

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

Tel: +86-755-27521059	Fax: +86-755-27521011	http://www.sz-ctc.org.cn
-----------------------	-----------------------	--------------------------

T	EST REPORT				
Report No. ·····:	CTC2024165212				
FCC ID:	2AJH3-TV-179K				
Applicant:	Dune HD(HK) Limited				
Address	10th Floor, Shun On Commercial Build Road Central, Central, Hong Kong	ding, 112-114 Des Voeux			
Manufacturer:	Dune HD(HK) Limited				
Address	10th Floor, Shun On Commercial Build Road Central, Central, Hong Kong	ding, 112-114 Des Voeux			
Product Name·····:	Kartina EVA				
Trade Mark:	Kartina, Kartina TV, Dune HD				
Model/Type reference······:	TV-179K				
Listed Model(s) ·····:	/				
Standard:	··: FCC CFR Title 47 Part 15 Subpart E Section 15.407				
Date of receipt of test sample:	Jul. 4, 2024				
Date of testing	Jul. 4, 2024 to Jul. 25, 2024				
Date of issue	Sept. 4, 2024				
Result:	PASS				
Compiled by:		I: Jimme			
(Printed name+signature)	Jim Jiang	Jim Jiang Zric zhang Jemas			
Supervised by:		7-1 shang			
(Printed name+signature)	Eric Zhang	BACZA			
A subscript by a		1 0000			
Approved by:		Jerro			
(Printed name+signature)	Totti Zhao				
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers,					

reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the

report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1. TI	EST SUMMARY	3
1.1.	Test Standards	3
1.2.	REPORT VERSION	3
1.3.	Test Description	3
1.4.	Test Facility	4
1.5.	Measurement Uncertainty	4
1.6.	ENVIRONMENTAL CONDITIONS	5
2. G	SENERAL INFORMATION	6
2.1.	CLIENT INFORMATION	6
2.2.	GENERAL DESCRIPTION OF EUT	6
2.3.	Accessory Equipment Information	7
2.4.		
2.5.	Measurement Instruments List	9
3. TI	EST ITEM AND RESULTS	11
3.1.	Conducted Emission	11
3.2.	RADIATED EMISSION	14
3.3.	BAND EDGE EMISSIONS	47
3.4.	BANDWIDTH TEST	93
3.5.	OUTPUT POWER TEST	146
3.6.		
3.7.		
3.8.		
3.9.	DYNAMIC FREQUENCY SELECTION (DFS)	178

CTC Laboratories, Inc. Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 CTC Laboratories, Inc. Fax: (86)755-27521011 Fax: (86)755-27521011 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cnca.cn</u>

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Part 15, Subpart E(15.407) — for 802.11a/n/ac, the test procedure follows the FCC KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

RSS-247 Issue 3 — Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

<u>RSS-Gen</u> — General Requirements for Compliance of Radio Apparatus

1.2. Report Version

Revised No.	Report No.	Date of issue	Description
01	CTC2024165212	Sept. 4, 2024	Original

1.3. Test Description

FCC Part 15 Subpart E (15.407) / RSS-247 Issue 3						
Test Item	Test r	equire	Decult	Test		
rest item	FCC IC		Result	Engineer		
Antenna Requirement	15.203	/	Pass	Jim Jiang		
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Jim Jiang		
Band Edge Emissions	15.407(b)	RSS-247 6.2.1.2 RSS-247 6.2.2.2 RSS-247 6.2.4.2	Pass	Jim Jiang		
26dB Bandwidth & 99% Bandwidth	15.407(a) (5)	RSS-247 6.2.1.2	Pass	Jim Jiang		
6dB Bandwidth (only for UNII-3)	15.407(e)	RSS-247 6.2.4.1	Pass	Jim Jiang		
Peak Output Power	15.407(a)	RSS-247 6.2.1.1 RSS-247 6.2.4.1	Pass	Jim Jiang		
Power Spectral Density	15.407(a)	RSS-247 6.2	Pass	Jim Jiang		
Transmitter Radiated Spurious Emission	15.407(b) &15.209	RSS-Gen 8.9 RSS-247 6.2.1.2 RSS-247 6.2.4.2	Pass	Jim Jiang		
Frequency Stability	15.407(g)	/	Pass	Jim Jiang		
Dynamic Frequency Selection (DFS)	15.407(h)	RSS-247 6.3	N/A	N/A		

Note: "N/A" is not applicable.

The measurement uncertainty is not included in the test result.

1.4. Test Facility

CTC Laboratories, Inc.

Add: Room 101 Building B, Room 107, 108, 207, 208, 303 Building A, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China (formerly 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, High-Tech Park, Guanlan Sub-District, Longhua New District, Shenzhen, Guangdong, China)

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Indus try Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties radio equipment characteristics; Part 2" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.6. Environmental conditions

	Temperature	21°C~27°C
Normal Condition	Relative humidity	40%~60%
	Voltage	The equipment shall be the nominal voltage for which the equipment was designed.
Extreme	Temperature	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer
Condition	Voltage	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer

Normal Condition T _N =Normal Temperature		25 °C
Extreme Condition	T _L =Lower Temperature	5 °C
	T _H =Higher Temperature	35 °C

2. GENERAL INFORMATION

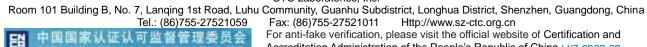
2.1. Client Information

Applicant:	Dune HD(HK) Limited
Address:	10th Floor, Shun On Commercial Building, 112-114 Des Voeux Road Central, Central, Hong Kong
Manufacturer:	Dune HD(HK) Limited
Address:	10th Floor, Shun On Commercial Building, 112-114 Des Voeux Road Central, Central, Hong Kong

2.2. General Description of EUT

Product Name:	Ka	Kartina EVA				
Trade Mark:	Ka	Kartina, Kartina TV, Dune HD				
Model/Type reference:	ΤV	-179K				
Listed Model(s):	/					
Model Differences:	/					
Power supply:	Inp	ut: 5V 2A				
Hardware version:	/					
Software version:	/					
Technical index for 5G WI	FI					
Operation Frequency Range:		U-NII-1:	5150MHz~5250MHz			
		U-NII-3:	3: 5725MHz~5850MHz			
		802.11a	🛛 20MHz			
Support bandwidth:		802.11n	🛛 20MHz	🛛 40MHz		
		802.11ac	🛛 20MHz	🛛 40MHz	🛛 80MHz	🗌 160MHz
Modulation:		802.11n: OFE	DM (BIT/SK, QP DM (BIT/SK, QP DM (BIT/SK, Q	SK, BPSK, 160	QAM, 64QAM)	, 256QAM)
Bit Rate of Transmitter: 802.11a: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 300Mbps 802.11nc: at most 866.7 Mbps						
Antenna 1&2 type:		FPC Antenna				
Antenna 1&2 gain:		5.23dBi				
Directional Gain:		8.24dBi				

2.3. Accessory Equipment Information


Equipment Information						
Name	Model	S/N	Manufacturer			
AC Adapter	TEKA012-0502000EU	1	ТЕКА			
Cable Information						
Name	Shielded Type	Ferrite Core	Length			
/	/	/	/			
Test Software Informat	ion					
Name	Version	1	/			
RtkWiFiTest	2.8.1	/	/			

2.4. Operation State

Operation Frequency List:

Band (MHz)	20MHz Bandwidth		40MHz Bandwidth		80MHz Bandwidth	
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	36	5180	20	5100	5190 42 5230	
U-NII-1	40	5200	38	5190		5210
U-INII-1	44	5220	46	5230		
	48	5240				
	149	5745	151	5755	155	5775
	153	5765	151	5755		
U-NII-3	157	5785				
	161	5805	159	5795		
	165	5825				

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

Test channel is below:

Operating	Test	20	MHz	4(OMHz	80MHz	
Band	Channel	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	CH∟	36	5180	38	5190	/	/
U-NII-1	CH_M	40	5200	/	/	42	5210
	CHн	48	5240	46	5230	/	/
	CH∟	149	5745	151	5755	/	/
U-NII-3	CH_M	157	5785	/	/	155	5775
	CHн	165	5825	159	5795	/	/

Data Rated:

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)
802.11a	6Mbps
802.11n(HT20)/ 802.11n(HT40)	HT-MCS0
802.11ac(VHT20)/ 802.11ac(VHT40)/ 802.11ac(VHT80)	VHT-MCS0

Test mode:

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

2.5. Measurement Instruments List

3.	Tonscend RF Test System				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 21, 2025
2	Spectrum Analyzer	R&S	FSV40-N	101654	Aug. 07, 2024
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 12, 2024
4	MXA Signal Analyzer	Keysight	N9020A	MY46471737	Dec. 12, 2024
5	MXA Signal Analyzer	Keysight	N9020A	MY52091402	Aug. 22, 2024
6	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 12, 2024
7	PSG Analog Signal Generator	Agilent	E8257D	MY46521908	Dec. 12, 2024
8	EXG Analog Signal Generator	Keysight	N5173B	MY59100842	Dec. 12, 2024
9	MXG Vector Signal Generator	Keysight	N5182B	MY59100212	Dec. 12, 2024
10	USB Wideband Power Sensor	Keysight	U2021XA	MY55130004	Mar. 21, 2025
11	USB Wideband Power Sensor	Keysight	U2021XA	MY55130006	Mar. 21, 2025
12	Wideband Radio Communication Tester	R&S	CMW500	102414	Dec. 12, 2024
13	RF Control Unit	Tonscend	JS0806-2	/	Aug. 22, 2024
14	High and low temperature test chamber	ESPEC	MT3035	/	Mar. 21, 2025

Radiated Emission

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9163	01026	Dec. 18, 2024
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Sep. 25, 2025
3	Test Receiver	Keysight	N9038A	MY56400071	Dec. 12, 2024
4	Broadband Amplifier	SCHWARZBECK	BBV9743B	259	Dec. 12, 2024
5	Mirowave Broadband Amplifier	SCHWARZBECK	BBV9718C	111	Dec. 12, 2024
6	3m chamber 3	YIHENG	EE106	/	Aug. 28, 2026
7	Test Software	FARA	EZ-EMC	FA-03A2	/

Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until	
1	LISN	R&S	ENV216	101112	Dec. 12, 2024	
2	LISN	R&S	ENV216	101113	Dec. 12, 2024	
3	EMI Test Receiver	R&S	ESCS30	100353	Dec. 12, 2024	
4	ISN CAT6	Schwarzbeck	NTFM 8158	CAT6-8158-0046	Dec. 12, 2024	
5	ISN CAT5	Schwarzbeck	NTFM 8158	CAT5-8158-0046	Dec. 12, 2024	
6	Test Software	R&S	EMC32	6.10.10	/	

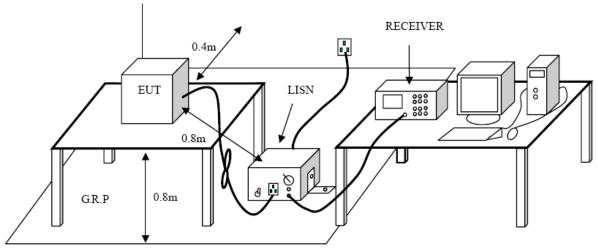
Note: 1. The Cal. Interval was one year.

2. The Cal. Interval was three years of the antenna.

3. The cable loss has been calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

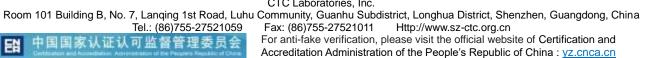
FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS – Gen 8.8:

	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

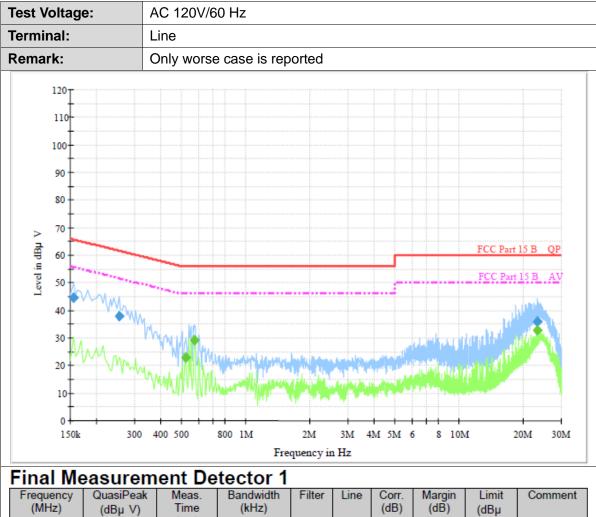
* Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure


- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization 3. network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.

The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)


- Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was 4. individually connected through a LISN to the input power source.
- The excess length of the power cord between the EUT and the LISN receptacle were folded back and 5. forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a 6. receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode

Please refer to the clause 2.4.

(MHz) (dBµ V) Time (ms)	(kHz)			(dB)	(dĔ)	(dBµ V)	
0.154500 44.5 1000.00	9.000	On	L1	9.5	21.3	65.8	
0.253500 38.1 1000.00	9.000	On	L1	9.5	23.5	61.6	
23.091000 36.1 1000.00	9.000	On	L1	9.7	23.9	60.0	

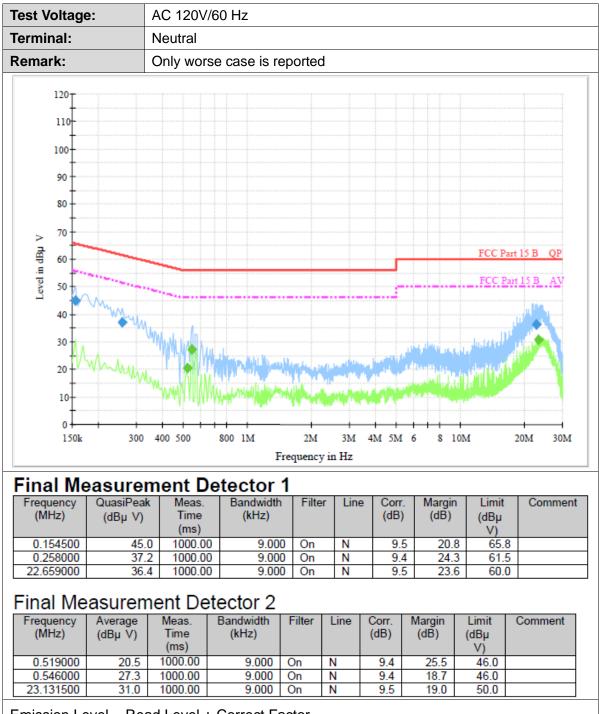
Final Measurement Detector 2

Frequency (MHz)	Average (dBµ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµ	Comment
0.519000	22.8	1000.00	9.000	On	L1	9.5	23.2	46.0	
0.573000	29.2	1000.00	9.000	On	L1	9.5	16.8	46.0	
23.127000	32.7	1000.00	9.000	On	L1	9.7	17.3	50.0	

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059


国家认证认

ΞN

中国

可监督管理委员会

Emission Level = Read Level + Correct Factor

CTC Laboratories, Inc.

Tel.: (86)755-27521059

中国国家认证认

ΕN

可监督管理委员会

3.2. Radiated Emission

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS-Gen 8.9

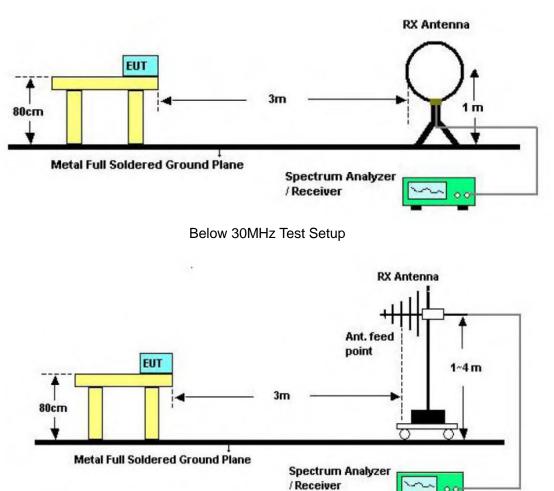
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009~0.490	2400/F (kHz)	300
0.490~1.705	24000/F (kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

Frequency Panas (MHz)	dBµV/m (at 3 meters)		
Frequency Range (MHz)	Peak	Average	
Above 1000	74	54	

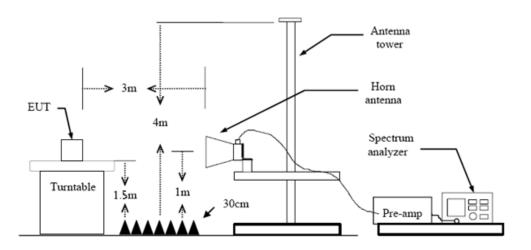
Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level (dBuV/m)= 20log Emission Level (uV/m).


Limits of unwanted emission out of the restricted bands FCC CFR Title 47 Part 15 Subpart C Section 15.407(b)/ RSS-247 6.2.1.2 & RSS-247 6.2.4.2

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
	-27(Note 2)	68.2
5725~5825	10(Note 2)	105.2
5725~5625	15.6(Note 2)	110.8
	27(Note 2)	122.2


Note: 1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field $1000000. \sqrt{30P}$

strength:
$$E = \frac{1000000\sqrt{501}}{2}$$
 uV/m, where P is the eirp (Watts)

2. According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

CTC L	aboratories,	Inc.
-------	--------------	------

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 中国国家认证认可监督管理委员会

- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings

(1) Span shall wide enough to fully capture the emission being measured;
(2) 9k - 150kHz:

RBW=300 Hz, VBW=1 kHz, Sweep=auto, Detector function=peak, Trace=max hold (3) 0.15M – 30MHz:

RBW=10 kHz, VBW=30 kHz, Sweep=auto, Detector function=peak, Trace=max hold (4) 30M - 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(5) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 3.8 Duty Cycle.

Test Mode

Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

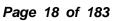
Note:

1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

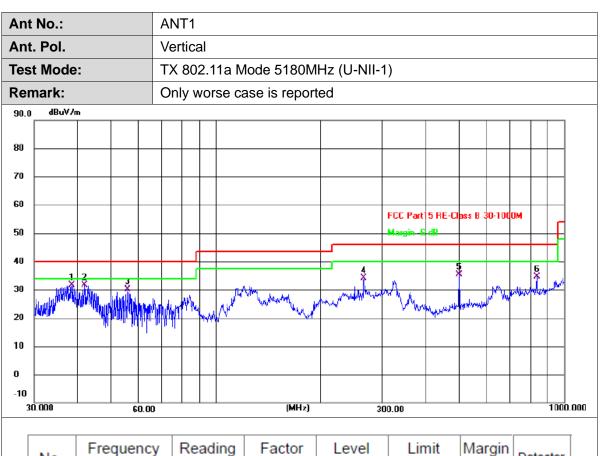
2. Pre-scan all antenna, only show the test data for worse case antenna on the test report.

30MHz-1GHz

Ant	No.:				AN	T1												
Ant	. Pol.				Hor	izo	nta	al										
Tes	t Mode	:			ТΧ	80	2.1	1a N	1ode 5180M	Hz (U-NII-1	1)							
Rer	nark:				Onl	уw	vor	se ca	ase is report	ed								
90.0	dBuV/r	n				-											_	
80																		
70															_		_	
60											FCC Part	5 RE-Cla	ass B 3	:0-10QC	M			
50						_					Margin -G	dB						
40									2	3		4		5 X		6 ¥		
30 20		ath.	المراجل		X	M	***	Mariand	2 WM Marth Wheel	and the second	and had the pro-	ywyrdawi	nanthim	7***	9.00°	ware,		
20 10		M ^{pri} lli		i f hi	NMM ^{R1}													
0																	_	
-10 °	0.000								(MHz)		2.00						1000	
د	0.000		6	0.00					(ME12)	31	00.00						1000	
	No.		que MHz	-				ing V)	Factor (dB/m)	Level (dBuV/m)	Lin (dBu)			rgin B)	De	eteo	tor]
ŀ	4	0.0	0.00	20	_	-	77	-	20.60	07.04	10	-	-	00			_	+


No.	(MHz)	(dBuV)	Factor (dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	85.8983	47.70	-20.69	27.01	40.00	-12.99	QP
2	128.5629	50.39	-20.81	29.58	43.50	-13.92	QP
3	264.7457	48.96	-15.87	33.09	46.00	-12.91	QP
4	499.4246	43.13	-10.50	32.63	46.00	-13.37	QP
5	622.8900	41.18	-7.98	33.20	46.00	-12.80	QP
6 *	833.3170	38.56	-4.96	33.60	46.00	-12.40	QP

Remarks:


1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Accreditation Administration of the People's Republic of China : yz.cnca.cn

1	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	38.6160	48.32	-16.80	31.52	40.00	-8.48	QP
1	2 *	41.8594	47.78	-16.12	31.66	40.00	-8.34	QP
	3	55.8046	46.58	-16.36	30.22	40.00	-9.78	QP
	4	265.6757	50.00	-15.85	34.15	46.00	-11.85	QP
	5	499.4247	45.77	-10.50	35.27	46.00	-10.73	QP
	6	833.3171	39.56	-4.96	34.60	46.00	-11.40	QP

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

可监督管理委员会

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

An	t No.:		ANT1					
An	t. Pol.:		Horizontal					
Tes	st Mode	:	TX 802.11a M	1ode 5180N	IHz (U-NII-1)		
Re	mark:		No report for prescribed lim		n which mor	e than 20 d	B below	the
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	1050.917	49.69	-8.21	41.48	74.00	-32.52	peak
	2	1618.833	47.71	-6.90	40.81	74.00	-33.19	peak
	3	2966.167	45.44	-2.19	43.25	74.00	-30.75	peak
	4	5703.917	41.19	4.54	45.73	74.00	-28.27	peak
	5	8386.833	40.30	10.53	50.83	74.00	-23.17	peak
	6 *	11477.083	3 38.75	14.93	53.68	74.00	-20.32	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1
Ant. Pol.:	Vertical
Test Mode:	TX 802.11a Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1039.167	49.52	-8.24	41.28	74.00	-32.72	peak
2	1618.833	51.26	-6.90	44.36	74.00	-29.64	peak
3	2966.167	49.28	-2.19	47.09	74.00	-26.91	peak
4	5136.000	41.66	2.69	44.35	74.00	-29.65	peak
5	8762.833	39.29	11.33	50.62	74.00	-23.38	peak
6 *	11947.083	38.37	15.35	53.72	74.00	-20.28	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Δ	4 No. i										
AU	t No.:		ANT1								
An	t. Pol.:		Horizontal								
Tes	st Mode	:	TX 802.11a Mode 5200MHz (U-NII-1)								
Re	mark:		No report for t prescribed lim		n which mor	e than 20 dl	B below t	the			
	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1050.917	50.31	-8.21	42.10	74.00	-31.90	peak			
	2	1618.833	47.44	-6.90	40.54	74.00	-33.46	peak			
	3	2966.167	44.49	-2.19	42.30	74.00	-31.70	peak			
	4	6397.167	40.06	7.05	47.11	74.00	-26.89	peak			
	5	9671.500	39.93	12.72	52.65	74.00	-21.35	peak			
	6 *	12444.500	38.09	15.62	53.71	74.00	-20.29	peak			

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t No.:		ANT1									
An	t. Pol.:		Vertical									
Tes	st Mode	:	TX 802.11a M	TX 802.11a Mode 5200MHz (U-NII-1)								
Remark:			No report for the emission which more than 20 dB below the prescribed limit.									
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector				
	1	1050.917	52.01	-8.21	43.80	74.00	-30.20	peak				
	2	1618.833	50.69	-6.90	43.79	74.00	-30.21	peak				
	3	2966.167	48.62	-2.19	46.43	74.00	-27.57	peak				
	4	7235.333	39.35	10.03	49.38	74.00	-24.62	peak				
	5	10415.66	7 39.12	13.90	53.02	74.00	-20.98	peak				
	6 *	12448.41	7 37.71	15.63	53.34	74.00	-20.66	peak				

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

An	t No.:		ANT1							
An	t. Pol.:		Horizontal							
Tes	st Mode):	TX 802.11a Mode 5240MHz (U-NII-1)							
Remark:			No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1050.917	49.53	-8.21	41.32	74.00	-32.68	peak		
	2	1618.833	51.02	-6.90	44.12	74.00	-29.88	peak		
	3	2966.167	45.46	-2.19	43.27	74.00	-30.73	peak		
	4	6714.417	38.91	7.77	46.68	74.00	-27.32	peak		
	5	7924.667	39.87	10.71	50.58	74.00	-23.42	peak		
	6 *	11230.333	38,98	14.78	53.76	74.00	-20.24	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t No.:		ANT1								
An	t. Pol.:		Vertical								
Te	est Mode:		TX 802.11a M	TX 802.11a Mode 5240MHz (U-NII-1)							
Re	mark:			No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1035.250	51.36	-8.25	43.11	74.00	-30.89	peak			
	2	1618.833	50.61	-6.90	43.71	74.00	-30.29	peak			
	3	2966.167	49.33	-2.19	47.14	74.00	-26.86	peak			
	4	7227.500	40.28	10.03	50.31	74.00	-23.69	peak			
	5	8852.917	40.99	11.48	52.47	74.00	-21.53	peak			
	6 *	10807.333	3 39.27	14.46	53.73	74.00	-20.27	peak			

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

中国国家认证认

EN

An	t No.:		ANT1 + ANT2	2						
An	t. Pol.:		Horizontal							
Tes	Test Mode:		TX 802.11n(HT20) Mode 5180MHz (U-NII-1)							
Re	mark:		No report for t prescribed lim		n which mor	e than 20 d	B below t	the		
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1039.167	48.73	-8.24	40.49	74.00	-33.51	peak		
	2	1618.833	48.72	-6.90	41.82	74.00	-32.18	peak		
	3	2966.167	45.33	-2.19	43.14	74.00	-30.86	peak		
	4	6408.917	39.40	7.09	46.49	74.00	-27.51	peak		
	5	8766.750	40.26	11.34	51.60	74.00	-22.40	peak		
	6 *	11684.667	38.41	15.11	53.52	74.00	-20.48	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant N	lo.:		ANT1 + ANT2	2						
Ant. I	Pol.:		Vertical							
Test	Mode	:	TX 802.11n(HT20) Mode 5180MHz (U-NII-1)							
Rema	ark:		No report for t prescribed lim		n which mor	e than 20 d	B below	the		
I	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1050.917	51.70	-8.21	43.49	74.00	-30.51	peak		
	2	1618.833	52.10	-6.90	45.20	74.00	-28.80	peak		
	3	2966.167	50.22	-2.19	48.03	74.00	-25.97	peak		
	4	7298.000	39.65	10.06	49.71	74.00	-24.29	peak		
	5	9272.000	40.03	12.43	52.46	74.00	-21.54	peak		
	6 *	12056.750) 38.00	15.53	53.53	74.00	-20.47	peak		

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT2	2					
An	t. Pol.:		Horizontal						
Tes	st Mode):	TX 802.11n(HT20) Mode 5200MHz (U-NII-1)						
Re	mark:		No report for prescribed lim		n which mor	e than 20 d	B below	the	
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1031.333	50.47	-8.27	42.20	74.00	-31.80	peak	
	2	1587.500	47.96	-6.92	41.04	74.00	-32.96	peak	
	3	2966.167	45.72	-2.19	43.53	74.00	-30.47	peak	
	4	6401.083	39.25	7.07	46.32	74.00	-27.68	peak	
	5	8755.000	41.01	11.31	52.32	74.00	-21.68	peak	

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

15.30

53.77

38.47

2.Margin value = Level -Limit value

11911.833

An	t No.:		ANT1 + ANT2	2					
An	t. Pol.:		Vertical						
Te	st Mode):	TX 802.11n(HT20) Mode 5200MHz (U-NII-1)						
Re	emark:		No report for the emission which more than 20 dB below the prescribed limit.						
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1050.917	50.47	-8.21	42.26	74.00	-31.74	peak	
	2	1618.833	50.78	-6.90	43.88	74.00	-30.12	peak	
	3	2966.167	48.53	-2.19	46.34	74.00	-27.66	peak	
	4	6311.000	39.95	6.71	46.66	74.00	-27.34	peak	
	5	8018.667	39.38	10.81	50.19	74.00	-23.81	peak	
	6 *	10838.66	7 39.09	14.50	53.59	74.00	-20.41	peak	

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

74.00

-20.23

peak

Ant No.:		ANT1 + ANT	2						
Ant. Pol.:	:	Horizontal							
est Mod	le:	TX 802.11n(ł	TX 802.11n(HT20) Mode 5240MHz (U-NII-1)						
Remark:		No report for the emission which more than 20 dB below the prescribed limit.							
No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1	1039.167	50.25	-8.24	42.01	74.00	-31.99	peak		
2	1618.833	48.33	-6.90	41.43	74.00	-32.57	peak		
3	2966.167	45.67	-2.19	43.48	74.00	-30.52	peak		
4	6424.583	39.86	7.13	46.99	74.00	-27.01	peak		
5	7959.917	39.60	10.78	50.38	74.00	-23.62	peak		
6 '	12189.917	7 37.92	15.71	53.63	74.00	-20.37	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT2	2					
An	t. Pol.:		Vertical						
Te	st Mode	:	TX 802.11n(HT20) Mode 5240MHz (U-NII-1)						
Re	Remark:		No report for the emission which more than 20 dB below the prescribed limit.						
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1047.000	51.61	-8.22	43.39	74.00	-30.61	peak	
	2	1618.833	52.31	-6.90	45.41	74.00	-28.59	peak	
	3	2966.167	49.66	-2.19	47.47	74.00	-26.53	peak	
	4	6455.917	39.38	7.21	46.59	74.00	-27.41	peak	
	5	9095.750	39.89	12.01	51.90	74.00	-22.10	peak	
	6 *	12264.333	3 37.88	15.65	53.53	74.00	-20.47	peak	

Remarks:

中国国家认

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

üΕù

An	t No.:		ANT1 + ANT2	2					
An	t. Pol.:		Horizontal						
Te	st Mode	:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)						
Re	mark:		No report for t prescribed lim		n which mor	e than 20 d	B below	the	
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1047.000	48.84	-8.22	40.62	74.00	-33.38	peak	
	2	1618.833	49.29	-6.90	42.39	74.00	-31.61	peak	
	3	2966.167	45.50	-2.19	43.31	74.00	-30.69	peak	
	4	5868.417	40.42	5.17	45.59	74.00	-28.41	peak	
	5	7920.750	40.03	10.69	50.72	74.00	-23.28	peak	
	6 *	10756.417	39.21	14.36	53.57	74.00	-20.43	peak	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	No.:		ANT1 + ANT2	2						
Ant	. Pol.:		Vertical							
Tes	t Mode):	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)							
Ren	Remark:		No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1039.167	50.94	-8.24	42.70	74.00	-31.30	peak		
	2	1618.833	52.06	-6.90	45.16	74.00	-28.84	peak		
	3	2966.167	48.10	-2.19	45.91	74.00	-28.09	peak		
	4	6346.250	41.15	6.85	48.00	74.00	-26.00	peak		
	5	9131.000	40.07	12.14	52.21	74.00	-21.79	peak		
F	6 *	11340.000	38.81	14.83	53.64	74.00	-20.36	peak		

Remarks:

中国

EN

国家い

ilF.

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT2						
An	t. Pol.:		Horizontal						
Tes	st Mode	:	TX 802.11ac(VHT20) Mo	de 5200MH	z (U-NII-1)			
Re	mark:		No report for t prescribed lim		n which mor	e than 20 d	B below t	the	
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	

		(ubuv)	(ub/iii)	(ubu v/m)	(ubu v/m)	(ub)	
1	1047.000	49.09	-8.22	40.87	74.00	-33.13	peak
2	1618.833	48.19	-6.90	41.29	74.00	-32.71	peak
3	2966.167	45.73	-2.19	43.54	74.00	-30.46	peak
4	6201.333	40.02	6.26	46.28	74.00	-27.72	peak
5	8751.083	40.11	11.31	51.42	74.00	-22.58	peak
6 *	12029.333	38.01	15.49	53.50	74.00	-20.50	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT2	2						
An	t. Pol.:		Vertical							
Tes	st Mode	:	TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1)							
Re	Remark:		No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1050.917	51.78	-8.21	43.57	74.00	-30.43	peak		
	2	1618.833	50.70	-6.90	43.80	74.00	-30.20	peak		
	3	2966.167	49.80	-2.19	47.61	74.00	-26.39	peak		
	4	6444.167	40.80	7.18	47.98	74.00	-26.02	peak		
	5	8426.000	40.31	10.59	50.90	74.00	-23.10	peak		
	6 *	12534.58	3 37.74	15.88	53.62	74.00	-20.38	peak		

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Ant No.:	A	NT1 + ANT2					
Ant. Pol.:	н	orizontal					
Test Mode	»: T	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)					
Remark:		o report for t rescribed lim		n which mor	e than 20	dB below t	he
	Frequency	Reading	Factor	Level	Limit	Margin	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	50.32	-8.21	42.11	74.00	-31.89	peak
2	1611.000	47.23	-6.91	40.32	74.00	-33.68	peak
3	2966.167	45.21	-2.19	43.02	74.00	-30.98	peak
4	6416.750	40.27	7.11	47.38	74.00	-26.62	peak
5	9624.500	39.63	12.64	52.27	74.00	-21.73	peak
6*	12389.667	37.95	15.51	53.46	74.00	-20.54	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant	t No.:		ANT1 + ANT2	2					
Ant	t. Pol.:		Vertical						
Tes	t Mode	:	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)						
Rei	mark:		No report for the emission which more than 20 dB below the prescribed limit.						
	No.	Frequence (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1050.917	52.08	-8.21	43.87	74.00	-30.13	peak	
	2	1618.833	50.13	-6.90	43.23	74.00	-30.77	peak	
	3	2966.167	48.62	-2.19	46.43	74.00	-27.57	peak	
	4	4454.500	41.84	1.26	43.10	74.00	-30.90	peak	
	5	8022.583	39.56	10.80	50.36	74.00	-23.64	peak	
	6 *	10897.41	7 38.96	14.56	53.52	74.00	-20.48	peak	

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

中国国家认证认

EN

An	t No.:		ANT1 + ANT2					
An	t. Pol.:		Horizontal					
Te	st Mode):	TX 802.11n(H	T40) Mode	5190MHz (U-NII-1)		
Re	mark:		No report for t prescribed lim		n which mor	e than 20 d	B below t	the
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	48.44	-8.21	40.23	74.00	-33.77	peak
2	1614.917	47.99	-6.91	41.08	74.00	-32.92	peak
3	2966.167	45.67	-2.19	43.48	74.00	-30.52	peak
4	4971.500	41.46	2.22	43.68	74.00	-30.32	peak
5	9127.083	40.50	12.12	52.62	74.00	-21.38	peak
6 *	12236.917	37.98	15.68	53.66	74.00	-20.34	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1035.250	50.72	-8.25	42.47	74.00	-31.53	peak
2	1595.333	50.65	-6.93	43.72	74.00	-30.28	peak
3	2966.167	48.88	-2.19	46.69	74.00	-27.31	peak
4	6726.167	38.75	7.79	46.54	74.00	-27.46	peak
5	8398.583	40.46	10.54	51.00	74.00	-23.00	peak
6 *	11994.083	38.13	15.44	53.57	74.00	-20.43	peak

Remarks:

中国国家认

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

liFi∕

An	t No.:		ANT1 + ANT2	2							
An	t. Pol.:		Horizontal	lorizontal							
Tes	st Mode	:	TX 802.11n(H	IT40) Mode	5230MHz (U-NII-1)					
Remark:			No report for the emission which more than 20 dB below the prescribed limit.								
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1050.917	49.75	-8.21	41.54	74.00	-32.46	peak			
	2	1618.833	48.31	-6.90	41.41	74.00	-32.59	peak			
	3	2966.167	45.27	-2.19	43.08	74.00	-30.92	peak			
	4	5602.083	40.01	4.11	44.12	74.00	-29.88	peak			
	5	9205.417	40.14	12.37	52.51	74.00	-21.49	peak			
	6 *	12025.417	7 37.94	15.48	53.42	74.00	-20.58	peak			

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT2	2							
An	t. Pol.:		Vertical	Vertical TX 802.11n(HT40) Mode 5230MHz (U-NII-1)							
Te	st Mode	:	TX 802.11n(H								
Remark:			•	No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequence (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1039.167	52.33	-8.24	44.09	74.00	-29.91	peak			
	2	1614.917	51.29	-6.91	44.38	74.00	-29.62	peak			
	3	2966.167	48.55	-2.19	46.36	74.00	-27.64	peak			
	4	4904.917	41.62	2.13	43.75	74.00	-30.25	peak			
	5	8003.000	39.96	10.86	50.82	74.00	-23.18	peak			
	6 *	12068.50	0 38.01	15.54	53.55	74.00	-20.45	peak			

Remarks:

中国国家认

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 可监督管理委员会

üΕù

Ant No.: Ant. Pol.:			ANT1 + ANT2	2							
			Horizontal								
Tes	st Mode):	TX 802.11ac(TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)							
Re	mark:		No report for prescribed lim		n which mor	e than 20 d	B below	the			
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1050.917	48.23	-8.21	40.02	74.00	-33.98	peak			
	2	1614.917	47.45	-6.91	40.54	74.00	-33.46	peak			

3

4

5

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

-2.19

7.96

12.30

15.12

43.81

47.39

52.02

53.50

74.00

74.00

74.00

74.00

-30.19

-26.61

-21.98

-20.50

peak

peak

peak

peak

46.00

39.43

39.72

38.38

2.Margin value = Level -Limit value

2966.167

6808.417

9181.917

11618.083

An	t No.:		ANT1 + ANT	2							
An	t. Pol.:		Vertical	/ertical TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)							
Te	st Mode	:	TX 802.11ac								
Remark:				No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1039.167	7 50.70	-8.24	42.46	74.00	-31.54	peak			
	2	1618.833	3 49.58	-6.90	42.68	74.00	-31.32	peak			
	3	2966.167	48.82	-2.19	46.63	74.00	-27.37	peak			
	4	7223.583	39.72	10.03	49.75	74.00	-24.25	peak			
	5	9095.750	39.83	12.01	51.84	74.00	-22.16	peak			
	6 *	12354.41	7 38.23	15.54	53.77	74.00	-20.23	peak			

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

An	t No.:		ANT1 + ANT2) -						
An	t. Pol.:		Horizontal	lorizontal						
Tes	st Mode	:	TX 802.11ac(VHT40) Mo	de 5230MH	z (U-NII-1)				
Remark:			No report for the emission which more than 20 dB below the prescribed limit.							
	No. Frequency (MHz)		Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1050.917	50.14	-8.21	41.93	74.00	-32.07	peak		
	2	1618.833	50.11	-6.90	43.21	74.00	-30.79	peak		
	3	2966.167	45.08	-2.19	42.89	74.00	-31.11	peak		
	4	6526.417	40.30	7.39	47.69	74.00	-26.31	peak		
	5	9373.833	40.70	12.52	53.22	74.00	-20.78	peak		
	6 *	11340.000	38.93	14.83	53.76	74.00	-20.24	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1039.167	50.42	-8.24	42.18	74.00	-31.82	peak
2	1618.833	50.27	-6.90	43.37	74.00	-30.63	peak
3	2966.167	48.40	-2.19	46.21	74.00	-27.79	peak
4	7826.750	39.83	10.47	50.30	74.00	-23.70	peak
5	9581.417	40.06	12.60	52.66	74.00	-21.34	peak
6 *	11257.750	38.92	14.79	53.71	74.00	-20.29	peak

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

An	Ant No.:			NT1 + ANT2							
An	Ant. Pol.:		Но	orizontal							
Tes	st Mode):	Tک	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)							
Remark:				o report for t escribed lim		n which mor	e than 20 d	B below t	the		
	No.	Frequenc (MHz)	y	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1047.000)	49.24	-8.22	41.02	74.00	-32.98	peak		
	2	2966.167	7	44.89	-2.19	42.70	74.00	-31.30	peak		
	3	3925.750)	41.27	0.25	41.52	74.00	-32.48	peak		
	4	7231.417	7	39.54	10.03	49.57	74.00	-24.43	peak		

5

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

10.75

14.84

50.67

53.53

74.00

74.00

-23.33

-20.47

peak

peak

39.92

38.69

2.Margin value = Level -Limit value

8050.000

11367.417

Ant	No.:		ANT1 + ANT2	2						
Ant.	nt. Pol.:		Vertical							
Test	Mode	:	TX 802.11ac(VHT80) Mo	de 5210MH	z (U-NII-1)				
Remark:			No report for t prescribed lim		n which moi	re than 20 d	B below	the		
	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1050.917	53.69	-8.21	45.48	74.00	-28.52	peak		
	2	1618.833	52.06	-6.90	45.16	74.00	-28.84	peak		
	3	2966.167	48.96	-2.19	46.77	74.00	-27.23	peak		
	4	4047.167	42.30	0.59	42.89	74.00	-31.11	peak		
	5	7251.000	39.35	10.04	49.39	74.00	-24.61	peak		
	6 *	12287.833	3 38.11	15.62	53.73	74.00	-20.27	peak		

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

An	Ant No.:		ANT1					
An	t. Pol.:		Horizontal					
Test Mode:TX 802.11a Mode 5745MHz (U-NII-3)								
Remark:			No report for prescribed lin		n which moi	e than 20 d	B below	the
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	1050.917	48.66	-8.21	40.45	74.00	-33.55	peak
	2	1618.833	3 48.97	-6.90	42.07	74.00	-31.93	peak
	3	2966.167	45.71	-2.19	43.52	74.00	-30.48	peak
	4	6424.583	39.23	7.13	46.36	74.00	-27.64	peak

5

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

10.30

14.79

50.05

53.54

74.00

74.00

-23.95

-20.46

peak

peak

39.75

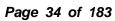
38.75

2.Margin value = Level -Limit value

7732.750

11261.667

An	t No.:		ANT1								
An	Ant. Pol.:		Vertical	Vertical							
Tes	st Mode	:	TX 802.11a M	lode 5745N	1Hz (U-NII-3)					
Remark:			No report for prescribed lim		n which mor	e than 20 d	B below	gin 3) Detector 30 peak 96 peak			
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1031.333	51.97	-8.27	43.70	74.00	-30.30	peak			
	2	1618.833	50.94	-6.90	44.04	74.00	-29.96	peak			
	3	2966.167	47.91	-2.19	45.72	74.00	-28.28	peak			
	4	7204.000	39.85	10.02	49.87	74.00	-24.13	peak			
	5	9162.333	39.64	12.24	51.88	74.00	-22.12	peak			
		11383.083	3 38.78	14.85	53.63	74.00	-20.37	peak			


Remarks:

EN

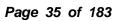
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Ant	Ant No.:		ANT1					
Ant.	Pol.:		Horizontal					
Test	Mode	:	TX 802.11a M	lode 5785M	1Hz (U-NII-3)		
Remark:			No report for t prescribed lim		n which mor	e than 20 d	B below t	argin (dB) Detector 32.79 peak 32.40 peak
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	1050.917	49.42	-8.21	41.21	74.00	-32.79	peak
	2	1618.833	48.50	-6.90	41.60	74.00	-32.40	peak
	3	2966.167	46.27	-2.19	44.08	74.00	-29.92	peak
	4	5496.333	39.89	3.73	43.62	74.00	-30.38	peak
F	5	9644.083	39.54	12.67	52.21	74.00	-21.79	peak
	6 *	11947.083	3 38.13	15.35	53.48	74.00	-20.52	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


2.Margin value = Level -Limit value

An	Ant No.: Ant. Pol.:		ANT1								
An			Vertical	Vertical							
Tes	st Mode	:	TX 802.11a M	lode 5785M	1Hz (U-NII-3)					
Remark:			No report for prescribed lin		n which mor	e than 20 d	B below	w the			
	No.	Frequence (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1050.917	50.42	-8.21	42.21	74.00	-31.79	peak			
	2	1618.833	51.97	-6.90	45.07	74.00	-28.93	peak			
	3	2966.167	48.94	-2.19	46.75	74.00	-27.25	peak			
	4	6440.250	39.89	7.17	47.06	74.00	-26.94	peak			
	5	9166.250	39.59	12.26	51.85	74.00	-22.15	peak			
	6 *	11520.16	7 38.78	14.99	53.77	74.00	-20.23	peak			

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant No.:	ANT1
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11a Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.
	Desting Factor Level List's Marcia

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1031.333	49.42	-8.27	41.15	74.00	-32.85	peak
2	1618.833	48.08	-6.90	41.18	74.00	-32.82	peak
3	2966.167	45.22	-2.19	43.03	74.00	-30.97	peak
4	5966.333	40.14	5.53	45.67	74.00	-28.33	peak
5	9311.167	39.79	12.46	52.25	74.00	-21.75	peak
6 *	11951.000	38.10	15.37	53.47	74.00	-20.53	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t No.:		ANT1								
An	Ant. Pol.:		Vertical	Vertical							
Tes	st Mode	:	TX 802.11a M	lode 5825M	IHz (U-NII-3)					
Remark:			No report for prescribed lim		n which mor	e than 20 d	B below t				
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1050.917	50.65	-8.21	42.44	74.00	-31.56	peak			
	2	1618.833	51.77	-6.90	44.87	74.00	-29.13	peak			
	3	2966.167	48.33	-2.19	46.14	74.00	-27.86	peak			
	4	7204.000	39.14	10.02	49.16	74.00	-24.84	peak			
	5	9174.083	39.85	12.28	52.13	74.00	-21.87	peak			
	6 *	12362.250	0 38.06	15.54	53.60	74.00	-20.40	peak			

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant	No.:		ANT1 + ANT2	2				
Ant	Ant. Pol.:		Horizontal					
Tes	t Mode	:	TX 802.11n(H	T20) Mode	5745MHz (U-NII-3)		
Remark:			No report for t prescribed lim		n which mor	e than 20 d	B below t	the
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	1050.917	51.37	-8.21	43.16	74.00	-30.84	peak
	2	1618.833	48.36	-6.90	41.46	74.00	-32.54	peak
	3	2966.167	45.33	-2.19	43.14	74.00	-30.86	peak
	4	6377.583	40.88	6.97	47.85	74.00	-26.15	peak
	5	9573.583	39.56	12.59	52.15	74.00	-21.85	peak
F	6 *	12146.833	3 38,10	15.65	53.75	74.00	-20.25	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT2	2							
An	Ant. Pol.:		Vertical	Vertical							
Tes	st Mode	:	TX 802.11n(H	IT20) Mode	5745MHz (U-NII-3)					
Remark:			No report for t prescribed lim		n which moi	re than 20 d	B below	ow the			
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector			
	1	1031.333	51.29	-8.27	43.02	74.00	-30.98	peak			
	2	1611.000	52.49	-6.91	45.58	74.00	-28.42	peak			
	3	2966.167	49.75	-2.19	47.56	74.00	-26.44	peak			
	4	5633.417	41.13	4.25	45.38	74.00	-28.62	peak			
	5	7215.750	38.89	10.03	48.92	74.00	-25.08	peak			
	6 *	11269.50	38.86	14.79	53.65	74.00	-20.35	peak			

Remarks:

中国国家认

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

üΕù

An	t No.:		ANT1 + ANT2						
An	t. Pol.:		Horizontal						
Tes	Test Mode:		TX 802.11n(H	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)					
Re	mark:		No report for t prescribed lim		n which mor	e than 20 dl	B below 1	the	
	No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	4	4050.047	7 40 47	0.04	44.00	74.00	00.74	1	

1	1050.917	49.47	-8.21	41.26	74.00	-32.74	peak
2	1618.833	47.94	-6.90	41.04	74.00	-32.96	peak
3	2966.167	45.13	-2.19	42.94	74.00	-31.06	peak
4	6549.917	39.78	7.45	47.23	74.00	-26.77	peak
5	9816.417	40.24	12.96	53.20	74.00	-20.80	peak
6 *	11727.750	38.22	15.10	53.32	74.00	-20.68	peak
	3 4 5	2 1618.833 3 2966.167 4 6549.917 5 9816.417	2 1618.833 47.94 3 2966.167 45.13 4 6549.917 39.78 5 9816.417 40.24	2 1618.833 47.94 -6.90 3 2966.167 45.13 -2.19 4 6549.917 39.78 7.45 5 9816.417 40.24 12.96	2 1618.833 47.94 -6.90 41.04 3 2966.167 45.13 -2.19 42.94 4 6549.917 39.78 7.45 47.23 5 9816.417 40.24 12.96 53.20	2 1618.833 47.94 -6.90 41.04 74.00 3 2966.167 45.13 -2.19 42.94 74.00 4 6549.917 39.78 7.45 47.23 74.00 5 9816.417 40.24 12.96 53.20 74.00	2 1618.833 47.94 -6.90 41.04 74.00 -32.96 3 2966.167 45.13 -2.19 42.94 74.00 -31.06 4 6549.917 39.78 7.45 47.23 74.00 -26.77 5 9816.417 40.24 12.96 53.20 74.00 -20.80

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT2	2					
An	t. Pol.:		Vertical						
Tes	st Mode	:	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)						
Re	mark:		No report for the emission which more than 20 dB below the prescribed limit.						
	No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1039.167	7 51.28	-8.24	43.04	74.00	-30.96	peak	
	2	1618.833	51.15	-6.90	44.25	74.00	-29.75	peak	
	3	2966.167	47.82	-2.19	45.63	74.00	-28.37	peak	
	4	7239.250) 39.27	10.03	49.30	74.00	-24.70	peak	
	5	9217.167	39.21	12.38	51.59	74.00	-22.41	peak	
	6 *	11919.66	7 38.14	15.31	53.45	74.00	-20.55	peak	

Remarks:

中国国家认

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 可监督管理委员会

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

An	t No.:		ANT1 + ANT2	2					
An	t. Pol.:		Horizontal						
Tes	Test Mode:		TX 802.11n(H	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)					
Re	mark:			No report for the emission which more than 20 dB below the prescribed limit.					
			•						
	No.	Frequenc	y Reading	Factor	Level	Limit	Margin	Detector	

NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
1	1050.917	49.79	-8.21	41.58	74.00	-32.42	peak
2	1611.000	47.72	-6.91	40.81	74.00	-33.19	peak
3	2966.167	45.15	-2.19	42.96	74.00	-31.04	peak
4	4893.167	42.59	2.11	44.70	74.00	-29.30	peak
5	8758.917	40.19	11.33	51.52	74.00	-22.48	peak
6 *	11539.750	38.57	15.02	53.59	74.00	-20.41	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT	2						
An	t. Pol.:		Vertical							
Tes	st Mode	:	TX 802.11n(H	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)						
Re	Remark:		No report for the emission which more than 20 dB below the prescribed limit.							
	No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1039.167	7 51.77	-8.24	43.53	74.00	-30.47	peak		
	2	1618.833	3 51.89	-6.90	44.99	74.00	-29.01	peak		
	3	2966.167	49.77	-2.19	47.58	74.00	-26.42	peak		
	4	4262.583	3 41.98	0.86	42.84	74.00	-31.16	peak		
	5	7270.583	39.06	10.05	49.11	74.00	-24.89	peak		
	6 *	10811.25	0 38.85	14.47	53.32	74.00	-20.68	peak		

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

peak

-20.77

An	t No.:		ANT1 + ANT2						
An	t. Pol.:		Horizontal						
Tes	st Mode):	TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)						
Re	mark:		No report for t prescribed lim		n which mor	e than 20 d	B below 1	the	
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1039.167	50.68	-8.24	42.44	74.00	-31.56	peak	
	2	1618.833	47.83	-6.90	40.93	74.00	-33.07	peak	
	3	2966.167	44.45	-2.19	42.26	74.00	-31.74	peak	
	4	5950.667	40.52	5.48	46.00	74.00	-28.00	peak	
	5	10623.250	38.83	14.08	52.91	74.00	-21.09	peak	

Remarks:

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

15.57

53.23

74.00

37.66

2.Margin value = Level -Limit value

12424.917

An	t No.:		ANT1 + ANT2	2					
An	t. Pol.:		Vertical						
Te	st Mode	:	TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)						
Re	Remark:			No report for the emission which more than 20 dB below the prescribed limit.					
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1050.917	51.31	-8.21	43.10	74.00	-30.90	peak	
	2	1618.833	50.14	-6.90	43.24	74.00	-30.76	peak	
	3	2966.167	49.75	-2.19	47.56	74.00	-26.44	peak	
	4	6463.750	39.31	7.23	46.54	74.00	-27.46	peak	
	5	9518.750	39.74	12.58	52.32	74.00	-21.68	peak	
	6 *	12444.50	0 37.81	15.62	53.43	74.00	-20.57	peak	

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

An	t No.:		ANT1 + ANT2	2					
An	t. Pol.:		Horizontal TX 802.11ac(VHT20) Mode 5785MHz (U-NII-3)						
Tes	st Mode):							
Re	mark:		No report for t prescribed lim		n which mor	e than 20 d	B below	the	
	No.	Frequency (MHz)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1050.917	49.58	-8.21	41.37	74.00	-32.63	peak	
	2	1618.833	50.28	-6.90	43.38	74.00	-30.62	peak	
	3	2966.167	44.52	-2.19	42.33	74.00	-31.67	peak	
	4	7956.000	40.03	10.77	50.80	74.00	-23.20	peak	
	5	10016.167	38.94	13.21	52.15	74.00	-21.85	peak	
	6 *	11896.167	38.48	15.26	53.74	74.00	-20.26	peak	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT2	2						
An	t. Pol.:		Vertical							
Te	st Mode	:	TX 802.11ac(TX 802.11ac(VHT20) Mode 5785MHz (U-NII-3)						
Re	mark:		No report for t prescribed lim		n which mor	e than 20 d	B below	the		
	No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1031.333	53.26	-8.27	44.99	74.00	-29.01	peak		
	2	1611.000	49.64	-6.91	42.73	74.00	-31.27	peak		
	3	2966.167	50.33	-2.19	48.14	74.00	-25.86	peak		
	4	6722.250	39.99	7.78	47.77	74.00	-26.23	peak		
	5	8006.917	39.65	10.85	50.50	74.00	-23.50	peak		
	6 *	12095.91	7 37.91	15.58	53.49	74.00	-20.51	peak		

Remarks:

中国国家认

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

üΕù

An	t No.:		ANT1 + ANT2					
An	t. Pol.:		Horizontal					
Tes	st Mode):	TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3)					
Re	mark:		No report for t prescribed lim		n which mor	e than 20	dB below the	
		1				1		·
		Frequency	/ Reading	Factor	Level	Limit	Margin	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1050.917	50.06	-8.21	41.85	74.00	-32.15	peak
2	1614.917	47.62	-6.91	40.71	74.00	-33.29	peak
3	2966.167	44.94	-2.19	42.75	74.00	-31.25	peak
4	6397.167	39.86	7.05	46.91	74.00	-27.09	peak
5	10188.500	39.62	13.57	53.19	74.00	-20.81	peak
6 *	12362.250	37.88	15.54	53.42	74.00	-20.58	peak

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT2	2						
An	Ant. Pol.:		Vertical	Vertical						
Te	st Mode	:	TX 802.11ac(VHT20) Mo	de 5825MH	z (U-NII-3)				
Remark:			No report for prescribed lin		n which mor	e than 20 d	B below	the		
	No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1031.333	52.43	-8.27	44.16	74.00	-29.84	peak		
	2	1618.833	51.78	-6.90	44.88	74.00	-29.12	peak		
	3	2966.167	50.56	-2.19	48.37	74.00	-25.63	peak		
	4	5707.833	3 40.46	4.55	45.01	74.00	-28.99	peak		
	5	9068.333	39.79	11.92	51.71	74.00	-22.29	peak		
	6 *	12158.58	3 37.91	15.66	53.57	74.00	-20.43	peak		

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

中国国家认证认

EN

An	t No.:		ANT1 + ANT2	2						
An	Ant. Pol.:		Horizontal	Horizontal						
Гез	st Mode	:	TX 802.11n(H	T40) Mode	9755MHz (U-NII-3)				
Remark:			No report for t prescribed lim		n which mor	e than 20 d	B below	the		
	No.	Frequency (MHz)	/ Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1031.333	51.29	-8.27	43.02	74.00	-30.98	peak		
	2	1618.833	50.73	-6.90	43.83	74.00	-30.17	peak		
	3	2966.167	44.47	-2.19	42.28	74.00	-31.72	peak		
	4	5754.833	40.20	4.75	44.95	74.00	-29.05	peak		
	5	9150.583	38.87	12.20	51.07	74.00	-22.93	peak		
	6 *	12041.083	3 37.89	15.51	53.40	74.00	-20.60	peak		

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1031.333	50.85	-8.27	42.58	74.00	-31.42	peak
2	1618.833	52.01	-6.90	45.11	74.00	-28.89	peak
3	2966.167	49.97	-2.19	47.78	74.00	-26.22	peak
4	6393.250	39.26	7.04	46.30	74.00	-27.70	peak
5	10376.500	39.09	13.85	52.94	74.00	-21.06	peak
6 *	12381.833	38.06	15.52	53.58	74.00	-20.42	peak

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT2	2					
An	Ant. Pol.:		Horizontal						
Te	st Mode	:	TX 802.11n(H	IT40) Mode	5795MHz (U-NII-3)			
Remark:			No report for prescribed lim		n which mor	e than 20 d	B below	the	
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1050.917	49.59	-8.21	41.38	74.00	-32.62	peak	
	2	1618.833	48.93	-6.90	42.03	74.00	-31.97	peak	
	3	2966.167	45.93	-2.19	43.74	74.00	-30.26	peak	
	4	5331.833	40.88	3.22	44.10	74.00	-29.90	peak	
	5	9283.750	39.29	12.44	51.73	74.00	-22.27	peak	
	6 *	12189.917	7 37.73	15.71	53.44	74.00	-20.56	peak	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT2	2						
An	Ant. Pol.:		Vertical	Vertical						
Tes	st Mode	:	TX 802.11n(H	IT40) Mode	5795MHz (U-NII-3)				
Re	Remark:			lo report for the emission which more than 20 dB below the rescribed limit.						
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
	1	1031.333	53.49	-8.27	45.22	74.00	-28.78	peak		
	2	2942.667	44.64	-2.24	42.40	74.00	-31.60	peak		
	3	4724.750	40.98	1.84	42.82	74.00	-31.18	peak		
	4	7204.000	39.29	10.02	49.31	74.00	-24.69	peak		
	5	8312.417	41.11	10.45	51.56	74.00	-22.44	peak		
	6 *	11238.167	7 38.58	14.78	53.36	74.00	-20.64	peak		

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Tel.: (86)755-27521059 可监督管理委员会

中国国家认证认

EN

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

Ant No.:			ANT1 + ANT2						
Ant. Pol.:			Horizontal						
Test Mode:			TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3)						
Re	mark:		No report for t prescribed lim		n which mor	e than 20 d	B below t	the	
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	•

40.88

40.19

43.66

43.31

48.64

53.52

74.00

74.00

74.00

74.00

74.00

74.00

-33.12

-33.81

-30.34

-30.69

-25.36

-20.48

peak

peak

peak

peak

peak

peak

-8.24

-6.90

-2.19

2.91

10.05

15.10

Re	marks:	

1

2

3

4

5

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

1039.167

1618.833

2966.167

5214.333

7270.583

11727.750

49.12

47.09

45.85

40.40

38.59

38.42

An	t No.:		ANT1 + ANT2	2					
An	Ant. Pol.:		Vertical	Vertical					
Te	st Mode	:	TX 802.11ac(VHT40) Mo	de 5755MH:	z (U-NII-3)			
Remark:			No report for prescribed lin		n which mor	e than 20 d	B below t	the	
	No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	1035.250	51.74	-8.25	43.49	74.00	-30.51	peak	
	2	1618.833	51.61	-6.90	44.71	74.00	-29.29	peak	
	3	2966.167	48.49	-2.19	46.30	74.00	-27.70	peak	
	4	5625.583	41.17	4.21	45.38	74.00	-28.62	peak	
	5	7482.083	39.35	10.09	49.44	74.00	-24.56	peak	
	6 *	12323.08	3 38.11	15.58	53.69	74.00	-20.31	peak	

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

Ant No.:			ANT1 + ANT2	2					
Ant. Pol.:			Horizontal						
Test Mode:			TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)						
Re	mark:		No report for t prescribed lim		n which mor	e than 20 d	B below t	the	
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	

41.30

42.98

43.85

50.03

52.04

53.54

74.00

74.00

74.00

74.00

74.00

74.00

-32.70

-31.02

-30.15

-23.97

-21.96

-20.46

peak

peak

peak

peak

peak

peak

-8.21

-6.91

-2.19

10.56

12.20

15.44

Remarks:	

1

2

3

4

5

6 *

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

1050.917

1614.917

2966.167

7862.000

9150.583

11990.167

49.51

49.89

46.04

39.47

39.84

38.10

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1039.167	50.71	-8.24	42.47	74.00	-31.53	peak
2	1618.833	52.45	-6.90	45.55	74.00	-28.45	peak
3	2966.167	49.64	-2.19	47.45	74.00	-26.55	peak
4	5629.500	41.03	4.23	45.26	74.00	-28.74	peak
5	8081.333	39.63	10.67	50.30	74.00	-23.70	peak
6 *	11610.250	38.44	15.13	53.57	74.00	-20.43	peak

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

An	t No.:		ANT1 + ANT2	2				
An	t. Pol.:		Horizontal					
Te	st Mode):	TX 802.11ac(VHT80) Mo	de 5775MH	z (U-NII-3)		
Re	mark:		No report for prescribed lin		n which mor	e than 20 d	B below	the
	No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	1054.833	51.53	-8.19	43.34	74.00	-30.66	peak
	2	1618.833	49.54	-6.90	42.64	74.00	-31.36	peak
	3	2966.167	45.94	-2.19	43.75	74.00	-30.25	peak
	4	7207.917	39.78	10.02	49.80	74.00	-24.20	peak
	5	8876.417	40.81	11.52	52.33	74.00	-21.67	peak

* 6

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

15.51

53.29

74.00

-20.71

peak

37.78

2.Margin value = Level -Limit value

12048.917

Ant No.:		ANT1 + ANT2	2				
Ant. Pol.:		Vertical					
Test Mode	:	TX 802.11ac(VHT80) Mo	de 5775MH	z (U-NII-3)		
Remark:		No report for t prescribed lim		n which mor	e than 20 d	B below	the
No.	Frequency (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	1039.167	52.06	-8.24	43.82	74.00	-30.18	peak
2	1599.250	48.93	-6.93	42.00	74.00	-32.00	peak
3	2966.167	48.67	-2.19	46.48	74.00	-27.52	peak
4	7192.250	39.01	9.98	48.99	74.00	-25.01	peak
5	8758.917	40.93	11.33	52.26	74.00	-21.74	peak
6 *	11986.250	38.14	15.42	53.56	74.00	-20.44	peak

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

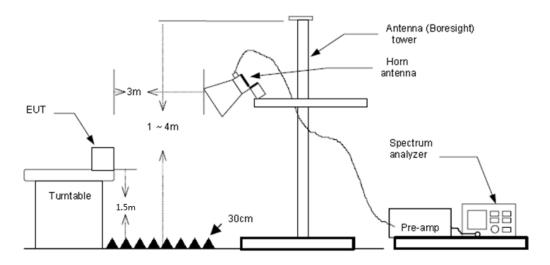
üΕù

3.3. Band Edge Emissions

<u>Limit</u>

Limits of unwanted emission out of the restricted bands

FCC CFR Title 47 Part 15 Subpart C Section 15.407(b)/ RSS-247 6.2.1.2 & RSS-247 6.2.4.2


Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
	-27(Note 2)	68.2
	10(Note 2)	105.2
5725~5825	15.6(Note 2)	110.8
	27(Note 2)	122.2

Note: 1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field $1000000 \sqrt{200}$

strength: $E = \frac{1000000\sqrt{30P}}{2} uV/m$, where P is the eirp (Watts)

2. According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 a level of 27 dBm/MHz at the band edge.

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. The receiver set as follow:

RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause Duty Cycle.

Test Mode

Please refer to the clause 2.4.

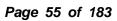
Test Results

Note: Pre-scan all antenna, only show the test data for worse case antenna on the test report.

Ant	No.:				Α	NT1																
Ant	. Pol.:				Н	orizo	onta	I														
Tes	t Mod	e:			T.	X 80)2.11	la M	lode	5180	ЭM	Hz (U	-NI	I-1)								
Rer	nark:						port ribec			miss	sior	n whic	h n	nore	e th	nan 20	dB b	elo	W 1	the		
100	.0 dBuV	'/m							1										_			1
90							<u> </u>											5				
80		_					<u> </u>							FCC	0	15 RE-Clas			C D	-		
70														FLU	all	10 NE-CI45		ove i		<u>к</u>		
60																						
50														FCC	Parl	15 RE-Clas	s B Ab	ove 1	6 4	v		
40	***									والتحديد والسع		n dan taran dan				2	-	J			home	
30																						
20	<u> </u>						<u> </u>												_			
10	<u> </u>						<u> </u>												+			
0.0	0 5000.000	502	0.00	504	0.00	506	0.00	50	80.00	(Mł	12)	512	20.00	1	5140	1.00 5 [.]	60.00		5180	0.00	520))0.00
	No.	F	Freq (M	uen Hz)			eadi IBu\	_		acto B/m)		Le (dBu				Limit BuV/m		arg dB)		Det	tecto	r
ŀ	1		515	0.00	00	1	6.0	9	3	7.18	_	53	.27		1	74.00	-2	0.7	3	p	eak	†
ľ	2 *		515	0.00	00		3.12	2	3	7.18		40	.30		(54.00	-1	3.7	0	Α	VG	†
-	narks:																	_				
	actor (argin \								/m)+	Cabl	e F	actor	dl'	B)-F	Pre	-amplif	ier F	act	or			

nt No.:		ANT1											
nt. Pol.:		Vertic	al										
st Mode:	:	TX 80)2.11a N	lode 5180)MH	z (U·	-NII-1))					
emark:			port for t ribed lim	the emiss nit.	ion v	whicl	h mor	e th	an 20 d	B belo	ow 1	the	
)0.0 dBuV/n	n												
,					 			_					
ı	+						FCC	Part1	5 RE-Class	B Above 1	1 <u>6 P</u>	rk }	_
)													
,					 		FCC	Paul	5 RE Class	B Above 1		~	
,	+								X		Ĥ		
)						14			2 Z				L
ı													_
ı	+										_		-
)													_
).0 4996.000 5		<u></u>	6.00 50	76.00 (MF			6.00	5136	00 51	6.00	5170	c 00	5196.
No.	Frequenc (MHz)	-	eading dBuV)	Factor (dB/m)		Lev dBu'		1	Limit 3uV/m)	Marg (dB		Dete	ctor
1	5150.000	0 1	13.92	37.18		51.	10	7	4.00	-22.9	90	pea	ak
2 *	5150.000	0	2.74	37.18		39.	92	5	64.00	-14.0	08	AV	G
1	(MHz) 5150.000) (0 0 1	dBuV) 13.92	(dB/m) 37.18) ((dBu` 51.	V/m) 10	(dE 7	3uV/m) 74.00	(dB -22.9	90	pe	ea

An	t No.:		ANT	Γ1									
An	t. Pol.:		Hor	izontal									
	t Mode	:			/lode 5240		•		,				
Rei	mark:			report for scribed lin	the emiss nit.	sio	n whic	h mor	e than 20) d	B below	the	
100.	.0 dBuV/r	n			1								7
90													_
80		$\overline{\mathbf{h}}$											
70								FCC	Part 15 RE-C	ass	B Above 16	PK	-
]
60								FCC	Part 15 RE-C	ass	B Above 1G	٩V	
50								_ <u>×</u>					-
40	alour !!	him	anices duro/re			u		2	n and a statistical	- deserv	energia esta esta de per		-
30													
20													
10 0.0													1
		243.00 526	3.00 5	283.00 53	03.00 (MH	lz)	534	3.00	5363.00	538	3.00 54) 03.00 54	23.00
	No.	Frequer (MHz)		Reading (dBuV)	Factor		Lev (dBu)		Limit (dBuV/r		Margin (dB)	Detecto	r
	1	5350.00		12.64	37.40	<u> </u>	50.		74.00		-23.96	peak	+
	2 *	5350.00		2.68	37.40		40.		54.00		-13.92	AVG	+
Rer	marks:		I		1		I		1		1	1	
		B/m) = Ant alue = Leve			/m)+Cabl	e F	actor	(dB)-	Pre-amp	lifie	er Factor		


Ant	: No.:		ANT1										
Ant	. Pol.:		Vertical										
Tes	t Mode	:	TX 802.1	1a Mo	ode 5240	DM	Hz (U·	-NII-1)				
Rer	nark:		No repor			ior	h whicl	h mor	e th	an 20 dl	B below	the	
100	.0 dBuVh	 n			II.								
90	<u> </u>								\rightarrow				
80	\square	\rightarrow											
70								FLL	Parti	5 RE-Ulass	8 Above 16 F	×	
60													
00								1 FCC X	Part 1	5 RE-Class	B Above 1G /	w.	
50	\square												
40	-			6			orrene e e e e e e e e e e e e e e e e e	2 X		encolonose os shyren enc			
30													
20													
10 0.(
		5244.00 5264	.00 5284.00	530	 4.00 (MH	lz)	534	4.00	5364	.00 538	4.00 540	4.00 5424	L.00
r									I				т
	No.	Frequence (MHz)	cy Read (dBu	~ .	Factor (dB/m)		Lev (dBu)		1	₋imit 3uV/m)	Margin (dB)	Detector	
	1	5350.00	0 14.1	18	37.40		51.	58	7	4.00	-22.42	peak	
	2 *	5350.00	0 3.2	3	37.40		40.	63	5	4.00	-13.37	AVG	
L	1		1	I			1						1
1.Fa		B/m) = Ante alue = Leve			m)+Cabl	e F	actor	(dB)-	Pre-	amplifie	r Factor		

nt No.:		ANT	1 + AN	NT2										
nt. Pol.:		Horiz	contal											
est Mode	:				T20) Mo					-				
emark:			eport f		he emis it.	sior	n whic	h mor	e th	an 20 d	B b	below	the	
00.0 dBuV/	'm				1	_								
													L.	
o												[
								FCC	: Parl1	5 RE-Class	B AI	ove 16 I	PK	
0						-								
0						-		FCC	Pauli	5 .RE ·Class	B A	uve 16.		
0						1				X	[]		Ĩ	
0	and an average statement of the statemen							****		2	and a			more and
0											 			
0						+					\vdash			
0											\vdash			
0.0 5004.000	5024.00 5044	00 50	64.00	509	 34.00 (F	(Hz)	512	4.00	5144	00 51	64.00	1 519	4.00	5204
No.	Frequen (MHz)	-	leadir dBu√	-	Facto (dB/n		Lev (dBu		1	_imit 3uV/m)		argin (dB)	De	etector
1	5150.00	0	14.33	3	37.1	В	51.	51	7	4.00	-2	2.49	p	eak
2 *	5150.00	0	3.47		37.1	В	40.	65	5	4.00	-1	3.35	1	٨VG

	No re)2.11n(H				J-NII-1) e than 20 d	B belo	w the	
	No re	port for t	he emissio			-	B belo	w the	
				on whic	h mor	e than 20 d	B belo	w the	
							6	matria	~
					FCC	Part 15 RE-Class	B Above 1	IG PK	
								_	
					FCC	Part15 RE Class	B Above 1	16 AV	
						1	a de la compañía de l		, AUR
ne dae ne centre an artes	la racial de la constante de la			da data an		a contraction X 100			
00 5037.0	0 505	7.00 507	/ 77.00 (MHz)	511	7.00	5137.00 515	7.00	 5177.00	5197
requenc (MHz)	-	-	Factor (dB/m)			Limit (dBuV/m)	-	1116	etector
5150.000) [3.56	37.18	40.	74	54.00	-13.2	6 A	٩VG
5150.133	1	6.13	37.18	53.	31	74.00	-20.6	9 p	eak
	requency (MHz)	requency (MHz) (0 5150.000	requency (MHz) Reading (dBuV) 5150.000 3.56	requency Reading Factor (MHz) (dBuV) (dB/m) 5150.000 3.56 37.18	requency Reading Factor Lev (MHz) (dBuV) (dB/m) (dBu 5150.000 3.56 37.18 40.	Image: Second	Image: Second	irequency (MHz) Reading Factor Level Limit Marg (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 5150.000 3.56 37.18 40.74 54.00 -13.2	Image: Second

Ant	No.:		A	NT1 -	+ ANT2	2								
Ant	. Pol.:		Н	orizoı	ntal									
Tes	t Mode		T)	X 802	2.11n(⊢	IT20) M	ode	5240N	MHz (I	U-NI	l-1)			
Rer	nark:				ort for t bed lim		ssio	n whic	h mor	e tha	an 20 d	B below	the	
100.	0 dBu∀/n	n				1								_
90		×								_				-
80									FCC	Part 15	i RE-Class	B Above 16 I	PK	
70														-
60		- Lu								Part 15	RE-Class	8 Above 1G /	.v	
50		- ¹					+		X					-
40	<u> </u>		March March		and the second second			ennelse neter	2 X				-	
30														_
20		_					_							_
10							_							_
0.0		243.00 526	3.00	5283.		03.00 (3.00	5363.0		3.00 540	3.00 5	423.00
							MHz)							
	No.	Frequer (MHz			ading 3uV)	Fact (dB/r		Le (dBu			imit uV/m)	Margin (dB)	Detect	or
F	1	5350.0	00	12	2.93	37.4	0	50.	.33	74	4.00	-23.67	peak	(
ľ	2 *	5350.0	00	3	.63	37.4	0	41.	.03	54	4.00	-12.97	AVG	;
_														
1.Fa		B/m) = An alue = Lev				/m)+Ca	ble I	-actor	(dB)-	Pre-a	amplifie	er Factor		

nt No.:		ANT1+/							
nt. Pol.:		Vertical							
est Mode):	TX 802.1	1n(HT20)) Mode	5240	MHz (l	J-NII-1)		
emark:			t for the				e than 20 d	B below	the
100.0 dBuV/	/m								
10									
:0	\uparrow					566		D. Ali	
0						FLL	Part 15 RE-Class	SADOVE TO P	K
50									
50						1 ^{FCC} ×	Part 15 RE-Class	B Above 1G A	v
10	No.					z			
0									
20									
0									
0.0 5224.000	5244.00 5264	00 5284.00	5304.00	(MHz)	534	4.00	5364.00 538	4.00 5404	4.00 5424.00
No.	Frequent (MHz)	cy Read (dBu	-	actor JB/m)	Le (dBu		Limit (dBuV/m)	Margin (dB)	Detector
1	5350.00	0 14.0)8 3	37.40	51.	48	74.00	-22.52	peak
2 *	5350.00			37.40	40	16	54.00	-13.84	AVG
Remarks: .Factor (c	dB/m) = Ante	enna Facto	r (dB/m)-	+Cable	Factor	(dR)	Pro amplific	ar Factor	· <u> </u>

Ant	No.:				A	NT1	+ Al	NT2												
Ant	. Pol.:				H	orizo	ontal													
Tes	t Mod	e:								,				•	J-NII-1)					
Rer	nark:						port ribec			niss	ior	n whic	h mor	e tl	han 20 c	IB I	below	the		
100.	0 dBuV	'/m														Т				
90																-	\sim	~		
80				_									FCC	Parl	15 RE-Class	R A	ave 16 P)r		
70				_									100	1 an	TO TIL Class		1046 TU 1			
60				_																
50													FCC	Pail	15 RE-Class X		bove 16 A	w \	m	
40				<u></u>		****	-						n mana and	Anno ann	3				<u>`</u>	
30																				
20																				
10																				
0.0																				
5	004.000	502	4.00	5044	1.00	506	4.00	508	34.00	(MH	z)	512	4.00	514	4.00 51	64.0	0 518	4.00	5204	1.00
	No.		Freq (M	uen Hz)			eadii IBu\	-		actor 3/m)		Le (dBu		I	Limit BuV/m)		largin (dB)	De	tector	
ľ	1	1	5150	0.00	0	1	4.17	7	37	.18		51	.35		74.00	-2	22.65	p	eak	1
	2 *		5150	0.00	00		3.33		37	.18		40	.51		54.00	-1	13.49	A	VG]
																				_
1.Fa	narks: actor (argin	dB/							′m)+(Cable	e F	actor	(dB)-	Pre	e-amplifi	er F	actor			

nt No	o.:		A	NT1	+ Al	NT2											
nt. P	ol.:		Ve	ertica	al												
est N	lode:		T>	< 80	2.11	ac(\	/HT2	:0) N	loc	de 518	BOMH	z (l	J-NII-1)				
Remai	rk:				oort ribec			nissi	or	n whic	h mor	e tł	nan 20 d	B belo	SM.	the	
00.0	dBuV/m																
•																	
。															<u> </u>	مسم	
											FCC	Parl	15 RE-Class	B Above	16 F	PK	
)																	
<u>ו</u>											FCC	Parl	15 RE-Gass X	B Above	16 /	۰.v	$\left \right $
, –													Ý	all and a second			L.
					بيوسر رويدهم	,	, atta atta atta				a, 444a, 407, 407, 407			/			
)																	
0.0 4997.0	000 50)17.00 50	37.00	5057	7.00	507	7.00	(MH	z)	511	7.00	513	7.00 515	7.00	517	7.00	5197.
N	lo.	Freque (MHz	-	I	eadii IBu\	~ 1		ictor 3/m)		Lev (dBu		I	Limit BuV/m)	Març (dE		Dete	ctor
1	1 *	5150.0	00	;	3.53		37	.18		40.	71		54.00	-13.	29	A۷	′G
1	2	5150.1	33	1	4.96	3	37	.18		52.	14		74.00	-21.	86	pe	ak
									1								
	or (dE	3/m) = An Ilue = Lev					′m)+0	Cable	ə F	actor	(dB)-	Pre	-amplifie	er Fac	tor		

Ant No.:	ANT1 + ANT2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.
100.0 dBuV/m	
90	
80	FCC Part15 RE-Class 8 Above 16 PK
70	
60	FCC Fjort 15 RE-Class B Above 1G AV
50	
40	22 2
30	
20	
10	
0.0 5214.000 5234.00 5254.0	00 5274.00 5294.00 (MHz) 5334.00 5354.00 5374.00 5394.00 5414.00
No. Frequence (MHz)	ey Reading Factor Level Limit (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dBuV/m)
1 5350.000	0 15.27 37.40 52.67 74.00 -21.33 peak
2 * 5350.000	0 3.64 37.40 41.04 54.00 -12.96 AVG
Remarks:	
1.Factor (dB/m) = Anter 2.Margin value = Level	nna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor -Limit value

Ant	No.:		ANT1	+ ANT2					
Ant	. Pol.:		Vertic	al					
Test	t Mode	:	TX 80)2.11ac(\	VHT20) Mo	de 5240MH	z (U-NII-1)		
Ren	nark:					on which mo	e than 20 d	B below	the
100.	0 dBuV/n	n	presc	ribed lim	lit.				
90		~~~							
80	\vdash								
70						FCC	2 Parl 15 RE-Class	B Above 16 I	PK
60	\vdash					fc	C Part 15 RE-Class	B Above 16 /	v
50	and the second s					~			
40			Humannahum			2			
30									
30									
20									
10									
0.0									
52	222.000 5	242.00 5262	2.00 528	2.00 530	02.00 (MHz)	5342.00	5362.00 538	82.00 540	2.00 5422.00
Γ		Frequen	cv R	eading	Factor	Level	Limit	Margin	
	No.	(MHz)	(0	lBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector
	1	5350.00	0 1	5.65	37.40	53.05	74.00	-20.95	peak
	2 *	5350.00	0	2.77	37.40	40.17	54.00	-13.83	AVG
1.Fa		B/m) = Ante alue = Leve			/m)+Cable	Factor (dB)-	Pre-amplifie	er Factor	

Ant	No.:		ANT	1 + AN	Г2									
Ant	. Pol.:		Hori	zontal										
	t Mode	:		802.11n	•			•		,				
Rer	nark:			eport fo cribed li		emissio	on whic	h mor	e tha	an 2() d	B below	the	
100	.0 dBuV∕/	m												
90											_			_
80												-		
70								FCC	Part15	5 RE-CI	ass	B Above 16	PK	
60														
								FILC	Part 19	i Rf-Cl	as 2	8 Above 16 /	v Š	unu
50		hardenondaryna	an marchanten be			-		3	N. W. W. W.	<u> </u>				
40			<u></u>	and and any system of the	********	n Wign Arrive La	and farmer and the second							1
30	<u> </u>													-
20														-
10														_
0.0 5		5040.00 506	0.00 50	380.00	5100.00	(MHz)	514	0.00	5160.	00	518	0.00 520	0.00	5220.00
	No.	Frequen (MHz)		(dBuV)	·	actor B/m)	Lev (dBu	vel V/m)	1	.imit uV/r	n)	Margin (dB)	Detec	tor
ŀ	1	5150.00	0	16.39	3	7.18	53.	57	7	4.00		-20.43	pea	k
ŀ	2 *	5150.00	0	6.73	3	7.18	43.	91	5	4.00		-10.09	AV	3
L			I											L
I.Fa		B/m) = Ant alue = Leve			B/m)+	Cable	Factor	(dB)-	Pre-	amp	lifie	er Factor	,	

Ant	No.:		A	NT1 + Al	NT2											
Ant	. Pol.:		Ve	ertical												
Tes	t Mode	: :	T)	K 802.11	n(H	T40) Mo	ode	5190N	1Hz (l	U-N	II-1)					
Rei	nark:			o report			sio	n whicł	n mor	e th	an 2	20 dl	B belov	the		
100	n dBuV/	/m	pr	escribed	IIIm	it.										
100							Τ							Τ		
90	<u> </u>						+							_		
80							_					\sim			1	
70							+		FCC	: Parl	15 RE-	Class	B Above 1	<u>a PK</u>		
70																
60	<u> </u>						+		FCC	Parl	15 RE/	Class	B Above 1	a AV	trum	
50							-				Hund			_		
40	monor	-	manna	munadia		-	-den	ullynnyn	-	~						
20																
30																
20	-						+							+		
10	<u> </u>		_				_							_		
0.0		5040.00	5060.00	5080.00	F 44	D0.00 (1			0.00	516		F1 (0.00 5	200.00	F 22	0.00
:	UZU. UUU	3040.00	э н ьн. ни	5080.00	511	naran li	vHrz)	514	u. UU	516	J. UU	518	iu.uu :	200. UU	322	0.00
[Frequ	onev	Readir		Facto		Lev			Limi	•	Margi			Т
	No.	(MF	-	(dBu)	_	(dB/n		(dBu)		1			-	De	etector	
	1	5150	· ·	17.09	-	37.1	· .	54.		· ·	4.0		-19.73		ook	+
-														· ·	eak	+
l	2 *	5150	000	6.75		37.1	5	43.	93	:	54.0	0	-10.07	-	VG	
Ro	narks:															
1.F	actor (c	lB/m) = A				/m)+Cat	ble	actor	(dB)-	Pre	-amp	olifie	r Facto	r		
		alue = Le														

Ant No).:		AN	T1 + ANT2	2							
Ant. Po	ol.:		Ho	rizontal								
Test M	ode:		ТΧ	802.11n(H	IT40) Moo	le 52	301	/Hz (l	U-N	III-1)		
Remar	k:			report for t scribed lim		ion w	hic	h mor	e tł	nan 20 d	B below	the
100.0 d	lBuV/m											
90			~									
80	+		+					FCC	Parl	15 RE-Class	B Above 16 I	PK
70												
60			6									
50	, 			~				FCC	Parl	15 RE+Class X	8 Above 16 /	···
40				No.	materia	لودور میرور میراند ماند. مراجع	10mm	ah Malayah da aya da		-	yord delenances where	human
30												
20												
10												
0.0 5200.0	00 5220	.00 5240	.00	5260.00 52	80.00 (MH	zÌ	532	0.00	534	0.00 536	0.00 538	0.00 5400.0
No	o. F	requen (MHz)	су	Reading (dBuV)	Factor (dB/m)		Lev Bu'		1	Limit BuV/m)	Margin (dB)	Detector
1		5350.00	0	15.50	37.40		52.	90		74.00	-21.10	peak
2	*	5350.00	0	3.87	37.40		41.	27		54.00	-12.73	AVG
Remark 1.Facto		n) = Ante	enna	Factor (dB	/m)+Cabl	e Fac	tor	(dB)-	Pre	-amplifie	er Factor	

Ant	No.:		ANT1	+ ANT2							
Ant.	Pol.:		Vertic	al							
Test	t Mode	:	TX 80	2.11n(H	T40) Mod	e 5230	MHz (U-NII-1)			
Ren	nark:					on whic	ch mor	e than 20 d	B below	the	
100.	0 dBuV/r	n	presc	ribed lim	It.						
90											
80	\vdash		\rightarrow								
70							FCC	Parl 15 RE-Class	B Above 16 F	<u>РК — — — — — — — — — — — — — — — — — — —</u>	
60							FCC	Pail 15 RE Class	B Above 16 /	v	
50	M.		-+								
40			'n.	where we have a start of the second start of t	An marine marine	Assertation	(Annother types)	and manual march	an an al an	whether and a start of the star	
30											
30											
20	<u> </u>										
10											
0.0 E	199.000 5	219.00 5239	00 535	9.00 523	79.00 (MH	-) 57	19.00	5339.00 535	9.00 537	9.00 5399.00	
9	199.000 3	1213.UU 3233	.uu 929	9.00 92.	79.00 (MH	zj 53	13.00	5335.00 535	9.00 937	3.00 3339.00	u
Г										T	
	No.	Frequent (MHz)	-	eading IBuV)	Factor (dB/m)		vel iV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
	1	5350.00	0 1	5.96	37.40	53	.36	74.00	-20.64	peak	
	2 *	5350.00	0 ;	3.92	37.40	41	.32	54.00	-12.68	AVG	
									1	II	
	narks:	B/m) = Antr		ctor (dP)	m)+Cabl	Factor		Pre-amplifie	r Easter		
		B/m) = Ante alue = Leve				ะ คลิ่ดเป	(ub)-	rie-ampline	Factor		
	~										

Ant	No.:		AN	VT1	+ ANT2												
٩nt	. Pol.:		Ho	orizo	ontal												
ſes	t Mode	:	ТХ	K 80	2.11ac(VHT40)) Mo	de 519	0MH	z (l	J-NII	-1)					
Rer	nark:				oort for t bed lin		issio	ר whicl	h mor	e tł	nan 2	20 d	B bel	ow	the		
100.	0 dBuV/n	n															
90															_		
80													Į				
									FCC	: Parl	15 RE	Class	B Above	e 16 I	PK		
70																	
50	<u> </u>								FCC	Part	15 RØ	-Class	8 Above	: 16 /	v	L.	
50											and						
40	unternation	mandersonable	alto-to-to-tot	an a	lamakka je maganta	man		-	2	3							
10																	
20																	
10	<u> </u>																
0.0 5		5040.00 506	0.00	5080). 00 51	D0.00	(MHz)	514	0.00	516	0.00	518	:0.00	520	0.00	522	0.00
Γ	No.	Frequer	ю	Re	ading	Fac	:tor	Lev	/el		Lim	it	Mar	gin	Det	ector	T
		(MHz)	·		BuV)	(dB/	· ·	(dBu)		Ľ.				<u> </u>			1
	1	5150.00			5.45	37.		52.			74.0		-21.		· ·	eak	1
	2 *	5150.00	00	- 6	6.05	37.	18	43.	23		54.0	0	-10.	77	A	VG	
.Fa		B/m) = Ant alue = Leve				/m)+Ca	able I	actor	(dB)-	Pre	-am	plifie	er Fac	tor			

nt. Pol.:		Vertic	al										
st Mode	e:	TX 80)2.11ac	(VHT40)) Mo	de 519	0MHz	z (U-	NII-1)			
emark:			port for ribed lir		issior	n whicł	n mor	e tha	an 20) dE	3 below	the	
)0.0 dBuV.	/m		I										
, 📖													
									~	-			
)							FCC	Part1	5 RE-CI	ass	3 Above 16	PK	
·									-				
ı							560		E DEC) Above 1G		
, ⊨							×		o nejeli P	ass	DADOAG LO	A.V.	ma
. una	and many marker and	an a	and the state of the		Unin weld	www.	The market	and the second second					
)													
·								_		_			\neg
ı				_				_		_			_
).0 5020.000	5040.00 5060		30.00 5	100.00	(MHz)	514		5160.			0.00 520	0.00	5220
	Frequen		anding				val		imit		Margin		
No.	Frequence (MHz)	-	eading dBuV)	Fac (dB/		Lev (dBu)			.imit uV/r	n)	Margin (dB)	Dete	ector
1	5150.00	0 1	15.66	37.	18	52.	84	7	4.00		-21.16	pe	ak
2 *	5150.00	0	6.22	37.	18	43.	40	5	4.00		-10.60	A١	/G
emarks:													

Ant	No.:		ANT1	+ ANT2									
Ant	. Pol.:		Horiz	ontal									
Tes	t Mode	:	TX 80)2.11ac(\	VHT40) N	//o	de 523	BOMH	z (l	J-NII-1)			
Rer	nark:			port for t ribed lim	he emiss iit.	sior	h whic	h mor	e tł	nan 20 d	B below	the	
100.	0 dBuV/r	m		1	1	_					1	1	1
90			~										
80		1	+					FCC	' Parl	15 RF.Class	B Above 16	pr	
70								ru	, r au	13 112-0/048	D ADOVE TU		
60	\vdash		hand	M				FCC	• P	1E DE Class	P. Al		
50									. 1 an	X	8 Above 16 /		
40				"Viller	human		ten anna dha	man	r.e.		monthemation	warmen warden	
30													
20													
10													
0.0		5222.00 5242.		2.00 52	82.00 (MI		500	2.00		2.00 536	2.00 538	 	2.00
Γ		Frequence	v R	eading	Facto	r	Lev	/el		Limit	Margin		Т
	No.	(MHz)	-	BuV)	(dB/m)				1	BuV/m)	(dB)	Detector	
	1	5350.000) 1	4.51	37.40		51.	91		74.00	-22.09	peak	
	2 *	5350.000)	4.26	37.40		41.	66		54.00	-12.34	AVG	
1.Fa		B/m) = Ante alue = Level			/m)+Cabl	e F	actor	(dB)-	Pre	-amplifie	er Factor		

Ant	No.:		ANT	1 + AN	VT2									
Ant.	Pol.:		Verti	cal										
Test	Mode:	:	TX 8	02.11	ac(\	/HT40)	Mo	de 523	OMH	z (U	-NII-1)			
Rem	nark:			eport f cribed			sior	n whicł	n mor	e th	an 20 dl	B below	the	
100.	0 dBuV/n	n	pres	chbea		π.								
							Τ							
90			3~4				+							
80	\vdash		\rightarrow	_			+							
70									FCL	: Parl	15 HE-Class	B Above 16 I	<u> </u>	
60									FCC	: Parl	15 RE _j Class	B Above 16 /	v	
50	w						+							
40		_		Umouth	w	address young	~~~~~	-chadmanta-rel	harmal	-yma		and the second states	an a	
30														
50														
20							+							
10				_			+							
0.0 E	199.000 5	219.00 523		259.00	E 27	 79.00 (i		E01	9.00	522	9.00 535	9.00 537	/9.00 5399.0	
5	133.000 3	1213.00 323.	5.UU 3	2:13.00	321	, 00 (i	MHz)	331	3.00	333	3.00 :33:	13.00 337	3.00 3333.0	UU
Г		Eroquon		Readir		Facto		Lev	vol.		Limit	Margin		
	No.	Frequen (MHz)		dBuV	_	(dB/n		1		1	BuV/m)	Margin (dB)	Detector	
-	1	. ,		14.94	-	· ·	·	52.	-	Ľ.	74.00		nook	
-	1	5350.00			•	37.4						-21.66	peak	
	2 *	5350.00	0	4.60		37.4	U	42.	00		54.00	-12.00	AVG	
D														
-	narks: ictor (dl	3/m) = Ante	enna F	actor (dB/	m)+Cał	ole F	actor	(dB)-l	Pre	-amplifie	r Factor		
		lue = Leve				., . e ak			(

Ant No.: Ant. Pol.: Test Mode:		AN	ANT1 + ANT2 Horizontal									
		Ho										
		ТХ	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)									
Remark:			No report for the emission which more than 20 dB below the prescribed limit.									
100.0 dBuV/	/m											
90												
80					\rightarrow	500						
70						FUU	Part 15 RE-Class	B Above 16 F	<u>′K</u>			
60				_								
50			¥			May FCC	Part 15 RE-Class	B Aboye 16 / X	· · · · · · · · · · · · · · · · · · ·			
	www.work.org		Z Well				the water and the second	4 mm-server	and the second second			
30												
20												
10												
5010.000	5050.00 509	30.00	5130.00 5	i170.00 (MHz)	5250). 00	5290.00 533	0.00 537	0.00 5410.			
No.	Frequer (MHz	- 1	Reading (dBuV)	Factor (dB/m)	Lev (dBu\		Limit (dBuV/m)	Margin (dB)	Detector			
)				//m)		-	Detector peak			
No.	(MHz) 00	(dBuV)	(dB/m)	(dBu\	//m) 64	(dBuV/m)	(dB)				
No.	(MHz) 5150.0) 00 00	(dBuV) 17.46	(dB/m) 37.18	(dBu\ 54.0	//m) 64 72	(dBuV/m) 74.00	(dB) -19.36	peak			

2.Margin value = Level -Limit value

CTC Laboratories, Inc.

Ant No.:		AN	ANT1 + ANT2 Vertical TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1) No report for the emission which more than 20 dB below the prescribed limit.									
Ant. Pol.:												Ver
Test Mode:		TX										
Remark:												
100.0 Г) dBuV/n	n										
90												
80					- martin		FCC	Parl 15 RE-Class	R Above 16 F	PK		
70												
60				X								
50				July Starter LAN			N FCC	Part 15 RE-Class	B Aboge 16 /	.v		
40	manhankannan	almore marine land	water	Jugar and a start and a start and a start				W White We want	,	the transfordation		
30												
20												
10												
0.0 50	10.000 5	050.00 509	0.00	5130.00 513	 70.00 (MHz)	525	0.00	5290.00 533	0.00 537	0.00 5410		
	No.	Frequen (MHz)	-	Reading (dBuV)	Factor (dB/m)	Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Detector		
	1	5150.00	0 24.35		37.18	61.53		74.00	-12.47	peak		
						E4	07	54.00	-2.93	AVG		
	2 *	5150.00	0	13.89	37.18	51.						
	2 * 3	5150.00 5350.00		13.89 15.98	37.18 37.40	51.		74.00	-20.62	peak		

2.Margin value = Level -Limit value

EN

CTC Laboratories, Inc.

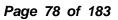
nt No.:		ANT1										
nt. Pol.:		Horizo	ntal									
est Mode):	TX 802	2.11a M	lode 574	5M⊦	−lz (U·	-NII-3))				
Remark:			ort for t bed lim	the emise hit.	sion	whic	h mor	e than	20 d	B below	the	
130.0 dBuV/	m											-
120		$- \rightarrow$						\rightarrow				
110												
			Marth.					۱ I				
00												1
0												1
	4				-							-
n			Ŵ	NIL.					FCC P	art15.407 U	<u>411-3 ~~~</u>	
io 🗡 🗕		_		<u>۳₩.</u>		t da a ci		Ind. the set	Margir			
io V ^{ut} atiny.hvalit	2011 WALLWARD AND AND AND AND AND AND AND AND AND AN	Mar Mar		, Johnshala	Minnel	inder And have	NYWWW	Ammal Ma	VirgherVill	rhand hand hall	Nurwhilling	4
0												
												1
30												1
20												-
10.0 5650.000	5677.50 5705.	.00 5732	50 57	60.00 (M	 Hz)	581	5.00	5842.50	587	0.00 58	97.50 59)25.0
No.	Frequence (MHz)	-	y Reading (dBuV))	Level (dBuV/m)		Limit (dBuV/m)		Margin (dB)	Detecto	r
1 *	5725.00	0 23	23.66		;	61.82		122.20		-60.38	peak	

Ant No.:		ANT	1									
Ant. Pol.:		Verti	cal									
Test Mode):	TX 8	02.11a l	Mode 57	45MI	Hz (U·	-NII-3)				
Remark:			eport for	the emis mit.	ssior	n whicl	h mor	e thai	n 20 d	B below	the	
130.0 dBuV/	m į	1 p. co.										
120		_										
110												
		\mathcal{I}										
100					1							
90			Janapoor		+					- 10		
80	4		$\left \right $		-							
70					+					art15.407 U-	411-3	
60				Maduran	.0	مديار بعد أريما	a francial tat.			-6 dB Marile Materia Ra	an and a lot of the	
50 MWAMM	una waaladadadaa	HANDARD	n r	And darrie Manu	e nadiue i	ALAUALANA A	and and a second second	edites and the	ann warder da da	and many straight of the	dihe.ru.Mae anda	
40												
30												
20												
10.0												
	5677.50 5705	.00 57	32.50 5	5760.00 (MHz)	581	5.00	5842.5	D 587	70.00 589	97.50 592	5.00
No.	Frequent (MHz)	-	eading dBuV)	Fact (dB/r		Lev (dBu)		1	mit IV/m)	Margin (dB)	Detector	Ī
1 *	5725.00	0) 16.45		6	54.61		122.20		-67.59	peak	t


Ant No.:	ANT1
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11a Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.
130.0 dBuV/m	
120	
110	
100	
90	
80	
70	ECC Paul 15.407 U-141-3
60	Margin 6 dB
50 Minintententententententententententen	HAWHEN TO THE
40	
30	
20	
10.0	
5650.000 5677.50 5705.0	00 5732.50 5760.00 (MHz) 5815.00 5842.50 5870.00 5897.50 5925.00
No. Frequenc (MHz)	xy Reading Factor Level Limit Margin (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector
1 * 5850.000	0 20.07 38.44 58.51 122.20 -63.69 peak
Remarks: 1.Factor (dB/m) = Anter 2.Margin value = Level	nna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor -Limit value

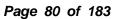
Ant No.:		ANT1								
Ant. Pol	:	Vertical								
Fest Mo	de:	TX 802.	.11a Mo	ode 5825	5MHz (U	-NII-3))			
Remark	:	No repo prescrib			ion whic	h mor	e than 20	dB below	the	
130.0 dBu	V/m					1				
120							<u> </u>			
110										
00										
0						pression				
	\wedge									
0						[C Part15.407 U- Irgin -6 dB	MII-3	
io	tan n Li a	مريا الرية	halide of th	ah. Maana	le collecte al alteratio			white the second se	held . I walk was defined	
io Mandhad	Mahamanahamanahaman	Madikinaranghal	Manta altan	aninya, ili ku walaki	heli a falinda rea fa a la		an shirt accountly	mineral a level of the state	and Walderson (
0										
0.0										
5650.000	5677.50 5705.	00 5732.5	0 5760	D.00 (MH	lz) 581	5.00	5842.50	5870.00 58	97.50 5925	i.0
No.	Frequent (MHz)	-	iding ⊌uV)	Factor (dB/m)		vel V/m)	Limit (dBuV/n	Margin n) (dB)	Detector	Ī
1 '	5850.00	0 16	.91	38.44	55	.35	122.20) -66.85	peak	
Remarks	;:	1			1					1
I.Factor	(dB/m) = Ante			m)+Cabl	e Factor	(dB)-l	Pre-ampl	ifier Factor		
.Margin	value = Leve	-Limit va	lue							

Ant No.:		ANT1 -	+ ANT2							
Ant. Pol.:		Horizor	ntal							
est Mode	:	TX 802	.11n(H	T20) Mo	de 574	5MHz (U-NII-3	3)		
Remark:		No repo prescri		he emiss it.	ion wł	nich mo	re than	20 d	B below	the
130.0 dBuV/	'm								1	
120							<u> </u>			
110										
100			physion							
90										
80	1	ng w	<u>l</u> a	M					,	
70				<u> </u>				FCC P	a:t15.407 U-l	HI-3
60		ha ^{lwa}		M	م بر بال	atri as bi		Margir Manua da	-6 dB	Net data and be
50 MWW/	and work March Martha	/**		, may	Her Annual I	ladintersionsia	allender Allender	MANAN	en han an a	104. Annun putriti
40										
30										
20										
	5677.50 5705.	00 5732.	50 576	 60.00 (m i	l Hz)	5815.00	5842.50	587	 70.00 589	7.50 5925
No.	Frequenc (MHz)	-	ading 3uV)	Facto (dB/m		₋evel 3uV/m)	Lin (dBu)		Margin (dB)	Detector
1 *	5725.000) 33	3.11	38.16	1	1.27	122	.20	-50.93	peak
1 *	5725.000	J 33	0.11	38.16		1.27	122	.20	-50.93	реак



(D.I		ANT	1 + ANT2	2								
nt. Pol.:		Verti	cal									
st Mode	e :	TX 8	02.11n(⊢	IT20) Mode	5745MHz	(U-NII-3)						
emark:			No report for the emission which more than 20 dB below the prescribed limit.									
:0.0 dBuV/	/m						1					
:0		- 1				<u> </u>						
o		\square										
0												
·			AND AND AND									
			A N	1/2		FCC-F	a:t15.407 U-	HII-3				
		<u>k</u>	1	Must			n-6 dB					
hadlingende	hindunaliterationaliteration	When the		MANNIHAUNAU	annaltradent an tradi	mananananananan	attanilipiterwalkali kappa	AndraphyMilliand				
.0												
.0	5677.50 570	5.00 57	732.50 57	760.00 (MHz)	5815.00	5842.50 58	70.00 58	97.50 592				
.0	Frequen (MHz)	icy R	raz.so s7	60.00 (мнг) Factor (dB/m)	Level	5842.50 58	70.00 58 Margin (dB)	97.50 592 Detector				

Ant No.:		ANT1	+ ANT2							
nt. Pol.:		Horiz	ontal							
est Mode):	TX 80)2.11n(H	T20) Moc	le 5825N	ИНz (I	U-NII	-3)		
Remark:			port for t ribed lim	he emiss iit.	ion whic	h mor	e tha	n 20 d	B below	the
130.0 dBuV/	'm								1	
120								۱ ـــــــــ		
110								1		
		\mathcal{I}				www	,			
100										
0							t. E		- 1	
10	4						my			
70							¥	FCC P	ort15.407 U-N	H-3
50					hour a			WMargir	-6 dB	
50 MANHAMA	norther the second second	alumparana	Williamanapatholi	abricanaly hotel W				- Muri	mannumalit	nthe contribution of the
10										
30										
20										
10.0 5650.000	5677.50 5705.	00 573	32.50 57(60.00 (MH	z) 581	5.00	5842.5	0 587	/ 70.00 589	7.50 5925
No.	Frequence		eading	Factor				mit	Margin	Detector
	(MHz)	(0	dBuV)	(dB/m)	(dBu	v/m)	(dBr	ıV/m)	(dB)	
4 4	5850.000	0 3	32.09	38.44	70.	53	12	2.20	-51.67	peak
1 *										

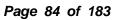


Ant No.:		ANT1 +	- ANT2								
Ant. Pol.:		Vertical									
Fest Mode	e:	TX 802	.11n(H	T20) Mod	e 5825N	MHz (I	U-NII-3)			
Remark:		No repo prescrit		he emissi it.	on whic	h mor	e than	20 dl	3 below	the	
130.0 dBuV/	/m										
120							\rightarrow				
110											
100							1				
						Munny					
90											
80					٨		Mu				
70					Mangh		- Mu	FCC Pe Margin	ut15.407 U-N -6 dB	Ⅲ-3	
50 /	huhummuhathannah	as the delided	INUM_ALULU	when any the	JH -				- Jalan Marka	numberly	
50 \\^{pa}n(pan)#	NW WWWWWWWWW	A.J.W.M.M.A.K. Mater	and b deed	k e ete kone o ko					and the state of the second		
10											
30											
20											
10.0											
5650.000	5677.50 5705.	00 5732.9	50 576	60.00 (MHz	J 581	5.00	5842.50	5870	1.00 589	7.50 592!	5. U
No.	Frequence (MHz)	-	ading BuV)	Factor (dB/m)	Le (dBu		Lim (dBuV		Margin (dB)	Detector	7
1 *	5850.00	0 25	.37	38.44	63.	.81	122.	20	-58.39	peak	1

Ant No.:		ANT1	+ ANT2								
Ant. Pol.:		Horiz	ontal								
Fest Mode):	TX 80)2.11ac(\	/HT20) N	lode 57	45MH	z (U-NII-	3)			
Remark:			port for t ribed lim	he emiss it.	ion whic	h mor	e than 2	0 dB	below t	the	
130.0 dBuV/	'm			1							
120							\rightarrow				
110											
100			MALINA								
			T T								
00									~		
30	1	3 M	n n	Mr. M				-			
70		- MP		Marth				CC Pa largin	41 5.407-U- N	Ⅲ-3	
50 -		M			AMARAMAN A	Mudaula				North Marting	
50 MINIAWAW	manipulation			1.00	h i a k da she she an i	and Andrea.	Justice in a local back of the	a cara.	ann a shiridi a rad	kilkin. Aldara z Ankl	
10											
30											
20											
10.0											
5650.000	5677.50 5705.	00 573	2.50 576	1 50.00 (MH	lz) 58 [°]	15.00	5842.50	5870	.00 589	7.50 5929	5.0
No.	Frequence (MHz)	-	eading JBuV)	Factor (dB/m)		vel V/m)	Limit (dBuV/		Margin (dB)	Detector	
1 *	5725.00	0 3	35.92	38.16	74	.08	122.2	0	-48.12	peak	1
Remarks:											

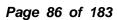
Ant. Pol.:		ANT1	+ ANT2								
		Vertic	al								
est Mod	e:	TX 80)2.11ac(\	VHT20) Mo	ode 574	5MH	z (U-NII-3)				
Remark:			No report for the emission which more than 20 dB below the prescribed limit.								
130.0 dBuV	//m										
120							<u> </u>				
110		$ \bot $									
100		\geq									
90			promotion								
30											
70			d W	194.1			ECC P	art1 5.407 U -N			
		^م المجر					Margir				
50 withentite/M	number that would be	withouthealth		Whentromy	, Myudyther Mudal A	Made Ather	when persitive and a second	ay Martin May Martin	will when the second		
50 40 40 40 10 10		<u>.</u>									
10											
30											
20				+							
10.0 5650.000	5677.50 5705	.00 573	 2.50 576	 60.00 (MHz)) 5819	5.00	5842.50 587	0.00 589	7.50 5925.0		
No.	Frequenc (MHz)	-	eading JBuV)	Factor (dB/m)	Lev (dBu\		Limit (dBuV/m)	Margin (dB)	Detector		
1 *	5725.00	0 2	25.37	38.16	63.	53	122.20	-58.67	peak		

Ant No.:		ANT1 +	- ANT2						
Ant. Pol.:		Horizor	ntal						
Fest Mode	:	TX 802	.11ac(V	/HT20) N	/lode 58	25MH	z (U-NII-3)		
Remark:		No repo			ion whi	ch mor	e than 20 d	B below t	he
130.0 dBuV/r	n	· ·							
120							<u> </u>		
110									
100						Monorth			
30									
						X	h.		
					M			.15 407 11 1	
70					Marine		- A Hargir	art 5.407_0-5 -6 dB	
io Manualitada	numanahanapatina	Whitehament	Whatthe	when when when	and .			hyphysteric	Winnergenter
i0	developer of the relation of the	1.00.0							
0									
0									
:0									
0.0 5650.000 5	677.50 5705	00 5732.5	0 5760	D. 00 (MH	Iz) 58	15.00	5842.50 587	0.00 5897	7.50 5925.0
No.	Frequen (MHz)	-	ading BuV)	Facto (dB/m		evel JV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.00	0 31	.17	38.44	69).61	122.20	-52.59	peak



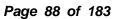
Ant No.:		ANT1	+ ANT2								
Ant. Pol.:		Vertic	al								
est Mode	e :	TX 80	2.11ac(\	/HT20) Mc	de 582	25MH	z (U-	NII-3)			
Remark:		No report for the emission which more than 20 dB below the prescribed limit.									
130.0 dBuV	/m										
120								٦			
110		\mathcal{I}						T			
100								7			
90						Whom					
80						(
70					J.W.W		hungh	ECC P	ad 15 4 07 H-N		
					- N'			Margir	-6 dB		
60	hung-nalister kandelinder	WHWWWW	an Handh Madell	radial device frater and a free other	W			THAN YOUNG	proge the production	hpripethingenth	
-											
40											
30											
20											
10.0 5650.000	5677.50 5705	.00 573	2.50 57	 60.00 (MHz)	581	5.00	5842.	50 587	0.00 589	7.50 5925.	
No.	Frequent (MHz)	-	eading IBuV)	Factor (dB/m)	Lev (dBu)			imit uV/m)	Margin (dB)	Detector	
1 *	5850.00	0 2	2.28	38.44	60.	72	12	2.20	-61.48	peak	
	1			1	1				1		

Ant No.:		ANT1 + ANT	2				
Ant. Pol.:		Horizontal					
Test Mode):	TX 802.11n(HT40) Mode	5755MHz (I	J-NII-3)		
Remark:		No report for prescribed li	[•] the emissior mit.	n which mor	e than 20 d	B below t	he
130.0 dBuV/	'm						
120					<u> </u>		
110							
100			Mardon Walton				
90		/***``	A				
80							
70		NINN	healthinghow	hial	FCC P	art15.407.U-N	
60		W		MMM MULL	Margir Margir MMMUkyfr(MHY)Mydy	-6 dB	
50 Mudada	hadawardigilawinati			NY YUM	with the following the	nyyulununpahaputh	nmphalluhunlluden
40							
30							
20							
	5677.50 5705.	.00 5732.50	5760.00 (MHz)	5815.00	5842.50 587	0.00 589	7.50 5925.00
No.	Frequence (MHz)	cy Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5725.00	0 35.41	38.16	73.57	122.20	-48.63	peak
Remarks:							



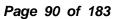
) .:		AN	VT1 + /	ANT2	2							
Ant. Po	ol.:		Ve	ertical									
Fest M	ode:		ТХ	(802.´	11n(H	IT40) N	∕lode	5755I	MHz (U-NII	-3)		
Remar	k:			o repoi escribe			issior	n whic	h mor	e tha	n 20 d	B below	the
130.0 d	BuV/m												
120				\vdash		<u> </u>	<u> </u>						
110											L		
			\square								5		
				لير	and that	MMMar.							
30					da								
70				ł		<u>к.</u>	di.				ECC P	art15.407 U-I	
			. nl	k /		1,1	"WWW	dia.			Margir	-6 dB	
50 Maila	HUMAN	hun ann ann	MAN I	Mu.			-	1944 ANAL	mhuluimph	WALAN ANA	Mulantra	NAM MANAGEM	hinnyraadaraa
50	- strictly		·			<u> </u>	-						
40													
30													
20													
10.0 5650.0	00 567	7.50 570	5.00	5732.50	57£	50.00	(MHz)	581	5.00	5842.5) 587	0.00 589	97.50 5925
N	0.	Frequer (MHz)	-	Read (dBu	-	Fac (dB/		Le (dBu			mit ıV/m)	Margin (dB)	Detector
	*	5725.00	00	27.3	24	38.	16	65	.40	12	2.20	-56.80	peak

Ant No.:		ANT1	+ ANT2								
Ant. Pol.:		Horizo	ontal								_
Test Mode	:	TX 80	2.11n(H	T40) Moo	de 5795	MHz (l	J-NII-3)				
Remark:			oort for t ribed lim	he emiss it.	ion whic	h mor	e than 2	0 dB	below t	he	
130.0 dBuV/	m										1
120							\rightarrow				
110											
100					ul. Autor						
				print	an Banad Mark						
90											
80				Mayhour		WY WAY	h.				
70			. and all	*			Muk N	CC Part1 largin -6	5.407 U-N dB	1-3	
60 	thalwardwildowich	a where have	MMMM				- my	ALL MAN	WANAWA	nanthantanta	
50 *******	an a	kinder of the state									
40											
30	_										
20	_										
10.0											
5650.000	5677.50 5705	.00 5732	2.50 576	50.00 (MH	izj 581	5.00	5842.50	5870.0	0 5893	7.50 592!	5.UL
No.	Frequent (MHz)	-	eading IBuV)	Facto (dB/m)		vel V/m)	Limit (dBuV/		1argin (dB)	Detector	
1 *	5850.00	0 2	6.31	38.44	64	.75	122.2	0 -	57.45	peak	1
Remarks:	B/m) = Ante										

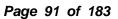


Ant. Pol.:		ANT1 + ANT2								
	Ve	/ertical								
est Mode:	Tک	< 802.11n(F	IT40) Mode	5795M	Hz (l	J-NII-3)				
Remark:		o report for escribed lin	the emissio nit.	n which	mor	e than 20 dl	B below t	the		
130.0 dBuV/m										
120						<u> </u>				
110		/				- 2-				
100				Millatin						
90			parinte	WWWW						
80					ulli.	FCC P	art15.407.U-N			
60			MMMM	Ϋ́	irnym	Margir				
70 60 50 40	hilm Mandauli	M-man produced and the				174-99/III/Jul/A	Vallewille Confidentia	hillewishep Miller		
30										
20										
10.0 5650.000 5677.50	5705.00	5732.50 52	760.00 (MHz)	5815	00	5842.50 587	0.00 589	7.50 5925.0		
No. Frequ	-	Reading (dBuV)	Factor (dB/m)	Lev (dBuV		Limit (dBuV/m)	Margin (dB)	Detector		
1 * 5950	.000	17.85	38.44	56.2	29	122.20	-65.91	peak		

Ant No.:		ANT	1 + ANT2	2							
Ant. Pol.:		Horiz	lorizontal								
Test Mode	e:	TX 8	(802.11ac(VHT40) Mode 5755MHz (U-NII-3)								
Remark:			o report for the emission which more than 20 dB below the rescribed limit.								
130.0 dBuV/	'm			1							7
120			_				<u> </u>				
110		\int									
100					MA. Malance						
90				pulliand	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
80											
70				a wind		malification	м. п	C Part15	: 4 07 II-k		
			u.M.W					argin -6 d			
60	Merzenterlanderenter	happy	nd we have					mentality	human	forthere phone to	4
											1
40											1
30											1
20											1
	5677.50 5705	.00 57	/32.50 57	 60.00 (Mi	lz) 581	5.00	5842.50	5870.00	589	7.50 592	 25.00
No.	Frequen (MHz)	-	Reading (dBuV)	Facto (dB/m		vel V/m)	Limit (dBuV/r		argin dB)	Detector	r
1 *	5850.00	0	22.58	38.44	61	.02	122.2	0 -6	1.18	peak	



nt No.:		ANT ¹	ANT1 + ANT2							
nt. Pol.:		Vertio	cal							
est Mode	:	TX 8	02.11ac(\	VHT40) N	/lode 57	755MH	z (U-NII-3)			
emark:			eport for t cribed lim		ion whi	ch mor	e than 20 d	B below	the	
30.0 dBuV/n	n			1				1		
20							<u> </u>			
10										
00		\mathcal{I}								
0			AND MANY MANY	MW ANA						
			Thur h							
			1							
•		. Sur	1	- Antonio	he way and		FCC P Margin	ait15.407 U-1 n -6 dB	11-3	
) kuldarahana	unyotworkhulton.htt	ANNI T			WWW	www.hyenwhyene	FCC F Margii Wiq,AquM(Mid).hin.	Martinkellike	winter and a second second	
	Allallintatio andreases a									
ı										
ı						_				
o						_				
0.0 5650.000 5	677.50 5705.		32.50 576	50.00 (MI		815.00	5842.50 587	70.00 589	7.50 5925	
No.	Frequent (MHz)	-	eading dBuV)	Facto (dB/m		evel uV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	5725.00	0 :	25.59	38.16	63	3.75	122.20	-58.45	peak	

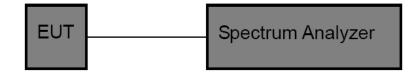


Ant No.:		ANT1 + ANT2	2				
Ant. Pol.:		Horizontal					
Test Mode):	TX 802.11ac(VHT40) Mo	de 5795MH	z (U-NII-3)		
Remark:		No report for prescribed lin		n which mor	e than 20 d	B below	the
130.0 dBuV/	/m						
120					<u> </u>		
110							
100				Nuture			
90			humphing	Ly Marine			
80							
			1 min	hallhing			
70		un MA			Margin	-6 dB	
60 (hautilita	Marinahalanananahalah	manitoriustantitor				Madelandership	Montal
50 50		in the second					
40							
30							
20							
10.0 5650.000	5677.50 5705.1	00 5732.50 57	60.00 (MHz)	5815.00	5842.50 587	0.00 5893	7.50 5925.00
		Desting	Frater	Louis	1 : :4		
No.	Frequenc (MHz)	y Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	5850.000) 22.58	38.44	61.02	122.20	-61.18	peak
	IB/m) = Anter alue = Level	nna Factor (dB	/m)+Cable F	Factor (dB)-	Pre-amplifie	er Factor	

Ant. Pol.:		ANT1	+ ANT2								
(III. FUI		Vertic	ertical								
est Mode:		TX 80)2.11ac(\	VHT40) M	ode 579	95MH:	z (U-NII-3)				
Remark:			port for t ribed lim		on whic	h mor	e than 20 d	B below	the		
130.0 dBu∀/m				, , , , , , , , , , , , , , , , , , ,				1			
120		- <u>F</u>					<u> </u>				
110		1									
100	-//										
90	\leftarrow			MAMM	ngth many						
80	<u> </u>										
70				JANN I		huh whw	FCC P	art15.407 U-N -6 dB	H-3 ~~~		
60	contration and the	. June	and the first	1 411			Mill Hawkin Luth	why the why alpha his	to a set to the set of the second se		
50 10/07/07/07/07/07/07/07/07/07/07/07/07/07	Midthil Marchillian	UK As Ann al	in the second				- reserve to desire	a da a catala a	10 T. C. 10 C.		
40											
30											
20											
10.0 5650.000 5677	7.50 5705.0	00 573	2.50 576	60.00 (MHz) 581	5.00	5842.50 587	70.00 589	7.50 5925.0		
No.	Frequenc (MHz)	-	eading JBuV)	Factor (dB/m)	Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Detector		
1 *	5850.000) 1	7.17	38.44	55.	61	122.20	-66.59	peak		

		r									
Ant No.:		ANT1	NT1 + ANT2								
Ant. Pol.:		Horizo	prizontal								
Test Mode:		TX 80	2.11ac(\	/HT80) N	lode 57 ⁻	75MH:	z (U-NII-3)				
Remark:					ion whic	h mor	e than 20 d	B below	the		
130 <u>0</u> dBu∀/m		presc	ribed lim	It.							
		_									
120											
110		1									
100				anna an	MANANA						
90			AND A L	, and ,	· · · · · · · · · · · · · ·						
80			<u> </u>			April					
70	all and a sub-	ALMAN LA SCHAM	/			a dout M	What A PCC P	art15.407 U-N	H-3		
60	Mand Manager						WM MAR FCC P	THE B	tration		
50 / / / / / / / / / /									and the second		
40											
30											
20											
10.0											
5650.000 567	7.50 5705	.00 573	2.50 576	50.00 (MH	lz) 581	5.00	5842.50 587	70.00 589	7.50 5925.00		
							1	1	T		
No.	Frequence (MHz)	-	eading IBuV)	Factor (dB/m)		vel V/m)	Limit (dBuV/m)	Margin (dB)	Detector		
1 *	5725.00) 3	3.35	38.16	71	.51	122.20	-50.69	peak		
2	5850.00) 3	2.24	38.44	70	.68	122.20	-51.52	peak		
Remarks:											
1.Factor (dB/ 2.Margin valu				m)+Cable	e Factor	(dB)-	Pre-amplifie	er Factor			

Ant N	10 ·		ΔΝΤ1	+ ANT2	•							
Ant. F				ertical								
-	Mode:				/HT80) N	Ло	de 577	75MH:	z (U-NII-3)			
Rema			No re	•	he emiss				e than 20 d	B below	the	
130.0	dBuV/m		1 prese									
120												
110			$\int \Gamma$									
100												
90					WARDEN AND THE	dhaa	ant					
80				Manner	a dista Augusta	Λ-1 10	and the little by					
70 🖌	4			ļ				William.	FCC P	art15.407 U-N	H-3	
60		www.houte	MANAMA	·				, addWM		-6 dB		
50 💆	ndyndrydd	10 martin and a contraction	11"						1	endediscology.	yhviluu yhvinnin	
40												
30 -												
20												
10.0	0.00D 5	677.50 5705.	00 573	2.50 576	50.00 (MF	1-1	E01	5.00	5842.50 587	0.00 589	7.50 5925.00	
		F		- dia -	Fasta				1 : :4			
١	No.	Frequence (MHz)	-	eading IBuV)	Facto (dB/m)		Lev (dBu		Limit (dBuV/m)	Margin (dB)	Detector	
	1 *	5725.00) 2	2.39	38.16		60.	55	122.20	-61.65	peak	
	2	5850.00) 2	21.85	38.44		60.	29	122.20	-61.91	peak	
	tor (dE	3/m) = Ante lue = Level			/m)+Cabl	e F	actor	(dB)-	Pre-amplifie	er Factor		



3.4. Bandwidth Test

Limit

FC	FCC Part 15 Subpart C(15.407)/ RSS-247								
Test Item	Limit	Frequency Range (MHz)							
		5150~5250							
26 Bandwidth	N/A	5250~5350							
		5500~5700							
6 dB Bandwidth	>500kHz	5725~5850							

Test Configuration

Test Procedure

Please refer to According to KDB789033 D02, for the measurement methods.

The setting of the spectrum analyser as below:

	26dB Bandwidth Test
Spectrum Parameters	Setting
Attenuation	Auto
Span	>26 dB Bandwidth
RBW	Approximately 1% of the emission bandwidth
VBW	VBW>RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

CTC Laboratories, Inc.

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

	6dB Bandwidth Test
Spectrum Parameters	Setting
Attenuation	Auto
Span	>6 dB Bandwidth
RBW	100 kHz
VBW	VBW>=3*RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto
99%	6 Occupied Bandwidth Test
Spectrum Parameters	Setting
Attenuation	Auto
RBW	1% to 5% of the OBW
VBW	≥ 3RBW
Detector	Peak
Trace	Max Hold

Note: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

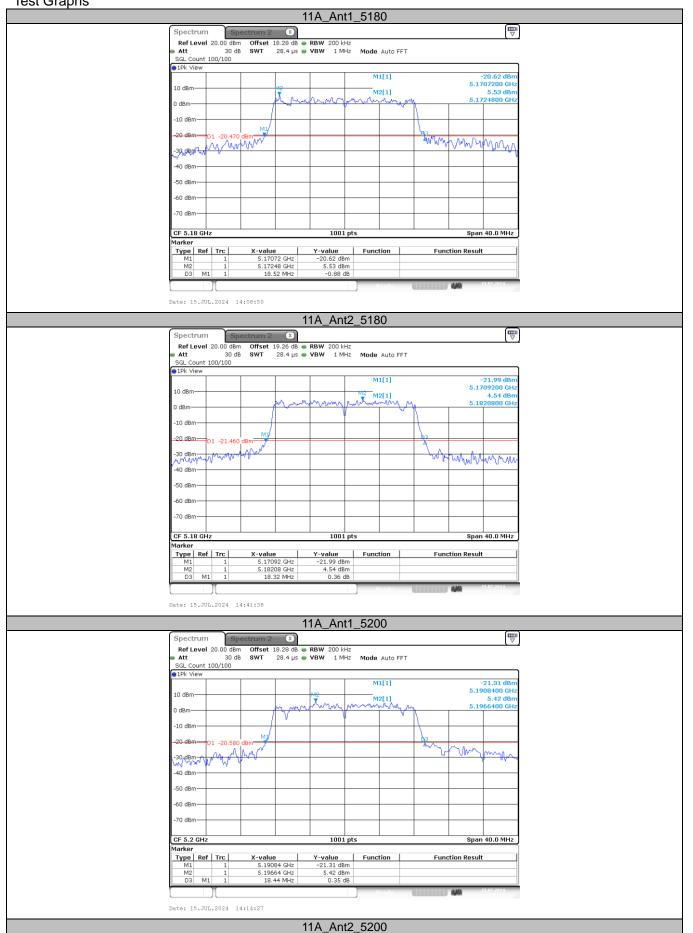
Please refer to the clause 2.4.

Test Results

26dB Bandwidth

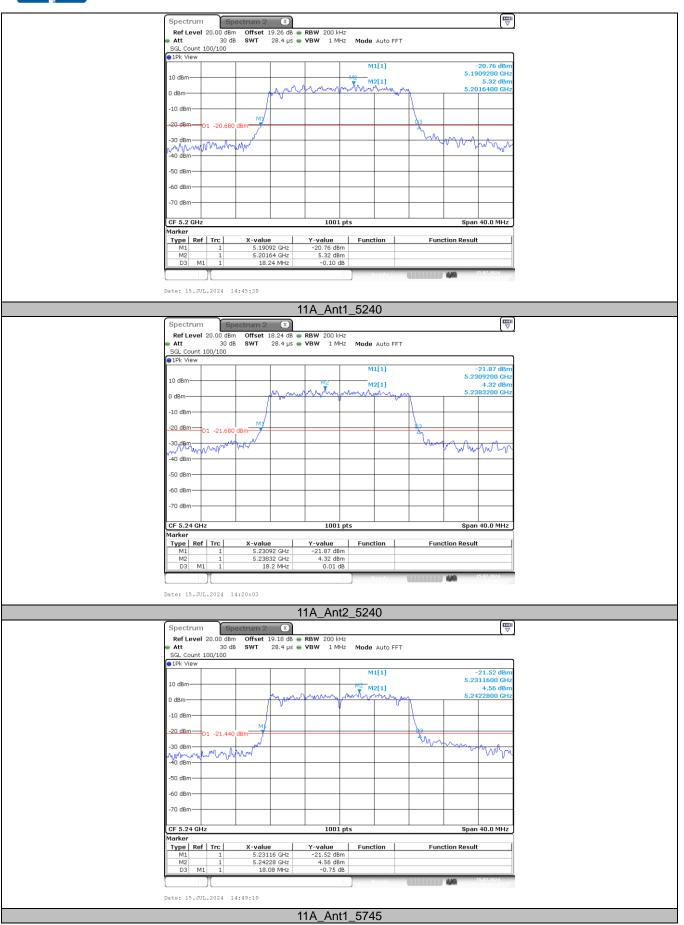
Test Mode	Antenna	Freq(MHz)	26dB EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	Ant1	5180	18.52	5170.72	5189.24		
	Ant2	5180	18.32	5170.92	5189.24		
	Ant1	5200	18.44	5190.84	5209.28		
	Ant2	5200	18.24	5190.92	5209.16		
	Ant1	5240	18.20	5230.92	5249.12		
11A	Ant2	5240	18.08	5231.16	5249.24		
IIA	Ant1	5745	18.80	5735.96	5754.76		
	Ant2	5745	18.20	5735.92	5754.12		
	Ant1	5785	18.36	5775.80	5794.16		
	Ant2	5785	18.24	5776.04	5794.28		
	Ant1	5825	18.12	5816.00	5834.12		
	Ant2	5825	18.12	5815.96	5834.08		
	Ant1	5180	18.68	5170.68	5189.36		
	Ant2	5180	18.32	5170.76	5189.08		
	Ant1	5200	18.24	5190.84	5209.08		
	Ant2	5200	18.56	5190.84	5209.40		
	Ant1	5240	18.40	5230.92	5249.32		
11N20MIMO	Ant2	5240	18.24	5230.76	5249.00		
	Ant1	5745	17.92	5736.00	5753.92		
	Ant2	5745	18.40	5735.80	5754.20		
	Ant1	5785	18.08	5776.00	5794.08		
	Ant2	5785	18.24	5775.84	5794.08		
	Ant1	5825	17.96	5815.88	5833.84		
	Ant2	5825	17.84	5816.20	5834.04		

CTC Laboratories, Inc.


Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

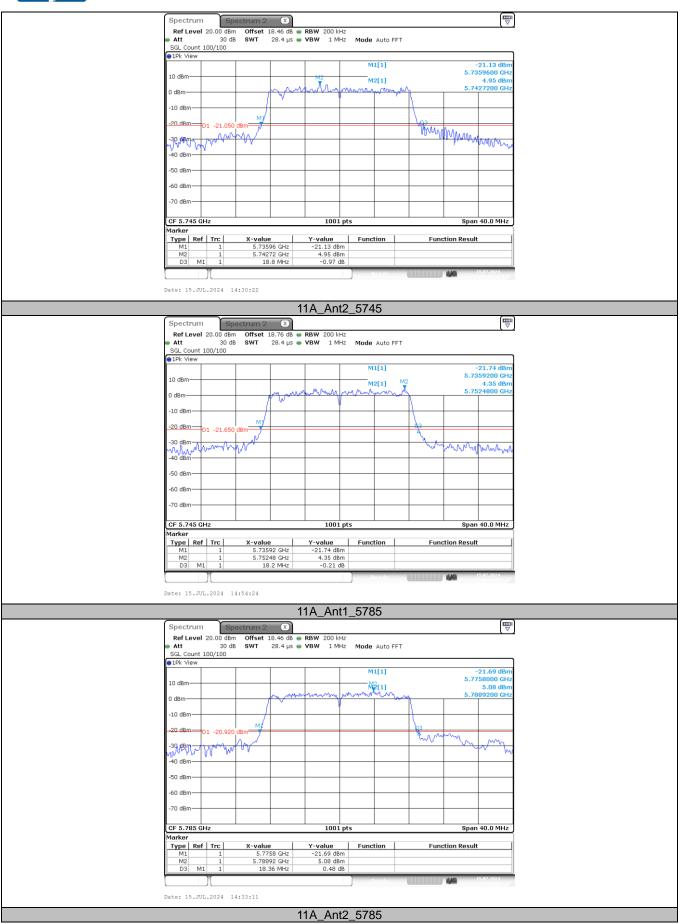
Ant2 5190 39.92 5170.16 5210.08 Ant1 5230 40.48 5210.32 5250.80 Ant2 5230 38.56 5210.32 5248.88 Ant2 5755 39.12 5735.96 5775.08 Ant2 5755 39.20 5735.32 5774.52 Ant1 5795 39.52 5775.00 5814.52 Ant2 5795 39.52 5776.00 5814.52 Ant1 5180 19.04 5170.32 5189.72 Ant1 5200 19.00 5190.48 5209.48 Ant1 5240 19.32 5230.20 5249.72 Ant1 5240 19.32 5230.20 5249.72 Ant1 5240 <td< th=""><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th></td<>					1		
Ant1 5230 40.48 5210.32 5250.80 Ant2 5230 38.56 5210.32 5248.88 Ant1 5755 39.12 5735.96 5775.08 Ant1 5795 39.20 5735.32 5774.52 Ant1 5795 39.52 5775.00 5814.52 Ant2 5780 19.40 5170.32 5189.56 Ant1 5200 19.40 5170.32 5189.72 Ant1 5200 19.40 5170.32 5189.72 Ant1 5200 19.00 5190.40 5209.80 Ant1 5240 19.32 5230.20 5249.72 Ant1 5745 19.28 5735.32 5754.60 Ant2 5785 <td< td=""><td rowspan="8">11N40MIMO</td><td>Ant1</td><td>5190</td><td>40.40</td><td>5169.76</td><td>5210.16</td><td> </td></td<>	11N40MIMO	Ant1	5190	40.40	5169.76	5210.16	
Ant2 5230 38.56 5210.32 5248.88 Ant1 5755 39.12 5735.96 5775.08 Ant2 5795 39.20 5735.32 5774.52 Ant1 5795 39.52 5775.08 5815.56 Ant2 5795 39.52 5775.08 5814.52 Ant1 5180 19.04 5170.52 5189.56 Ant1 5200 19.40 5190.48 5209.48 Ant1 5200 19.00 5190.48 5209.48 Ant1 5240 19.52 5230.20 5249.60 Ant1 5745 19.76 5735.00 5754.76 Ant1 5785 19.16 5775.52 5794.48 Ant2 5785 <td< td=""><td>Ant2</td><td>5190</td><td>39.92</td><td>5170.16</td><td>5210.08</td><td> </td></td<>		Ant2	5190	39.92	5170.16	5210.08	
Ant1 5755 39.12 5735.96 5775.08 Ant2 5755 39.20 5735.32 5774.52 Ant1 5795 40.48 5775.08 5815.56 Ant2 5795 39.52 5775.00 5814.52 Ant2 5180 19.04 5170.52 5189.56 Ant2 5180 19.40 5170.32 5189.72 Ant1 5200 19.40 5190.48 5209.48 Ant1 5240 19.52 5230.20 5249.72 Ant1 5745 19.28 5735.32 5754.60 Ant1 5745 19.28 5735.00 574.76 Ant2 5785 19.16 5775.56 5794.52 Ant2 5825 19.12 <td< td=""><td>Ant1</td><td>5230</td><td>40.48</td><td>5210.32</td><td>5250.80</td><td> </td></td<>		Ant1	5230	40.48	5210.32	5250.80	
Ant1 5755 39.12 5735.96 5775.08 Ant2 5755 39.20 5735.32 5774.52 Ant1 5795 40.48 5775.08 5815.56 Ant2 5795 39.52 5775.00 5814.52 Ant2 5180 19.04 5170.52 5189.56 Ant1 5200 19.40 5190.40 5209.80 Ant1 5200 19.00 5190.48 5209.80 Ant1 5200 19.00 5190.48 5209.80 Ant1 5240 19.52 5230.20 5249.72 Ant1 5745 19.76 5735.00 5754.60 Ant1 5785 19.12 5815.32 5834.56 Ant2 5785 <td< td=""><td>Ant2</td><td>5230</td><td>38.56</td><td>5210.32</td><td>5248.88</td><td> </td></td<>		Ant2	5230	38.56	5210.32	5248.88	
Ant1 5795 40.48 5775.08 5815.56 Ant2 5795 39.52 5775.00 5814.52 Ant1 5180 19.04 5170.32 5189.56 Ant2 5180 19.40 5170.32 5189.72 Ant1 5200 19.40 5190.40 5209.80 Ant2 5200 19.00 5190.48 5209.48 Ant1 5240 19.52 5230.20 5249.72 Ant2 5240 19.32 5230.20 5249.72 Ant1 5745 19.28 5735.32 5754.60 Ant1 5785 19.76 5775.32 5794.48 Ant1 5785 19.12 5815.52 5834.64 Ant2 5190 <td< td=""><td>Ant1</td><td>5755</td><td>39.12</td><td>5735.96</td><td>5775.08</td><td> </td></td<>		Ant1	5755	39.12	5735.96	5775.08	
Ant2 5795 39.52 5775.00 5814.52 Ant1 5180 19.04 5170.52 5189.56 Ant2 5180 19.40 5170.32 5189.72 Ant1 5200 19.40 5190.40 5209.80 Ant1 5200 19.00 5190.48 5209.48 Ant1 5240 19.52 5230.20 5249.72 Ant2 5240 19.32 5230.28 5249.60 Ant1 5745 19.28 5735.32 5754.60 Ant2 5785 18.96 5775.56 5794.48 Ant1 5825 19.12 5815.32 5834.56 Ant1 5190 39.28 5170.08 5209.36 Ant1 5755 <td< td=""><td>Ant2</td><td>5755</td><td>39.20</td><td>5735.32</td><td>5774.52</td><td> </td></td<>		Ant2	5755	39.20	5735.32	5774.52	
Ant1 5180 19.04 5170.52 5189.56 Ant2 5180 19.40 5170.32 5189.72 Ant1 5200 19.40 5190.40 5209.80 Ant2 5200 19.00 5190.48 5209.48 Ant1 5240 19.52 5230.20 5249.72 Ant1 5745 19.32 5230.28 5249.60 Ant1 5745 19.28 5735.32 5754.60 Ant2 5745 19.76 5735.00 5754.76 Ant1 5785 18.96 5775.32 5794.48 Ant1 5825 19.12 5815.32 5834.66 Ant1 5190 39.28 5170.08 5209.36 Ant1 5230 <td< td=""><td>Ant1</td><td>5795</td><td>40.48</td><td>5775.08</td><td>5815.56</td><td> </td></td<>		Ant1	5795	40.48	5775.08	5815.56	
Ant2 5180 19.40 5170.32 5189.72 Ant1 5200 19.40 5190.40 5209.80 Ant2 5200 19.00 5190.48 5209.48 Ant1 5240 19.52 5230.20 5249.72 Ant2 5240 19.32 5230.28 5249.60 Ant2 5745 19.28 5735.32 5754.60 Ant2 5745 19.76 5735.00 5754.76 Ant1 5785 19.16 5775.32 5794.48 Ant2 5785 18.96 5775.56 5794.52 Ant1 5825 19.12 5815.32 5834.64 Ant2 5190 39.28 5170.08 5209.36 Ant1 5230 <td< td=""><td>Ant2</td><td>5795</td><td>39.52</td><td>5775.00</td><td>5814.52</td><td> </td></td<>		Ant2	5795	39.52	5775.00	5814.52	
Ant1 5200 19.40 5190.40 5209.80 Ant2 5200 19.00 5190.48 5209.48 Ant1 5240 19.52 5230.20 5249.72 Ant1 5745 19.28 5735.32 5754.60 Ant2 5745 19.76 5735.00 5754.76 Ant2 5785 19.76 5735.00 5754.76 Ant1 5785 19.16 5775.56 5794.52 Ant1 5825 19.24 5815.32 5834.66 Ant2 5825 19.12 5815.52 5834.64 Ant2 5190 39.28 5170.08 5209.36 Ant1 5190 39.28 5170.08 5209.32 Ant1 5230 <td< td=""><td rowspan="12">11AC20MIMO</td><td>Ant1</td><td>5180</td><td>19.04</td><td>5170.52</td><td>5189.56</td><td> </td></td<>	11AC20MIMO	Ant1	5180	19.04	5170.52	5189.56	
Ant2 5200 19.00 5190.48 5209.48 Ant1 5240 19.52 5230.20 5249.72 Ant2 5240 19.32 5230.28 5249.60 Ant1 5745 19.28 5735.32 5754.60 Ant2 5745 19.76 5735.00 5754.76 Ant1 5785 19.76 5775.32 5794.48 Ant2 5785 19.24 5815.32 5834.56 Ant1 5825 19.12 5815.32 5834.64 Ant1 5190 39.28 5170.08 5209.36 Ant1 5230 40.48 5209.84 5250.32 Ant2 5755 41.20 5735.4 5775.80 Ant1 5795 4		Ant2	5180	19.40	5170.32	5189.72	
Ant1 5240 19.52 5230.20 5249.72 Ant2 5240 19.32 5230.28 5249.60 Ant1 5745 19.28 5735.32 5754.60 Ant2 5745 19.76 5735.00 5754.76 Ant1 5785 19.16 5775.32 5794.48 Ant2 5785 18.96 5775.56 5794.52 Ant1 5825 19.24 5815.32 5834.66 Ant2 5825 19.12 5815.52 5834.64 Ant1 5190 39.28 5170.08 5209.36 Ant1 5230 40.00 5209.52 5249.52 Ant1 5735 40.56 5735.24 5775.80 Ant1 5795 <td< td=""><td>Ant1</td><td>5200</td><td>19.40</td><td>5190.40</td><td>5209.80</td><td> </td></td<>		Ant1	5200	19.40	5190.40	5209.80	
Ant2 5240 19.32 5230.28 5249.60 Ant1 5745 19.28 5735.32 5754.60 Ant2 5745 19.76 5735.00 5754.76 Ant1 5785 19.16 5775.32 5794.48 Ant2 5785 18.96 5775.56 5794.52 Ant1 5825 19.24 5815.32 5834.64 Ant2 5825 19.12 5815.52 5834.64 Ant1 5190 40.32 5169.92 5210.24 Ant1 5190 39.28 5170.08 5209.36 Ant1 5230 40.00 5209.52 5249.52 Ant2 5755 41.20 5735.44 5775.80 Ant1 5795 <td< td=""><td>Ant2</td><td>5200</td><td>19.00</td><td>5190.48</td><td>5209.48</td><td> </td></td<>		Ant2	5200	19.00	5190.48	5209.48	
Ant1 5745 19.28 5735.32 5754.60 Ant2 5745 19.76 5735.00 5754.76 Ant1 5785 19.16 5775.32 5794.48 Ant2 5785 18.96 5775.56 5794.52 Ant1 5825 19.24 5815.32 5834.56 Ant2 5825 19.12 5815.52 5834.64 Ant2 5190 39.28 5170.08 5209.36 Ant1 5230 40.00 5209.52 5249.52 Ant1 5755 40.56 5735.24 5775.80 Ant2 5755 41.20 574.04 5775.24 Ant1 5795 39.12 5775.80 5814.92 Ant2 5795		Ant1	5240	19.52	5230.20	5249.72	
Ant1 5745 19.28 5735.32 5754.60 Ant2 5745 19.76 5735.00 5754.76 Ant1 5785 19.16 5775.32 5794.48 Ant2 5785 18.96 5775.56 5794.52 Ant1 5825 19.24 5815.32 5834.64 Ant2 5825 19.12 5815.52 5834.64 Ant1 5190 40.32 5169.92 5210.24 Ant2 5190 39.28 5170.08 5209.36 Ant1 5230 40.00 5209.52 5249.52 Ant2 5755 40.56 5735.24 5775.80 Ant1 5795 39.12 5775.80 5814.92 Ant2 5795 <td< td=""><td>Ant2</td><td>5240</td><td>19.32</td><td>5230.28</td><td>5249.60</td><td> </td></td<>		Ant2	5240	19.32	5230.28	5249.60	
Ant1 5785 19.16 5775.32 5794.48 Ant2 5785 18.96 5775.56 5794.52 Ant1 5825 19.24 5815.32 5834.56 Ant2 5825 19.12 5815.52 5834.64 Ant1 5190 40.32 5169.92 5210.24 Ant2 5190 39.28 5170.08 5209.36 Ant1 5230 40.00 5209.52 5249.52 Ant2 5230 40.48 5209.84 5250.32 Ant1 5755 40.56 5735.24 5775.80 Ant2 5795 40.24 5775.80 5814.92 Ant1 5795 40.24 5774.92 5815.16 Ant2 5795 <td< td=""><td>Ant1</td><td>5745</td><td>19.28</td><td>5735.32</td><td>5754.60</td><td> </td></td<>		Ant1	5745	19.28	5735.32	5754.60	
Ant2 5785 18.96 5775.56 5794.52 Ant1 5825 19.24 5815.32 5834.56 Ant2 5825 19.12 5815.52 5834.64 Ant2 5190 40.32 5169.92 5210.24 Ant2 5190 39.28 5170.08 5209.36 Ant1 5230 40.00 5209.52 5249.52 Ant2 5230 40.48 5209.84 5250.32 Ant1 5755 40.56 5735.24 5775.80 Ant2 5755 41.20 5734.04 5775.24 Ant2 5795 40.24 5775.80 5814.92 Ant2 5795 40.24 5774.92 5815.16 Ant1 5210 <td< td=""><td>Ant2</td><td>5745</td><td>19.76</td><td>5735.00</td><td>5754.76</td><td> </td></td<>		Ant2	5745	19.76	5735.00	5754.76	
Ant1 5825 19.24 5815.32 5834.56 Ant2 5825 19.12 5815.52 5834.64 Ant1 5190 40.32 5169.92 5210.24 Ant2 5190 39.28 5170.08 5209.36 Ant1 5230 40.00 5209.52 5249.52 Ant2 5230 40.48 5209.84 5250.32 Ant1 5755 40.56 5735.24 5775.80 Ant2 5755 41.20 5734.04 5775.24 Ant1 5795 39.12 5775.80 5814.92 Ant2 5795 40.24 5774.92 5815.16 Ant2 5795 40.24 5774.92 5815.16 Ant2 5210 79.52 <t< td=""><td>Ant1</td><td>5785</td><td>19.16</td><td>5775.32</td><td>5794.48</td><td> </td></t<>		Ant1	5785	19.16	5775.32	5794.48	
Ant2 5825 19.12 5815.52 5834.64 Ant1 5190 40.32 5169.92 5210.24 Ant2 5190 39.28 5170.08 5209.36 Ant1 5230 40.00 5209.52 5249.52 Ant2 5230 40.48 5209.84 5250.32 Ant1 5755 40.56 5735.24 5775.80 Ant2 5755 41.20 5734.04 5775.24 Ant1 5795 39.12 5775.80 5814.92 Ant2 5795 40.24 5774.92 5815.16 Ant1 5210 79.36 5170.48 5249.84 Ant2 5210 79.52 5170.32 5249.84 Ant1 5775 <td< td=""><td>Ant2</td><td>5785</td><td>18.96</td><td>5775.56</td><td>5794.52</td><td> </td></td<>		Ant2	5785	18.96	5775.56	5794.52	
Ant1 5190 40.32 5169.92 5210.24 Ant2 5190 39.28 5170.08 5209.36 Ant1 5230 40.00 5209.52 5249.52 Ant2 5230 40.48 5209.84 5250.32 Ant1 5755 40.56 5735.24 5775.80 Ant2 5755 41.20 5734.04 5775.24 Ant1 5795 39.12 5775.80 5814.92 Ant2 5795 40.24 5774.92 5815.16 Ant2 5795 40.24 5774.92 5815.16 Ant2 5210 79.36 5170.48 5249.84 Ant1 5270 79.68 5735.00 5814.68		Ant1	5825	19.24	5815.32	5834.56	
Ant2 5190 39.28 5170.08 5209.36 Ant1 5230 40.00 5209.52 5249.52 Ant2 5230 40.48 5209.84 5250.32 Ant1 5755 40.56 5735.24 5775.80 Ant2 5755 41.20 5734.04 5775.24 Ant1 5795 39.12 5775.80 5814.92 Ant2 5795 40.24 5774.92 5815.16 Ant2 5795 40.24 5774.92 5815.16 Ant2 5210 79.36 5170.48 5249.84 11AC80MIMO Ant2 5210 79.52 5170.32 5249.84 Ant1 5775 79.68 5735.00 5814.68		Ant2	5825	19.12	5815.52	5834.64	
Ant1 5230 40.00 5209.52 5249.52 Ant2 5230 40.48 5209.84 5250.32 Ant1 5755 40.56 5735.24 5775.80 Ant2 5755 41.20 5734.04 5775.24 Ant1 5795 39.12 5775.80 5814.92 Ant2 5795 40.24 5774.92 5815.16 Ant2 5795 40.24 5774.92 5815.16 Ant2 5210 79.36 5170.48 5249.84 11AC80MIMO Ant1 5775 79.68 5735.00 5814.68	11AC40MIMO	Ant1	5190	40.32	5169.92	5210.24	
Ant2 5230 40.48 5209.84 5250.32 Ant1 5755 40.56 5735.24 5775.80 Ant2 5755 41.20 5734.04 5775.24 Ant1 5795 39.12 5775.80 5814.92 Ant2 5795 40.24 5774.92 5815.16 Ant2 5795 40.24 5774.92 5815.16 Ant2 5210 79.36 5170.48 5249.84 11AC80MIMO Ant1 5775 79.68 5735.00 5814.68		Ant2	5190	39.28	5170.08	5209.36	
Ant1 5755 40.56 5735.24 5775.80 Ant2 5755 41.20 5734.04 5775.24 Ant1 5795 39.12 5775.80 5814.92 Ant2 5795 40.24 5774.92 5815.16 Ant2 5795 40.24 5774.92 5815.16 Ant2 5210 79.36 5170.48 5249.84 Ant2 5210 79.52 5170.32 5249.84 Ant1 5775 79.68 5735.00 5814.68		Ant1	5230	40.00	5209.52	5249.52	
Ant1 5755 40.56 5735.24 5775.80 Ant2 5755 41.20 5734.04 5775.24 Ant1 5795 39.12 5775.80 5814.92 Ant2 5795 40.24 5774.92 5815.16 Ant2 5795 40.24 5774.92 5815.16 Ant2 5795 40.24 5774.92 5815.16 Ant1 5210 79.36 5170.48 5249.84 Ant2 5210 79.52 5170.32 5249.84 Ant1 5775 79.68 5735.00 5814.68		Ant2	5230	40.48	5209.84	5250.32	
Ant1 5795 39.12 5775.80 5814.92 Ant2 5795 40.24 5774.92 5815.16 Ant1 5210 79.36 5170.48 5249.84 11AC80MIMO Ant2 5210 79.52 5170.32 5249.84 Ant1 5775 79.68 5735.00 5814.68		Ant1	5755	40.56	5735.24	5775.80	
Ant2 5795 40.24 5774.92 5815.16 Ant1 5210 79.36 5170.48 5249.84 11AC80MIMO Ant2 5210 79.52 5170.32 5249.84 Ant1 5775 79.68 5735.00 5814.68		Ant2	5755	41.20	5734.04	5775.24	
Ant1 5210 79.36 5170.48 5249.84 11AC80MIMO Ant2 5210 79.52 5170.32 5249.84 Ant1 5775 79.68 5735.00 5814.68		Ant1	5795	39.12	5775.80	5814.92	
Ant2 5210 79.52 5170.32 5249.84 Ant1 5775 79.68 5735.00 5814.68		Ant2	5795	40.24	5774.92	5815.16	
11AC80MIMO Ant1 5775 79.68 5735.00 5814.68	11AC80MIMO	Ant1	5210	79.36	5170.48	5249.84	
Ant1 5775 79.68 5735.00 5814.68		Ant2	5210	79.52	5170.32	5249.84	
Apt2 5775 80.16 5735.16 5815.32		Ant1	5775	79.68	5735.00	5814.68	
7.11.2 0110 00110 010010 010102		Ant2	5775	80.16	5735.16	5815.32	



Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China

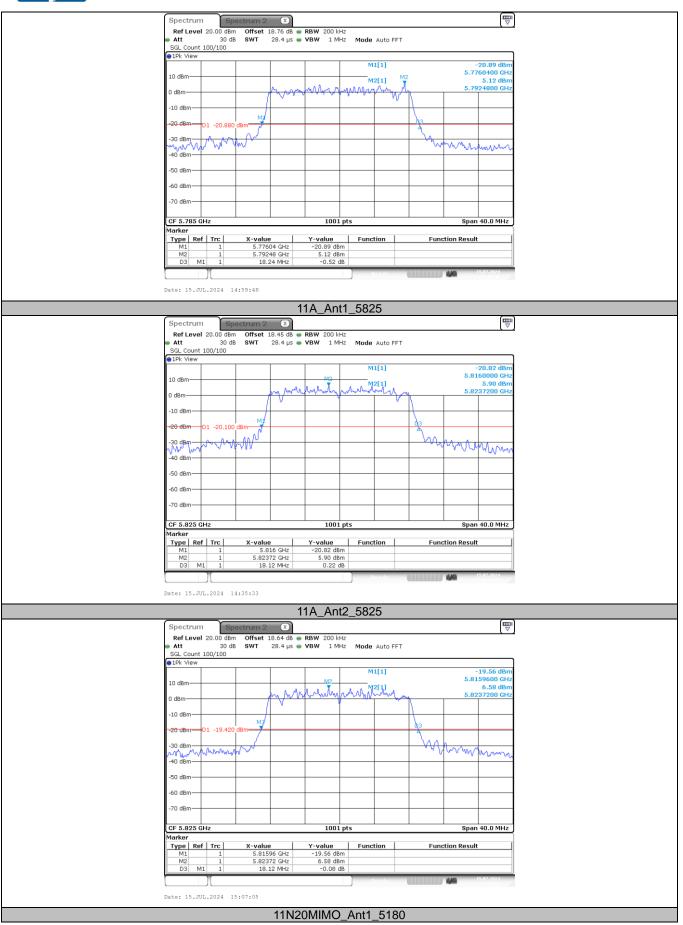
EN

Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : yz.cnca.cn



Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn



Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 EN

Room 101 Building B, No. 7, Lanqing 1st Road, Luhu Community, Guanhu Subdistrict, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : yz.cnca.cn

