

Hearing Aid Compatibility (HAC) RF Emissions TEST REPORT

Report No: STS1605016H01

Issued for

ZTE Corporation ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, P.R. China

Product Name:	LTE Mutil-Mode Digital Mobile Phone			
Brand Name:	ZTE			
Model No.:	Z861BL			
Series Model:	N/A			
FCC ID:	SRQ-Z861BL			
Test Standard:	ANSI C63.19:2011			
Test Result:	Pass			

Any reproduction of this document must be done in full. No single part of this document may be permission from STS, All Test Data Presented in this report is only applicable to presented Test

Shenzhen STS Test Services Co., Ltd. 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Test Report Certification

Applicant's name	ZTE Corporation
Address	ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Manufacture's Name	ZTE Corporation
Address	ZTE Plaza, Keji Road South, Hi-Tech, Industrial Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Product description	
Product name	LTE Mutil-Mode Digital Mobile Phone
Trademark	ZTE
Model and/or type reference .:	Z861BL
Serial Model :	N/A
Standards	ANSI C63.19:2011

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test	:	
Data (a) of parformance of tests	1	44

Test Result	Pass
Date of Issue	18 May 2016
Date (s) of performance of tests	11 May 2016

Testing Engineer

2

Allen Chen

	(Allen Chen)
Technical Manager :	John . Zon
	(John Zou)
Authorized Signatory :	Boney Yoney

(Bovey Yang)

Table of Contens

Page 3 of 22

1. General Information	4
1.1 EUT Description	4
1.2 Test Environment	5
1.3 Test Facility	5
2. System components	6
2.1 SATIMO System Description	6
2.2 E-Field Probe Specification	6
2.3 H-Field Probe Specification	6
2.4 Axis Articulated Robot	7
2.5 Universal Device Positioner	7
2.6 Test Equipment List	8
2.7 Measurement Uncertainty	9
3. HAC RF Emission Measurement Evaluation	10
3.1 System Check	10
3.2 Dipole validation	10
3.3 System Validation Results	10
4. Device Under Test	11
5. Modulation interference Factor (MIF)	12
6. HAC TEST PROCEDURES	13
7. Test flowchart Per ANSI-PC63.19 2011	14
8. Average Antenna Input Power & Evaluation for Low-power Exemption	15
9. RF EMISSIONS	15
10 HAC RF Emission Test Results	16
10.1 Test Result	16
10.2 E-Field Emission for GSM:	17
11. HAC Test Photographs	20
12. System VALIDATION RESULTS	21
Appendix C. Probe Calibration And Dipole Calibration Report	22

I

Report No.: STS1605016H01

1. General Information

1.1 EUT Description

Equipment	LTE Mutil-Mode Digital Mobile Phone		
Brand Name	ZTE		
Model No.	Z861BL		
Serial Model	N/A		
FCC ID	SRQ-Z861BL		
Model Difference	N/A		
Hardware Version	Z861BLHWV1.0		
Software Version	Z861BLV0.0.0B02		
Frequency Range	Range GSM 850: 824.2 ~ 848.8 MHz; PCS1900: 1850.2 ~ 1909.8 MHz WCDMA II: 1852.4~1907.6 MHz; WCDMA V: 826.4~846.6 MHz LTE Band 2: 1840-1910 MHz; LTE Band 4: 1710-1755 MHz LTE Band 5: 824-849 MHz; LTE Band 12: 699-716 MHz; Bluetooth: 2402~2480 MHz		
Antenna Type:	GSM/WCDMA/LTE/BT: PIFA Antenna		
Hotspot Mode:	Support		
DTM Mode:	Not Support		
M category	M4		
Test Result	Pass		

I

1.2 lest Environment

Ambient conditions in the SAR laboratory:

Items	Required	Actual
Temperature (°C)	15-30	21~23
Humidity (%RH)	30-70	55~65

1.3 Test Facility

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China CNAS Registration No.: L7649 FCC Registration No.: 842334; IC Registration No.: 12108A-1

Page 6 of 22

Report No.: STS1605016H01

2. System components

2.1 SATIMO System Description

SATIMO is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller. SATIMO uses the latest methodologies and FDTD order to provide a platform which is repeatable with minimum uncertainty.

2.2 E-Field Probe Specification

Device Under Test			
Device Type	COMOHAC E FIELD PROBE		
Manufacturer	Satimo		
Model	SCE		
Serial Number	SN 06/14 EPH42		
Product Condition (new / used)	new		
Frequency Range of Probe	0.7GHz-2.5GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.214 MΩ		
	Dipole 2: R2=0.213 MΩ		
	Dipole 3: R3=0.204 MΩ		

2.3 H-Field Probe Specification

Device Under Test			
Device Type	COMOHAC H FIELD PROBE		
Manufacturer	Satimo		
Model	SCH		
Serial Number	SN 06/14 HPH51		
Product Condition (new / used)	New		
Frequency Range of Probe	0.7GHz-2.5GHz		
Resistance of Three Loops at Connector	Loop 1: R1=0.280 MΩ		
	Loop 2: R2=0.309 MΩ		
	Loop 3: R3=0.297 MΩ		

51 E

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, Chin Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com Page 7 of 22 Report No.: STS1605016H01

SATIMO utilizes a six articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelop. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

Robot /Controller Manufacturer	KUKA
Number of Axis	Six independently controlled axis
Positioning Repeatability	$<\pm 0.03$ mm
Controller Type	KR C4 compact
Robot Reach	901mm
Communication	RS232 and LAN compatible

2.5 Universal Device Positioner

The universal device positioner allows complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes.

2.6 Test Equipment List

Instrument	Manufacturer	Model	S/N	Cal. Date	Cal. Due Date
E-Field Probe	SATIMO	SCE	SN 06/14 EPH42	2015.09.01	2016.08.31
Reference Validation Dipole 850MHz	SATIMO	SID835	SN 13/14 DHA55	2015.09.01	2016.08.31
Reference Validation Dipole 1900MHz	SATIMO	SIDB1900	SN 13/14 DHB59	2015.09.01	2016.08.31
Dielectric Probe Kit	SATIMO	SCLMP	SN 32/14 OCPG52	2015.09.01	2016.08.31
Device Holder	SATIMO	SCLMP	SN 32/14 TABH37	2015.09.01	2016.08.31
Waveguide	SATIMO	SWG5500	SN 13/14 WGA32	2015.09.01	2016.08.31
COMHAC Test Bench	SATIMO	Version 2	NA	N.C.R.	N.C.R.
HAC positioning ruler	SATIMO	TABH12 SN 42/09	NA	N.C.R.	N.C.R.
Temperature/Humidity sensor	Mieo	HH660	STS-H025	2015.10.27	2016.10.26
Multi Meter	Keithley	Multi Meter 2000	4050073	2015.11.20	2016.11.19
Amplifier	Mini-Circuit	ZHL-42	22374	2015.10.24	2016.10.23
Signal Generator	Agilent	F2182A	MY50140530	2015.11.18	2016.11.17
Power Meter	R&S	NRP	100510	2015.10.25	2016.10.24
Power Sensor	R&S	NRP-Z11	101919	2015.10.24	2016.10.23
Network Analyzer	Agilent	5071C	EMY46103472	2015.12.12	2016.12.11

Note: All equipment upon which need to be calibrated are with calibration period of 1 year.

UNCERTAINTY EVALUATION FOR RF HAC MEASUREMENT

	Tol.	Prob.	Div.	Uncertainty	Uncertainty
Uncertainty Component	(± dB)	Dist.	DIV.	(dB)	(%)
Measurement System			14		
RF reflections	0.1	R	√3	0.06	
Field probe conv. Factor	0.4	R	√3	0.23	
Field probe anisotropy	0.25	R	√3	0.14	
Positioning accuracy	0.2	R	√3	0.12	
Probe cable placement	0.1	R	√3	0.06	
System repeatability	0.2	R	√3	0.12	
EUT repeatability	0.4	N	1	0.40	
Combined Standard Uncertainty		N	1	0.52	
Expanded Uncertainty (95% CONFIDENCE INTERVAL)		N	k=2	1.03	12.65
			N-2	1.03	12.03
REPORTED Expanded uncertainty					
(confidence level of 95%, k = 2)		N	k=2	1.00	13.00

UNCERTAINTY EVALUATION FOR AUDIO HAC MEASUREMENT

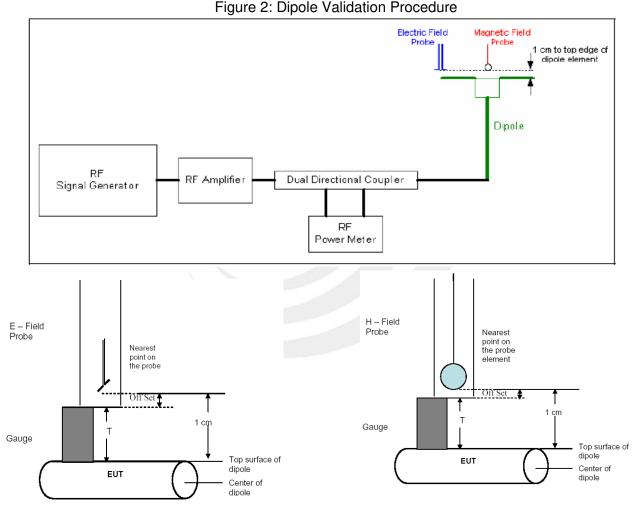
	Tol.	Prob.	Div.	Uncertainty	Uncertainty
Uncertainty Component	(± dB)	Dist.	DIV.	(dB)	(%)
Measurement System					
RF reflections	0.1	R	√3	0.06	
Acoustic noise	0.1	R	√3	0.06	
Probe coil sensitivity	0.49	R	√3	0.28	
Reference signal level	0.25	R	√3	0.14	
Positioning accuracy	0.4	R	√3	0.23	
Cable loss	0.1	N	2	0.05	
Frequency analyzer	0.15	R	√3	0.09	
System repeatability	0.2	N	1	0.20	
Repeatability of the WD	0.4	N	1	0.40	
Combined Standard Uncertainty		N	1	0.61	
Expanded uncertainty					
(confidence level of 95%, k = 2)		N	k=2	1.22	15.05
REPORTED Expanded uncertainty (confidence level of 95%, k = 2)		N	k=2	1.20	15.00

3. HAC RF Emission Measurement Evaluation

3.1 System Check

The test setup should be validated when first configured and verified periodically thereafter to ensure proper function. The procedure consists of two parts: dipole validation and determination of probe modulation factor

3.2 Dipole validation


The HAC validation dipole antenna serves as a known source for an electrical and magnetic RF output. Figure 2 shows the setup used for the dipole validation.

1. The dipole antenna was placed in the position normally occupied by the WD.

2. The dipole was energized with a 20 dBm un-modulated continuous-wave signal.

3. The length of the dipole was scanned with both E-field and H-field probes and the maximum value for each scan was recorded.

4. The readings were compared with the values provided by the probe manufacturer and were found to agree within the allowed tolerance of 10%.

The probe is positioned over the illuminated dipole at 10 mm distance from the nearest point on the probe sensor element to the top surface (edge) of the dipole element.

3.3 System Validation Results

Lab Temperature: 21 °C, Lab Humidity: 45%.

Date	Calibration Dipole	Frequency (MHz)	Input Power (dBm)	Target Value(V/m)	Measured (V/m)	Deviation(%)
2016/5/11	SN 06/14	850	20	220.4	225.31	2.23
2016/5/11	EPH42 E-field	1900	20	153.4	154.68	0.83
Noto: Dovia	tion_(/ Maacurad	Docult) (Tar	act Value))//Te	vraat Valua)*10	<u>)00/</u>	

Note: Deviation=((Measured Result)-(Target Value))/(Target Value)*100%

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

Report No.: STS1605016H01

Mobile model:	Z861BL
Normal operation:	Held to head
Accessory:	Standard cover

List of air interfaces/bands & operating modes for model Z861BL

air interfaces	Bands (MHz)	Туре	C63.19/ Tested	Simultaneous Transmissions Note: Not to be tested	ОТТ	Reduced power 20.19(c)(1)
	850		Yes	Dhuckooth	N1/A	N1/A
0014	1900	VO	Yes	Bluetooth	N/A	N/A
GSM	GPRS/	DT	N/A	Bluetooth	N/A	No
	FDGE	וט	N/A	Biuetootn	IN/A	INU
	850		Ne	Divotooth		N1/A
WCDMA	1900	VO	No	Bluetooth	N/A	N/A
	HSPA	DT	N/A	Bluetooth	N/A	N/A
Bluetooth	2450	DT 📝	N/A	GSM,WCDMA	N/A	N/A
VO: Voice	CMRS/PTSN	Service Or	nly			

V/D: Voice CMRS/PTSN and Data Service

DT: Digital Transport

5. Modulation interference Factor (MIF)

For any specific fixed and repeatable modulated signal, a modulation interference factor (MIF, expressed in dB) may be developed that relates its interference potential to its steady-state rms signal level or average power level. This factor is a function only of the audio-frequency amplitude modulation characteristics of the signal and is the same for field-strength and conducted power measurements. It is important to emphasize that the MIF is valid only for a specific repeatable audio-frequency amplitude modulation characteristic. Anychange in modulation characteristic requires determination and application of a new MIF.

The MIF may be determined using a radiated RF field, a conducted RF signal, or in a preliminary stage, a mathematical analysis of a modeled RF signal:

- a) Verify the slope accuracy and dynamic range capability over the desired operating frequency band of a fast probe or sensor, square-law detector, as specified in D.3, and weighting system as specified in D.4 and D.5. For the probe and instrumentation included in the measurement of MIF, additional calibration and application of calibration factors are not required.
- b) Using RF illumination or conducted coupling, apply the specific modulated signal in question to the measurement system at a level within its confirmed operating dynamic range.
- c) Measure the steady-state rms level at the output of the fast probe or sensor.
- d) Measure the steady-state average level at the weighting output.
- e) Without changing the square-law detector or weighting system, and using RF illumination or conducted coupling, substitute for the specific modulated signal a 1 kHz, 80% amplitude-modulated carrier at the same frequency and adjust its strength until the level at the weighting output equals the step d) measurement.
- f) Without changing the carrier level from step e), remove the 1 kHz modulation and again measure the steady-state rms level indicated at the output of the fast probe or sensor.
- g) The MIF for the specific modulation characteristic is provided by the ratio of the step f)measurementtothestepc)measurement,expressedindB(20×log(stepf))/stepc)).

In practice, step e) and step f) need not be repeated for each MIF determination if the relationship between the two measurements has been preestablished for the measurement system over the operating frequency and dynamic ranges.

As a check on the procedure, the MIF for the specific modulation consisting of a 1 kHz, 80% AM signal is–1.2 dB, which is the ratio in dB of the average power of the unmodulated carrier to the average power of themodulated carrier (10 × log(Punmod/Pmod), or equivalently the ratio in dB of the rms level of the unmodulated carrier to the rms level of the modulated carrier (20 × log(Lunmod /Lmod). The MIF for a1/8 duty cycle, 217 Hz pulse-modulated signal (similar to basic GSM) is +3.3 dB. (Actual GSM WDmeasurements could vary due to differences in implementation or network protocol.)

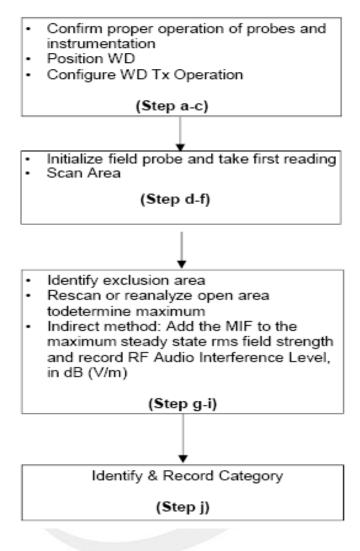
MIF results for a given amplitude modulation characteristic should remain consistent at any signal level within the operating dynamic range of the test system. Caution should be used when measuring modulations that have large-magnitude MIF measurements as these place greater requirements on the test system dynamic range

Typical MIF levels are presented in Table D.1. The results shown may be considered representative for the specified protocols, but they are not intended to substitute for measurements of actual devices under test and their respective operating modes.

Transmission protocol	Modulation interference factor (dB)
GSM; full-rate version 2; speech codec/handset low	+3.63
WCDMA; speech; speech codec low; AMR 12.2 kb/s	-27.23
LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16QAM)	-9.76
LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16QAM)	-9.76
LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16QAM)	-9.76

Table D.1—Sample MIF values for sine-wave modulations

The following Illustrate a typical RF emissions test scan over a wireless communications device:


- Proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed.
- EUT is positioned in its interided test position, acoustic output point of the device perpendicular to the field probe.
- The EUT operation for maximum rated RF output power was configured and confirmed with the base station simulator, at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test.
- 4. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The DUT audio output was positioned tangent (as physically possible) to the inteasurement plane.
- A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the test Arch
- 6. The measurement system measured the field strength at the reference location
- 7. Measurements at 5 nm increments in the 5 < 5 cm region were performed and recorded. A 360° rotation about the azimuth axis at the maximum interpolated position was measured. For the worst-case condition, the peak reading from this rotation was used in re-evaluating the HAC rategory.</p>
- 8. The system performed a drift evaluation by measuring the field at the reference location.
- 9 Steps 1 ~ 8 were done for both the E and H-Field measurements.

7. Test flowchart Per ANSI-PC63.19 2011

Test Instructions

8. Average Antenna Input Power & Evaluation for Low-power Exemption

Air-Interface	Average Antenna Input Power(dBm)	MIF(dB)	Input Power plus its MIF(dBm)	HAC Tested
GSM 850	33.07	3.63	36.70	Yes
GSM 1900	31.85	3.63	35.48	Yes
WCDMA 850	23.88	-27.23	-3.35	No
WCDMA 1700	23.47	-27.23	-3.76	No
WCDMA 1900	23.54	-27.23	-3.69	No
LTE Band 2	22.56	-9.76	12.80	No
LTE Band 4	21.89	-9.76	12.13	No
LTE Band 5	21.95	-9.76	12.19	No
LTE Band 12	22.29	-9.76	12.53	No

9. RF EMISSIONS

The ANSI Standard presents performance requirements for acceptable interoperability of hearing aids with wireless communications devices. When these parameters are met, a hearing aid operates acceptably in close proximity to a wireless communications device.

Emission Cotogorios	E-field emissions				
Emission Categories	< 960 MHz	> 960 MHz			
Category M1	50 to 55 dB (V/m)	40 to 45 dB (V/m)			
Category M2	45 to 50 dB (V/m)	35 to 40 dB (V/m)			
Category M3	40 to 45 dB (V/m)	30 to 35 dB (V/m)			
Category M4	<40 dB (V/m)	<30 dB (V/m)			

10 HAC RF Emission Test Results

10.1 Test Result

Band		GSM 850		GSM 1900			
Channel	128	190	251	512	661	810	
Frequency(MHz)	824.2	836.6	848.8	1850.2	1880.0	1909.8	
RF Output power(dBm)	31.69	31.70	31.66	29.70	30.03	30.45	
Result(dB V/m)	9.10	7.59	6.50	0.64	-0.65	1.07	
M-Rating	M4	M4	M4	M4	M4	M4	

Band	WCDMA & LTE
Result	Refer to Section 8 Evaluation for Low-power Exemption. RF Emission testing for this device is required only for GSM voice modes. WCDMA and LTE are exempt from testing in accordance with C63.19-2011 Clause 4.4 and are rated M4.
M-Rating	M4

Page 17 of 22

Report No.: STS1605016H01

10.2 E-Field Emission for GSM:

Operation mod GSM 850	le MIF(0 3.6		Channel 128	f(MHz) 824.2	Maximum value of total field (dB V/m) 9.10	M-Rating M4
Grid 7: 5.73	Grid 8: 6.80	Grid	9: 7.78	1 2 3 4 5 6 7 8 9 	-30- -63- -50- -50 -i0 -i0 -i0 i0 i	ண் ல்
Grid 4: 7.03	Grid 5: 9.10	Grid	6: 9.89	(7, 75) (7, 11) (6, 10) (6, 10) (7, 10		
Grid 1: 6.86	Grid 2: 8.96	Grid	3: 9.64	Colors Scale E (45 (V/n)) 49,70 49,66 40,66 40,67 40,10	Redi atel Intensi ty 50 - 40 - 30 -	Zoom In/Ont
					NMC Visualization Graphical Interface	

Grid 7: 3.61	Grid 8: 4.71	Grio	19: 5.83		(aect) X ==et (ac) (5 X ==et (ac) (ac) (ac) (ac) (ac) (ac) (ac) (ac)	20 30 40 50
Grid 4: 5.09	Grid 5: 7.59	Grie	d 6: 8.65	1 2 4 5 7 8	5 20-	
Grid 1: 4.94	Grid 2: 7.60	Grie	d 3: 8.48	Calers Sc Z (B) (44, 44, 45, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46	//e)) 75 22 40 41 15 13 30 –	Ious In/Ost

Shenzhen STS Test Services Co., Ltd.

1/F., Building B. Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

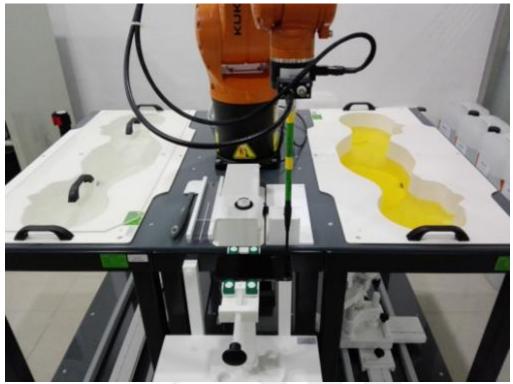
Report No.: STS1605016H01

Grid 1: 3.27	Grid 2: 6.50	Grid 3: 7.42	Calors 1 Z (B) Calors 4 Z (B) Calors 4 Z (Calors 4) Calors 4 Z (Calors 4) Calors 4 Z (Calors 4) Calors 4 Z (Calors 4) Calors 4	(V/m)) 62 40 - 00 37	Zoon In/Ont
Grid 4: 3.36	Grid 5: 6.50	Grid 6: 7.46		13 00- 51 60 28 00- 44 00 00 00 00 00 00 00 00 00	
Grid 7: 1.93	Grid 8: 2.79	Grid 9: 3.93	4 5 7 8	-30- -40- -50- -50- -50 -40 -50 -20 -10 0 10 X nucl (m) [20] Y nucl (m) [10	20 20 40 50
Operation mod	e MIF(dB)	Channel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
GSM 850	3.63	250	848.6	6.50	M4

Grid 7: -0.40 Operation mod	Grid 8: -5.20	Grid 9: -2.83			
Grid 4: -0.31	Grid 5: -1.60	Grid 6: 0.64	56 36 35 35 35 35	-10- -20- 3 6 -40-	
Grid 1: -2.23	Grid 2: -1.61	Grid 3: 0.56	38		Zeem In/Out

Shenzhen STS Test Services Co., Ltd.

1/F., Building B. Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com


Operation mod GSM 1900	e MIF(dB) 3.63	Channel 661	f(MHz) 1880.0	Maximum value of total field (dB V/m) -0.65	M-Rating M4
Grid 7: -0.57	Grid 8: -3.57	Grid 9: -1.86	4 5 7 8	6 9 -40- -50- -50i0 -i0 -i0 i0 i0 i0 X x X X X X x X X x X X X X X X X X X	0 30 40 50
Grid 4: -0.38	Grid 5: -0.57	Grid 6: 0.85		20-	
Grid 1: -1.28	Grid 2: -0.65	Grid 3: 0.70	Calers Sc. 2 (48 07 00.0 200.0 200.0 39.0	/m)) g 40 - g 9 9 70	Zoom In/Out

Grid 1: -1.40	Grid 2: 0.90) Grid 3: 1.88		7(n)) 13 40-	
Grid 4: -0.32	Grid 5: 1.07	Grid 6: 2.12	1 2	11 30- 12 44 46 20-	
Grid 7: -0.67	Grid 8: -2.21	Grid 9: -0.45	4 5 7 8 3478	6 9 -50- -50- -50- -5030-30-30-10 0 10 21 x Cennel. X wext (ma) [5] X wext (ma) [5]	9 30 40 50
Operation mod	e MIF(dB)	Channel	f(MHz)	Maximum value of total field (dB V/m)	M-Rating
GSM 1900	3.63	809	1909.6	1.07	M4

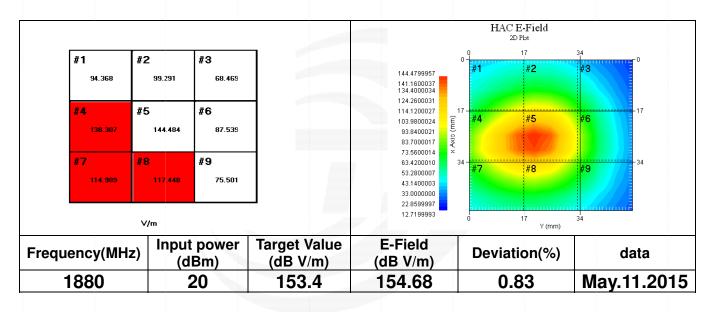
Shenzhen STS Test Services Co., Ltd.

1/F., Building B. Zhuoke Science Park, No. 190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com

E-field

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com


	1	
É		
		7
10		

Page 21 of 22

Report No.: STS1605016H01

12. System VALIDATION RESULTS

				HAC E-Field 2D Plot						
	# 1 125.495	# 2 127.052	#3 92.282		177.0200028 172.8700027 164.5700026 152.1200023	0.	9 # 1	17 #2	34 #3	0 0
	#4 172.750	# 5 176.757	# 6 121.142		139.6700020 127.2200017 114.7700014 102.3200011 89.8700008	17 · (mm) X Axis	#4	#5	#6	17
	#7 133.195	∦8 133.841	#9 96.000		77.4200006 64.9700003 62.5200000 40.0699997 27.6199994 15.1699991	34 -	#7	#8	#9	-34
	V/m				12.1699991		Ó	17 Y (mn	3'4 n)	
Frequency	Frequency(MHz)		t power Target Value Bm) (dB V/m)		E-Field (dB V/m)	D	Deviation(%)		data	
835	5	20		220.4	225.31	2.23		May.11.2015		

Appendix C. Probe Calibration And Dipole Calibration Report

Refer the appendix Calibration Report.

Shenzhen STS Test Services Co., Ltd.

1/F., Building B, Zhuoke Science Park, No.190,Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong,China Tel: 0755-36886288 Fax: 0755-36886277 Http://www.stsapp.com E-mail: sts@stsapp.com