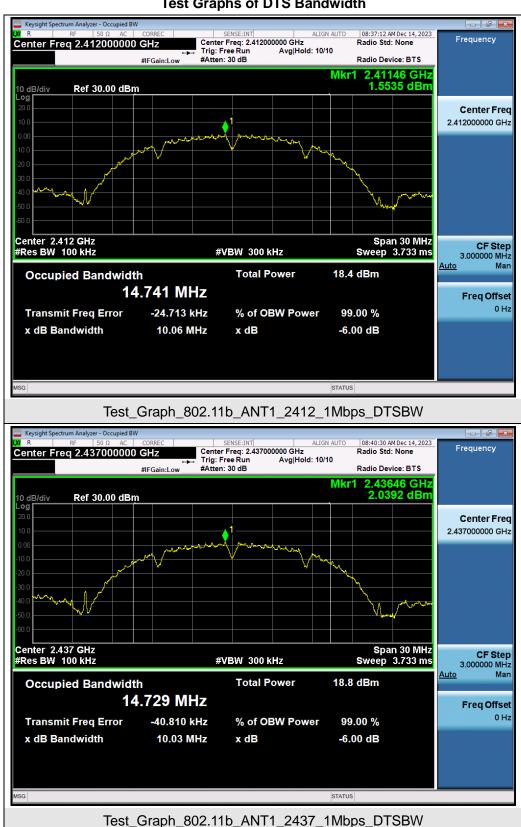


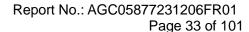




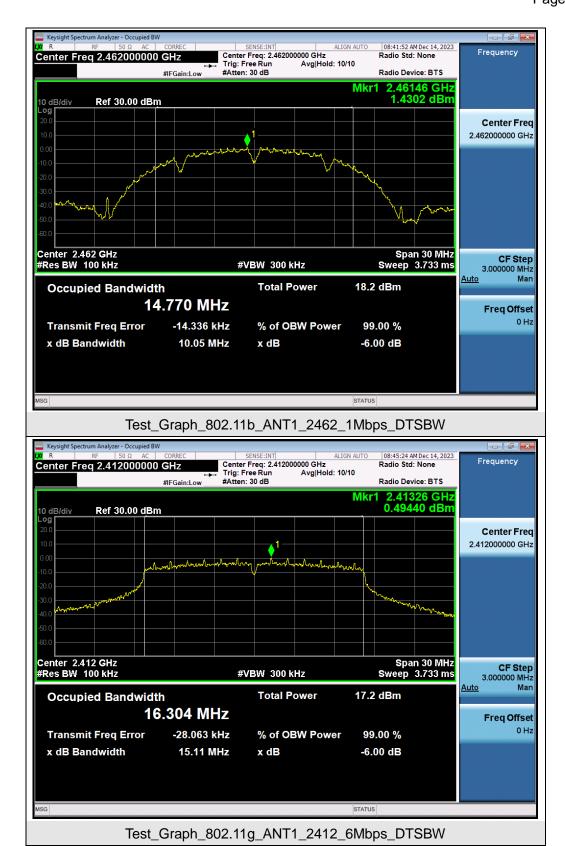


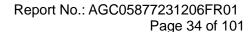




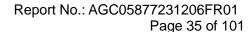


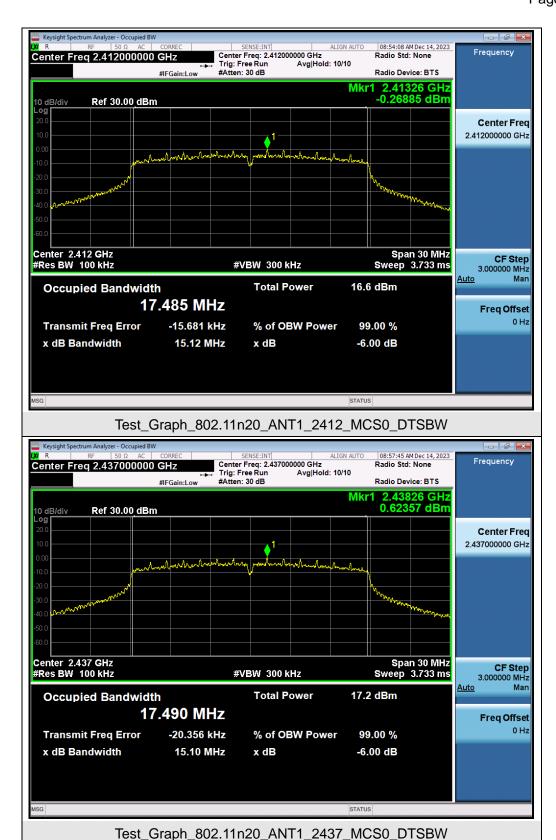
Test Graphs of DTS Bandwidth

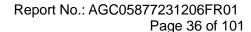


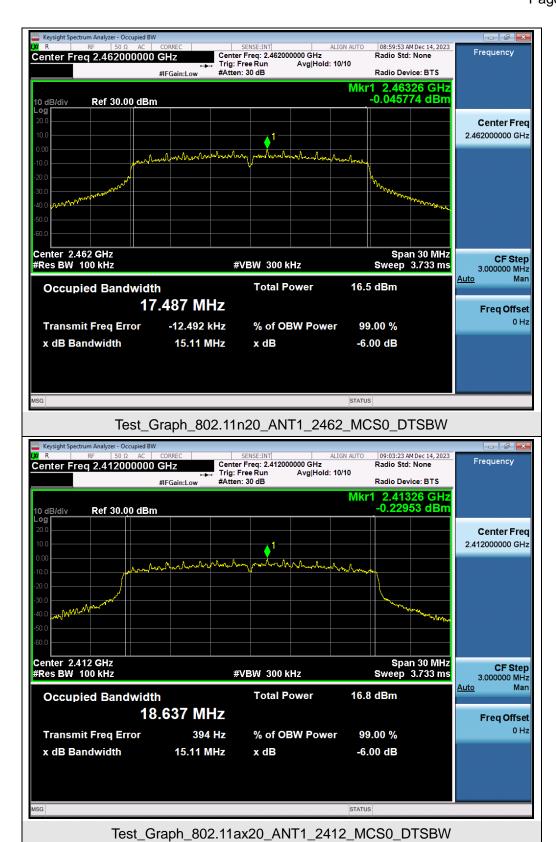

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Web: http://www.agccert.com/

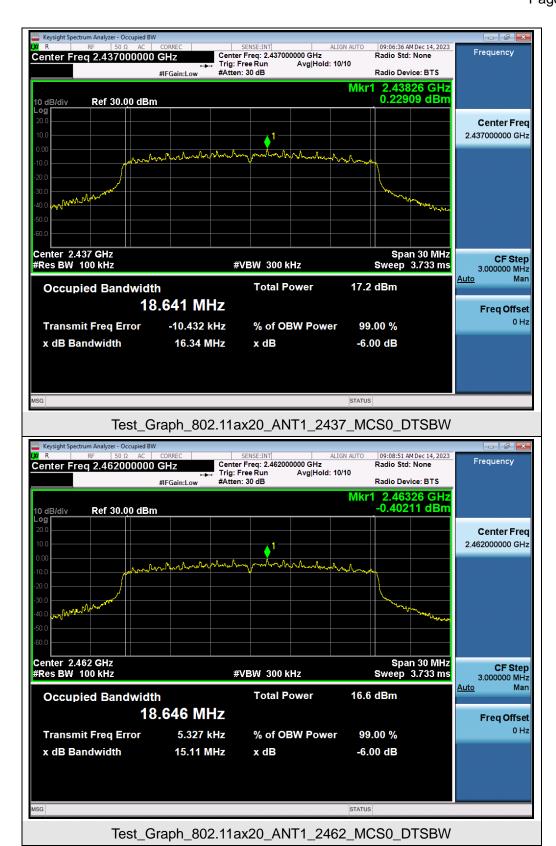












Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

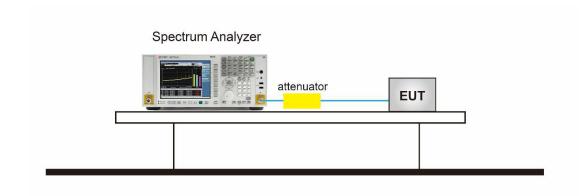
Page 38 of 101

9. Power Spectral Density Measurement

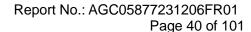
9.1 Provisions Applicable

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

9.2 Measurement Procedure


⊠For Peak power spectral density test:

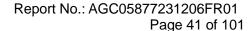
- The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 3. Set the RBW = 20 kHz.
- 4. Set the VBW \geq [3 × RBW].
- 5. Set the Span ≥ [1.5 × DTS bandwidth].
- 6. Sweep time=Auto couple.
- 7. Detector function=Peak.
- 8. Trace Mode=Max hold.
- When the measurement bandwidth of Maximum PSD is specified in 3 kHz, add a constant factor 10*log(3kHz/20kHz) = -8.23 dB to the measured result.
- 10. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.
- 11. The indicated level is the peak output power, after any corrections for external attenuators and cables.
- For Average power spectral density test:
- 1. The testing follows the ANSI C63.10 Section 11.10.5 Method AVPSD.
- 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator.
- Set Span to at least 1.5 times the OBW.
- 4. Set RBW to:3 kHz ≤ RBW ≤ 100 kHz.
- 5. Set VBW≥[3×RBW].
- 6. Sweep Time=Auto couple.
- 7. Detector function=RMS (i.e., power averaging).
- 8. Trace average at least 100 traces in power averaging (rms) mode.
- 9. When the measurement bandwidth of Maximum PSD is specified in 3 kHz, add a constant factor 10*log(3kHz/20kHz) = -8.23 dB to the measured result.
- 10. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below.
- 11. Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.
- 12. Record the test results in the report.


Page 39 of 101

9.3 Measurement Setup (Block Diagram of Configuration)

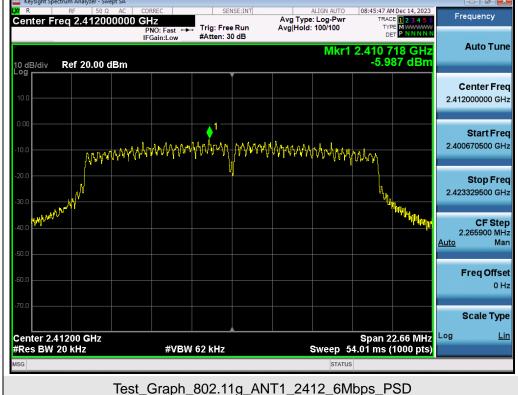
9.4 Measurement Result

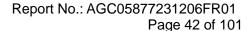
Test Data of Conducted Output Power Spectral Density-ANT 1						
Test Mode	Test	Power Spectral	Power Spectral	Limit (dBm/3kHz)	Pass or Fail	
	Frequency	density	density			
	(MHz)	(dBm/20kHz)	(dBm/3kHz)	(dBilli/old 12)		
802.11b	2412	-4.772	-13.011	≪8	Pass	
	2437	-4.599	-12.838	≪8	Pass	
	2462	-5.035	-13.274	≪8	Pass	
802.11g	2412	-5.987	-14.226	≪8	Pass	
	2437	-5.476	-13.715	≪8	Pass	
	2462	-6.256	-14.495	≪8	Pass	
802.11n20	2412	-6.746	-14.985	≪8	Pass	
	2437	-6.341	-14.580	≪8	Pass	
	2462	-7.068	-15.307	≪8	Pass	
802.11ax20	2412	-5.941	-14.180	≤8	Pass	
	2437	-5.335	-13.574	≤8	Pass	
	2462	-5.852	-14.091	≤8	Pass	

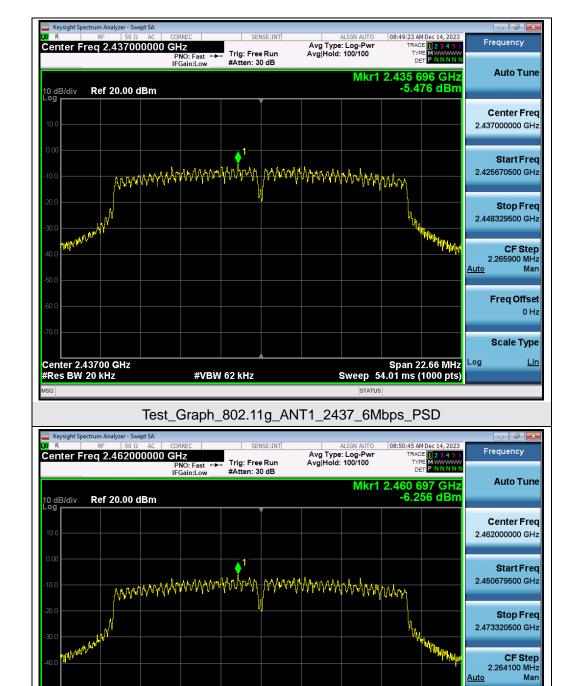


Test Graphs of Conducted Output Power Spectral Density




Test_Graph_802.11b_ANT1_2412_1Mbps_PSD

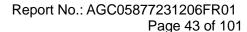




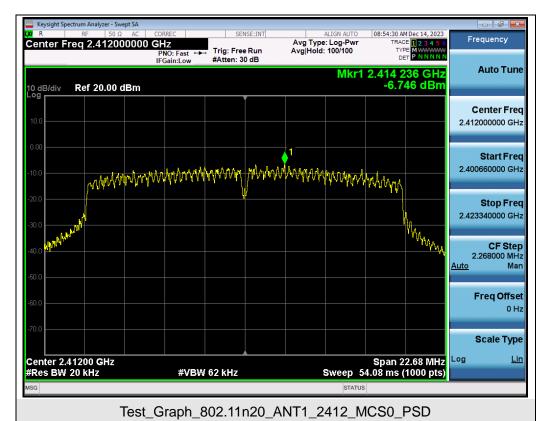
Freq Offset

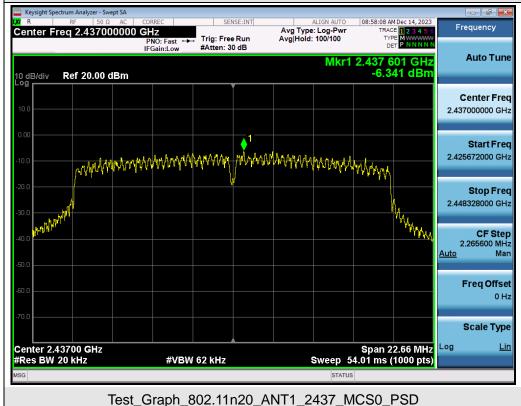
Scale Type

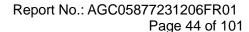
Span 22.64 MHz Sweep 54.01 ms (1000 pts)



Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.


Test_Graph_802.11g_ANT1_2462_6Mbps_PSD


#VBW 62 kHz


Center 2.46200 GHz #Res BW 20 kHz

CF Step 2.266050 MHz

Freq Offset

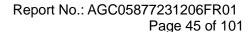
Scale Type

Man

Lin

<u>Auto</u>

Span 22.66 MHz Sweep 54.08 ms (1000 pts)



Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Test Graph 802.11ax20 ANT1 2412 MCS0 PSD

#VBW 62 kHz

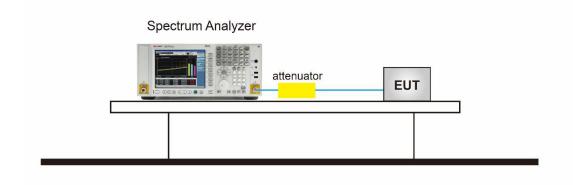
Center 2.41200 GHz #Res BW 20 kHz

10. Conducted Band Edge and Out-of-Band Emissions

10.1 Provisions Applicable

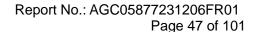
In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

10.2 Measurement Procedure

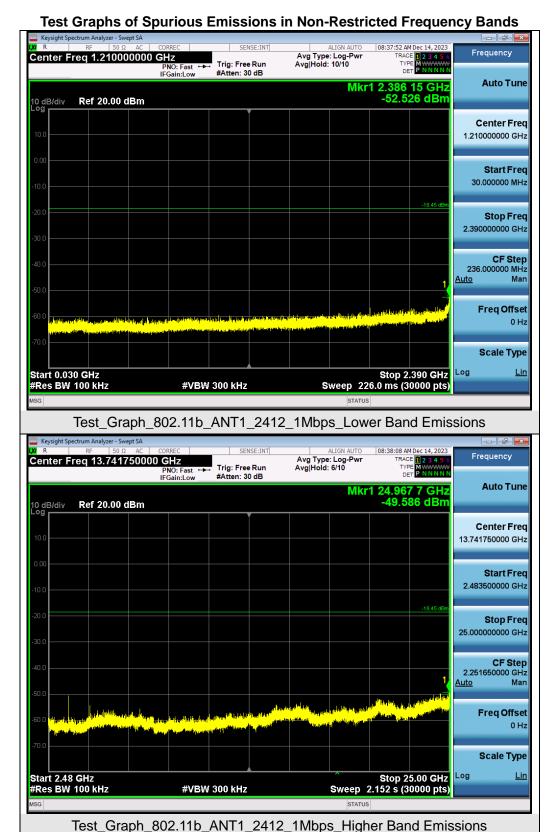

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.

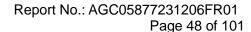
Use the following spectrum analyzer settings:

- Step 1: Measurement Procedure In-Band Reference Level
 - 1. Set instrument center frequency to DTS channel center frequency.
 - 2. Set the span to ≥ 1.5 times the DTS bandwidth.
 - 3. Set the $\overrightarrow{RBW} = 100 \text{ kHz}$.
 - 4. Set the VBW \geq 3 x RBW.
 - 5. Detector = peak.
 - 6. Sweep time = auto couple.
 - 7. Trace mode = max hold.
 - 8. Allow trace to fully stabilize.
 - 9. Use the peak marker function to determine the maximum PSD level.
 - 10. Note that the channel found to contain the maximum PSD level can be used to establish the reference level.
- Step 2: Measurement Procedure Out of Band Emission
 - 1. Set RBW = 100 kHz.
 - 2. Set VBW ≥ 300 kHz.
 - 3. Detector = peak.
 - 4. Sweep = auto couple.
 - 5. Trace Mode = max hold.
 - 6. Allow trace to fully stabilize.
 - Use the peak marker function to determine the maximum amplitude level.

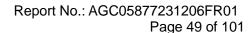

Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset.

10.3 Measurement Setup (Block Diagram of Configuration)

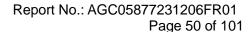

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

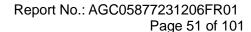

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

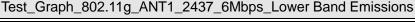
10.4 Measurement Result

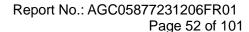




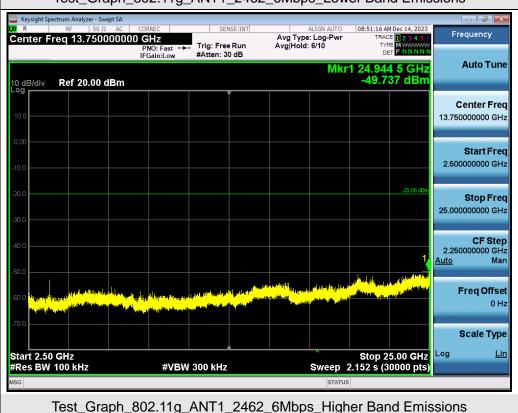


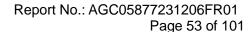


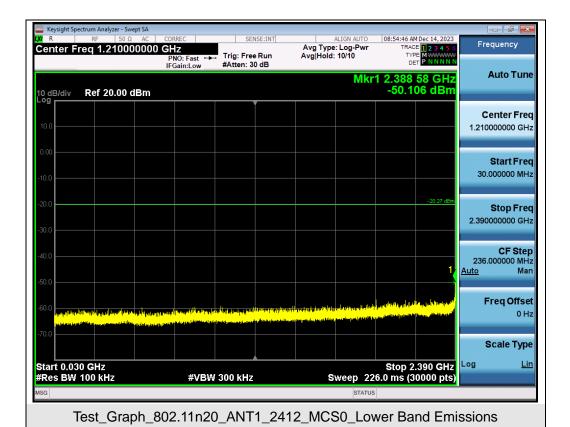


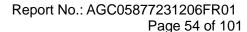


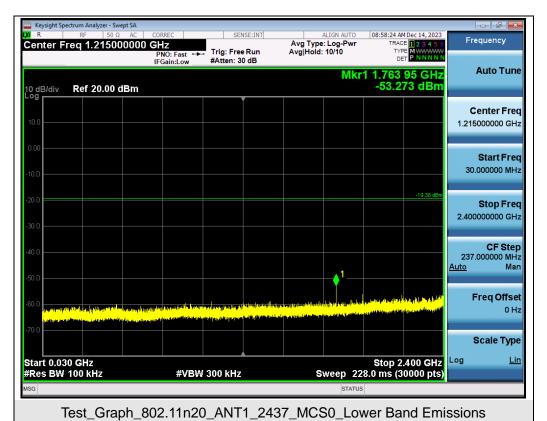
Test_Graph_802.11g_ANT1_2437_6Mbps_Higher Band Emissions


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

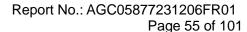

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

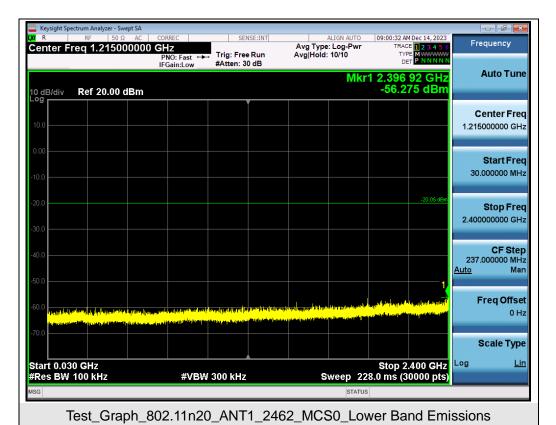






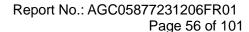
Test_Graph_802.11n20_ANT1_2412_MCS0_Higher Band Emissions

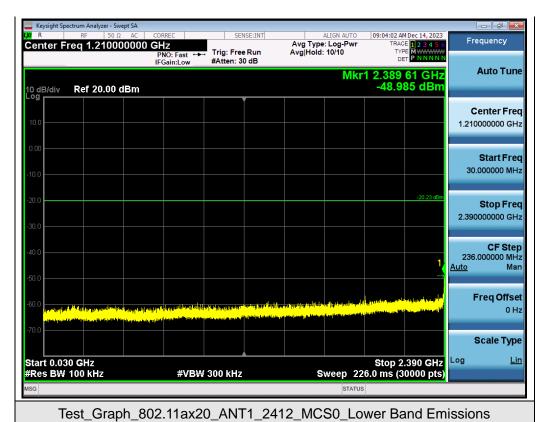



Test_Graph_802.11n20_ANT1_2437_MCS0_Higher Band Emissions

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

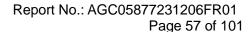
Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

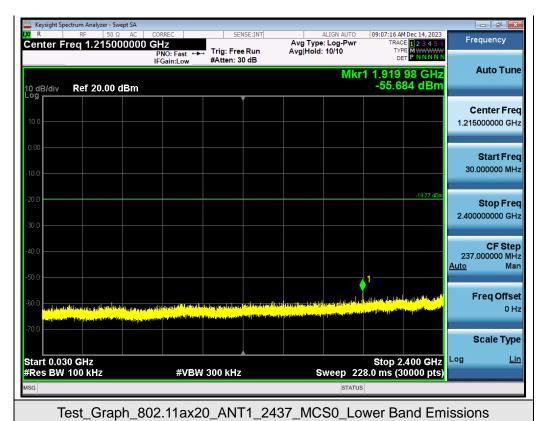




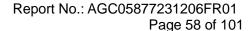
Test_Graph_802.11n20_ANT1_2462_MCS0_Higher Band Emissions

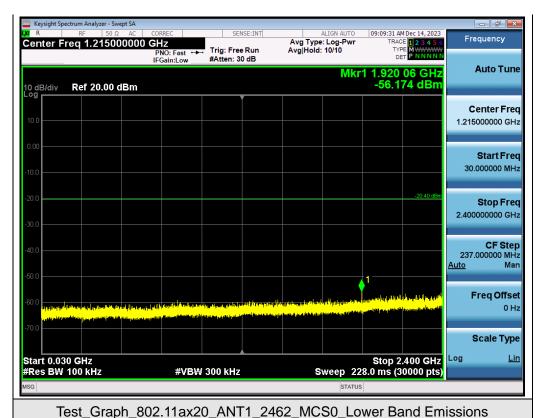
Web: http://www.agccert.com/



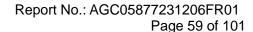


Test Graph 802.11ax20 ANT1 2412 MCS0 Higher Band Emissions

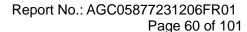




Test_Graph_802.11ax20_ANT1_2437_MCS0_Higher Band Emissions

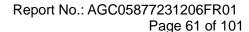


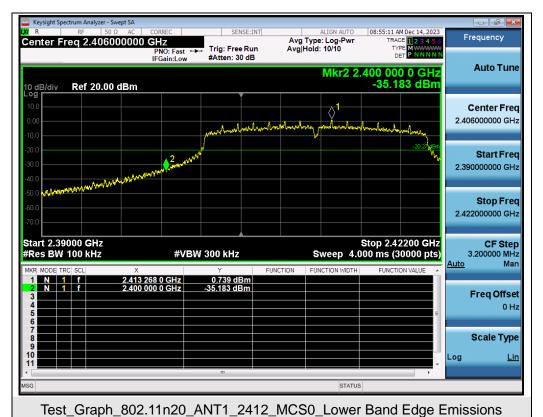
Test Graph 802.11ax20 ANT1 2462 MCS0 Higher Band Emissions



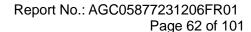
Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands

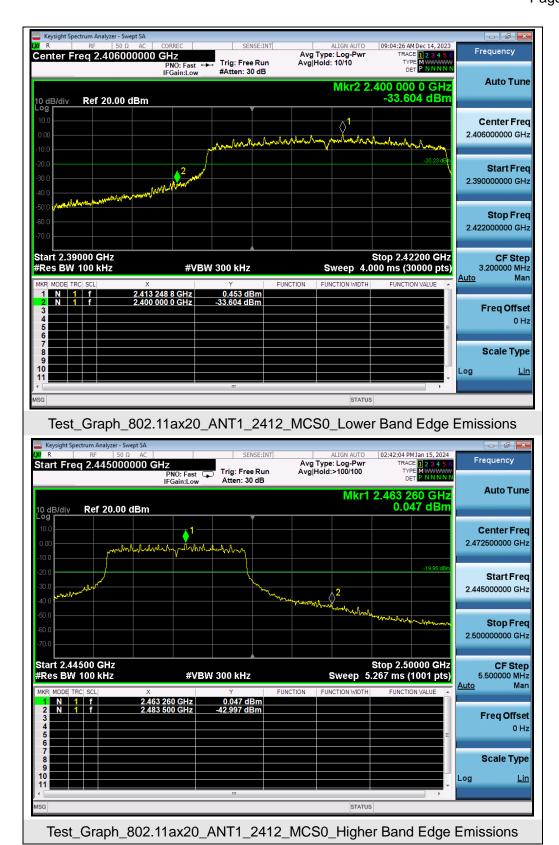
Test_Graph_802.11b_ANT1_2412_1Mbps_Lower Band Edge Emissions





Test Graph 802.11g ANT1 2412 6Mbps Higher Band Edge Emissions





Test Graph 802.11n20 ANT1 2412 MCS0 Higher Band Edge Emissions

Note: Emissions from 2483.5-2500MHz which fall in the restricted bands had been considered with the radiated emission limits specified.

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Page 63 of 101

11. Radiated Spurious Emission

11.1 Measurement Limits

15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

11.2 Measurement Procedure

- The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

Any reposphang alternative (provided the funding alternative (provided the funding alternative by the

Page 64 of 101

pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.
- ◆ The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting	
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP	
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP	
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP	
Start Stan Fraguency	1GHz~26.5GHz	
Start ~Stop Frequency	1MHz/3MHz for Peak, 1MHz/3MHz for Average	

Receiver Parameter	Setting	
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP	
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP	
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP	

Page 65 of 101

Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

• Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Average Measurements above 1GHz (Method VB)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW setting requirements are as follows:
- 4. If the EUT is configured to transmit with duty cycle \geq 98%, set VBW = 10 Hz.
- 5. If the EUT duty cycle is < 98%, set VBW $\ge 1/T$. T is the minimum transmission duration.
- 6. Detector = Peak
- 7. Sweep time = auto
- 8. Trace mode = max hold