Partial FCC Test Report Report No.: RF200428C03I-2 FCC ID: PZWBHTM80QW Test Model: BHT-M80-QW Received Date: Feb. 05, 2021 Test Date: Feb. 22 ~ Mar. 05, 2021 **Issued Date:** Mar. 23, 2021 **Applicant: DENSO WAVE INCORPORATED** Address: 1 Yoshiike Kusagi Agui-cho, Chita-gun Aichi 470-2297, Japan Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, TAIWAN FCC Registration / 788550 / TW0003 **Designation Number:** This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. Report No.: RF200428C03I-2 Page No. 1 / 31 Report Format Version: 6.1.1 Reference No.: 210205C01 ## **Table of Contents** | R | eleas | e Control Record | 3 | | |---|---|--|--|--| | 1 | C | Certificate of Conformity | | | | 2 | 5 | Summary of Test Results | 5 | | | | 2.1
2.2 | Measurement Uncertainty | | | | 3 | C | General Information | 6 | | | | 3.1
3.2
3.2.1
3.3
3.3.1
3.4 | General Description of Applied Standards and References | 8
9
. 10
. 10 | | | 4 | 7 | Fest Types and Results | 12 | | | | 4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.1.7
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7 | Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Conducted Emission Measurement Limits of Conducted Emission Measurement Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions. Test Results | 12
13
14
15
15
16
20
20
21
21
21
21 | | | 5 | | Pictures of Test Arrangements | | | | Α | ppend | dix – Information of the Testing Laboratories | 31 | | ## **Release Control Record** | Issue No. | Description | Date Issued | |----------------|------------------|---------------| | RF200428C03I-2 | Original release | Mar. 23, 2021 | Report No.: RF200428C03I-2 Reference No.: 210205C01 Page No. 3 / 31 Report Format Version: 6.1.1 #### **Certificate of Conformity** 1 Product: 2D Code Handy Terminal Brand: DENSO Test Model: BHT-M80-QW Sample Status: Engineering sample Applicant: DENSO WAVE INCORPORATED **Test Date:** Feb. 22 ~ Mar. 05, 2021 **Standards:** 47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10:2013 This report is issued as a supplementary report of RF200428C03E-2. This report shall be used combined together with its original report. Polly Chien / Specialist , Date: Mar. 23, 2021 Approved by : Bruce Chen / Senior Project Engineer ## 2 Summary of Test Results | 47 CFR FCC Part 15, Subpart C (Section 15.247) | | | | |--|--|--------|--| | FCC
Clause | Test Item | Result | Remarks | | 15.207 | AC Power Conducted Emission | Pass | Meet the requirement of limit. Minimum passing margin is -11.27dB at 0.68954MHz. | | 15.247(a)(1)
(iii) | Number of Hopping Frequency Used | N/A | Refer to note 1 | | 15.247(a)(1)
(iii) | Dwell Time on Each Channel | N/A | Refer to note 1 | | 15.247(a)(1) | Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System | N/A | Refer to note 1 | | 15.247(b) | Maximum Peak Output Power | N/A | Refer to note 1 | | 15.205 /
15.209 /
15.247(d) | Radiated Emissions and Band Edge
Measurement | Pass | Meet the requirement of limit. Minimum passing margin is -8.9dB at 67.96MHz. | | 15.247(d) | Antenna Port Emission | N/A | Refer to note 1 | | 15.203 | Antenna Requirement | Pass | Antenna connector is spring not a standard connector. | #### Note: - 1. Radiated emission below 1G and AC Power Conducted Emission are performed for the addendum. Refer to original report for the other test data. - 2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. ## 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |------------------------------------|-----------------|--------------------------------| | Conducted Emissions at mains ports | 150kHz ~ 30MHz | 2.79 dB | | | 9kHz ~ 30MHz | 3.04 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 200MHz | 3.86 dB | | | 200MHz ~1000MHz | 3.87 dB | ## 2.2 Modification Record There were no modifications required for compliance. ### 3 General Information ## 3.1 General Description of EUT | Product | 2D Code Handy Terminal | |-----------------------|--| | Brand | DENSO | | Test Model | BHT-M80-QW | | Sample Status | Engineering sample | | Dawer Cumby Dating | 3.85Vdc (Battery) | | Power Supply Rating | 5.0Vdc / 9.0Vdc / 12.0Vdc (from adapter) | | Modulation Type | GFSK, π /4-DQPSK, 8DPSK | | Modulation Technology | FHSS | | Transfer Rate | 1/2/3Mbps | | Operating Frequency | 2402~2480MHz | | Number of Channel | 79 | | Output Power | 1.250mW | | Antenna Type | Refer to note | | Antenna Connector | Refer to note | | Accessory Device | Refer to note | | Cable Supplied | Refer to note | #### Note: 1. This report is prepared for FCC class II permissive change. This report is issued as a supplementary report of the original BV CPS report no.: RF200428C03E-2. The differences compared with original report are adding large battery, WPC battery and updating S/W. Therefore, only radiated emission below 1G and AC power conducted emission are performed for the addendum. Refer to original report for the other test data. 2. The EUT contains following accessory devices. (Battery 3, 4 are new) | Battery 1 | | | |-----------|---------------------------|--| | Brand | DENSO | | | Model | BT1 | | | Rating | 3.85Vdc, 4020mAh, 15.47Wh | | | Battery 2 | | |-----------|---------------------------| | Brand | DENSO | | Model | BT1S | | Rating | 3.85Vdc, 2900mAh, 11.16Wh | | Battery 3 (New) | | | |-----------------|---------------------------|--| | Brand | DENSO | | | Model | BT1L | | | Rating | 3.85Vdc, 5800mAh, 22.33Wh | | | Battery 4 for WPC (New) | | | |-------------------------|---------------------------|--| | Brand | DENSO | | | Model | BT1S-W | | | Rating | 3.85Vdc, 2900mAh, 11.16Wh | | | Adapter | | | |--------------|---|--| | Brand | CHANNEL WELL TECHNOLOGY | | | Model | 2ACP0183C | | | Input Power | 100-240Vac~0.5A , 50/60Hz | | | Output Power | 5.0Vdc / 3.0A, 15.0W
9.0Vdc / 2.0A, 18.0W
12.0Vdc / 1.5A, 18.0W | | | Data Cable | 1.45 m shielded USB cable without core | | | Cradle 1: QC3.0 charge single Cradle (Option) | | | | |---|---|--|--| | Brand | DENSO | | | | Model | CU-M80UQ | | | | Adapter | Adapter | | | | Brand | CHANNEL WELL TECHNOLOGY | | | | Model | 2ACP0183C | | | | Input Power | 100-240Vac, 50/60Hz, 0.5A | | | | Output Power | 5.0Vdc / 3.0A, 15.0W
9.0Vdc / 2.0A, 18.0W
12.0Vdc / 1.5A, 18.0W | | | | Data Cable | 1.45 m shielded USB cable without core | | | | Cradle 2: USB Cradle with spare battery charge (Option) | | | | |---|---|--|--| | Brand | DENSO | | | | Model | CU-M80U | | | | Adapter | Adapter | | | | Brand | Sunny | | | | Model | SYS1548-5012-T3 | | | | Input Power | 100-240Vac, 1.5A MAX, 50-60Hz | | | | Output Power | +12.0Vdc, 4.16A | | | | Power cable | DC: 1.16m cable with one core AC: 1.71m non-shielded cable without core | | | | Data Cable | 1.45 m shielded USB cable without core | | | 3. The EUT uses the following antennas. | Ant. Type | PIFA | | | | | | | | | | | | | | |-----------------|---------------|-------|------|------|------|------|-----|----|------|------|------|------|------|------| | Ant. Connector | Spring | | | | | | | | | | | | | | | Ant. 1 (WLAN) | | | | | | | | | | | | | | | | Frequency (MHz) | 2412 | 2442 | 2484 | 5170 | 5180 | 5220 | 532 | 20 | 5420 | 5520 | 5620 | 5720 | 5825 | 5835 | | Peak Gain (dBi) | 0.81 | 1.36 | 1.05 | 3.34 | 2.97 | 2.96 | 2.7 | '8 | 2.88 | 3.28 | 3.24 | 3.45 | 3.18 | 3.39 | | Ant. 1 (BT) | | | | | | | | | | | | | | | | Frequency (MHz) | | 2402 | | | 241 | 12 | | | 24 | 442 | | | 2480 | | | Peak Gain (dBi) | | -0.11 | | | 0.8 | 1 | | | 1 | .36 | | | 1.36 | | | Ant. 2 (WLAN) | Ant. 2 (WLAN) | | | | | | | | | | | | | | | Frequency (MHz) | 2412 | 2442 | 2484 | 5170 | 5180 | 5220 | 532 | 20 | 5420 | 5520 | 5620 | 5720 | 5825 | 5835 | | Peak Gain (dBi) | 1.33 | 1.47 | 0.29 | 3.80 | 3.78 | 3.65 | 3.5 | 51 | 2.98 | 2.99 | 3.09 | 3.49 | 3.53 | 3.44 | ^{*} The max. gain was chosen for final tests. * The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible. # 3.2 Description of Test Modes 79 channels are provided to this EUT: | Channel | Freq. (MHz) | |---------|-------------|---------|-------------|---------|-------------|---------|-------------| | 0 | 2402 | 20 | 2422 | 40 | 2442 | 60 | 2462 | | 1 | 2403 | 21 | 2423 | 41 | 2443 | 61 | 2463 | | 2 | 2404 | 22 | 2424 | 42 | 2444 | 62 | 2464 | | 3 | 2405 | 23 | 2425 | 43 | 2445 | 63 | 2465 | | 4 | 2406 | 24 | 2426 | 44 | 2446 | 64 | 2466 | | 5 | 2407 | 25 | 2427 | 45 | 2447 | 65 | 2467 | | 6 | 2408 | 26 | 2428 | 46 | 2448 | 66 | 2468 | | 7 | 2409 | 27 | 2429 | 47 | 2449 | 67 | 2469 | | 8 | 2410 | 28 | 2430 | 48 | 2450 | 68 | 2470 | | 9 | 2411 | 29 | 2431 | 49 | 2451 | 69 | 2471 | | 10 | 2412 | 30 | 2432 | 50 | 2452 | 70 | 2472 | | 11 | 2413 | 31 | 2433 | 51 | 2453 | 71 | 2473 | | 12 | 2414 | 32 | 2434 | 52 | 2454 | 72 | 2474 | | 13 | 2415 | 33 | 2435 | 53 | 2455 | 73 | 2475 | | 14 | 2416 | 34 | 2436 | 54 | 2456 | 74 | 2476 | | 15 | 2417 | 35 | 2437 | 55 | 2457 | 75 | 2477 | | 16 | 2418 | 36 | 2438 | 56 | 2458 | 76 | 2478 | | 17 | 2419 | 37 | 2439 | 57 | 2459 | 77 | 2479 | | 18 | 2420 | 38 | 2440 | 58 | 2460 | 78 | 2480 | | 19 | 2421 | 39 | 2441 | 59 | 2461 | | | ## 3.2.1 Test Mode Applicability and Tested Channel Detail | EUT Configure | Applic | able to | Description | | |---------------|--------|-----------|----------------------------|--| | Mode | RE<1G | PLC | | | | Α | V | V | EUT + Battery 3 + Adapter | | | В | V | V | EUT + Battery 4 + Adapter | | | С | - | $\sqrt{}$ | EUT + Battery 3 + Notebook | | | D | - | $\sqrt{}$ | EUT + Battery 4 + Notebook | | Where RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission #### Note: - 1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane. - 2. "-"means no effect. ## Radiated Emission Test (Below 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. EUT Configure Mode Available Channel Tested Channel Modulation Technology Modulation Type Pakcet Type A, B 0 to 78 78 FHSS GFSK DH5 ## **Power Line Conducted Emission Test:** - Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). - Following channel(s) was (were) selected for the final test as listed below. | EUT Configure
Mode | Available Channel | Tested Channel | Modulation
Technology | Modulation Type | Pakcet Type | |-----------------------|-------------------|----------------|--------------------------|-----------------|-------------| | A, B, C, D | 0 to 78 | 78 | FHSS | GFSK | DH5 | ## **Test Condition:** | Applicable to | Environmental Conditions | Input Power | Tested by | |---------------|--|--------------|-----------| | RE<1G | 23 deg. C, 66% RH | 120Vac, 60Hz | Titan Hsu | | PLC | 25 deg. C, 75% RH
20 deg. C, 70% RH | 120Vac, 60Hz | Rex Wang, | Report No.: RF200428C03I-2 Page No. 9 / 31 Report Format Version: 6.1.1 ## 3.3 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | ID | Product | Brand | Model No. | Serial No. | FCC ID | Remarks | |----|----------|-------|------------|-----------------|------------------|---------| | A. | Notebook | SONY | SVS151A12P | 275548477001150 | FCC DoC Approved | - | #### Note: - 1. All power cords of the above support units are non-shielded (1.8m). - 2. Item A acted as a communication partner to transfer data. | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|--------------|------|------------|-----------------------|--------------|------------------| | 1. | USB cable | 1 | 1.45 | Υ | 0 | Accessory of EUT | ## 3.3.1 Configuration of System under Test ## Mode A, B Mode C, D Report No.: RF200428C03I-2 Page No. 10 / 31 Report Format Version: 6.1.1 ## 3.4 General Description of Applied Standards and References The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references: ### **Test Standard:** FCC Part 15, Subpart C (15.247) ANSI C63.10:2013 All test items have been performed and recorded as per the above standards. ## **References Test Guidance:** ## KDB 558074 D01 15.247 Meas Guidance v05r02 All test items have been performed as a reference to the above KDB test guidance. Report No.: RF200428C03I-2 Page No. 11 / 31 Report Format Version: 6.1.1 ## 4 Test Types and Results ## 4.1 Radiated Emission and Bandedge Measurement ## 4.1.1 Limits of Radiated Emission and Bandedge Measurement Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power: | Frequencies (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) | |-------------------|-----------------------------------|-------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | #### Note: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. Report No.: RF200428C03I-2 Page No. 12 / 31 Report Format Version: 6.1.1 ## 4.1.2 Test Instruments | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |---|---------------------------------------|---------------------------------|---------------|---------------| | Test Receiver ROHDE & SCHWARZ | ESR3 | 102579 | Jul. 07, 2020 | Jul. 06, 2021 | | Spectrum Analyzer ROHDE & SCHWARZ | FSP40 | 100269 | Jun. 09, 2020 | Jun. 08, 2021 | | BILOG Antenna
SCHWARZBECK | VULB9168 | 9168-171 | Nov. 04, 2020 | Nov. 03, 2021 | | HORN Antenna
SCHWARZBECK | 9120D | 209 | Nov. 22, 2020 | Nov. 21, 2021 | | HORN Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170241 | Nov. 22, 2020 | Nov. 21, 2021 | | Loop Antenna
TESEQ | HLA 6121 | 45745 | Jul. 06, 2020 | Jul. 05, 2021 | | Preamplifier
Agilent
(Below 1GHz) | 8447D | 2944A10738 | Aug. 16, 2020 | Aug. 15, 2021 | | RF Coaxial Cable
WOKEN
With 5dB PAD | 8D-FB | Cable-CH3-01 | Aug. 16, 2020 | Aug. 15, 2021 | | RF signal cable
HUBER+SUHNER | SUCOFLEX 104 | Cable-CH3-03 (223653/4) | Aug. 16, 2020 | Aug. 15, 2021 | | RF signal cable
HUBER+SUHNER&
EMCI | SUCOFLEX
104&EMC104-SM
-SM-8000 | Cable-CH3-03
(309224+170907) | Aug. 16, 2020 | Aug. 15, 2021 | | Software
BV ADT | ADT_Radiated_
V7.6.15.9.5 | NA | NA | NA | | Antenna Tower inn-co GmbH | MA 4000 | 013303 | NA | NA | | Antenna Tower Controller BV ADT | AT100 | AT93021702 | NA | NA | | Turn Table
BV ADT | TT100 | TT93021702 | NA | NA | | Turn Table Controller BV ADT | SC100 | SC93021702 | NA | NA | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. 2. The test was performed in HwaYa Chamber 3. #### 4.1.3 Test Procedures ### For Radiated emission below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. ### Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. #### For Radiated emission above 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. ## Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. All modes of operation were investigated and the worst-case emissions are reported. #### 4.1.4 Deviation from Test Standard No deviation. Report No.: RF200428C03I-2 Page No. 14 / 31 Report Format Version: 6.1.1 Reference No.: 210205C01 ## 4.1.5 Test Setup ## For Radiated emission below 30MHz ## For Radiated emission 30MHz to 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 4.1.6 EUT Operating Conditions - a. Placed the EUT on the testing table. - b. The EUT under transmission condition continuously at specific channel frequency. ## 4.1.7 Test Results Below 1GHz worst-case data: ## **GFSK** | CHANNEL | TX Channel 78 | DETECTOR
FUNCTION | Quasi-Peak (QP) | |-----------------|---------------|----------------------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | TEST MODE | A | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 56.71 | 23.2 QP | 40.0 | -16.8 | 2.00 H | 16 | 32.5 | -9.3 | | 2 | 129.81 | 26.9 QP | 43.5 | -16.6 | 1.50 H | 66 | 36.9 | -10.0 | | 3 | 157.93 | 25.7 QP | 43.5 | -17.8 | 1.50 H | 224 | 34.1 | -8.4 | | 4 | 215.57 | 24.7 QP | 43.5 | -18.8 | 1.50 H | 88 | 35.4 | -10.7 | | 5 | 524.84 | 27.4 QP | 46.0 | -18.6 | 1.00 H | 295 | 29.2 | -1.8 | | 6 | 638.71 | 29.0 QP | 46.0 | -17.0 | 1.50 H | 251 | 28.0 | 1.0 | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 4. Margin value = Emission Level Limit value - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20dB below the permissible value to be report. | CHANNEL | TX Channel 78 | DETECTOR
FUNCTION | Quasi-Peak (QP) | |-----------------|---------------|----------------------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | TEST MODE | А | | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 31.41 | 31.0 QP | 40.0 | -9.0 | 1.00 V | 266 | 42.0 | -11.0 | | | 2 | 56.71 | 27.8 QP | 40.0 | -12.2 | 1.50 V | 308 | 37.1 | -9.3 | | | 3 | 104.51 | 25.1 QP | 43.5 | -18.4 | 1.50 V | 177 | 37.6 | -12.5 | | | 4 | 128.41 | 27.0 QP | 43.5 | -16.5 | 1.50 V | 5 | 37.1 | -10.1 | | | 5 | 169.17 | 24.3 QP | 43.5 | -19.2 | 2.00 V | 132 | 33.0 | -8.7 | | | 6 | 607.78 | 29.4 QP | 46.0 | -16.6 | 1.50 V | 51 | 28.8 | 0.6 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 4. Margin value = Emission Level Limit value - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20dB below the permissible value to be report. | CHANNEL | TX Channel 78 | DETECTOR
FUNCTION | Quasi-Peak (QP) | |-----------------|---------------|----------------------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | TEST MODE | В | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 49.68 | 23.1 QP | 40.0 | -16.9 | 2.00 H | 188 | 32.2 | -9.1 | | | 2 | 129.81 | 25.2 QP | 43.5 | -18.3 | 1.50 H | 89 | 35.2 | -10.0 | | | 3 | 163.55 | 23.3 QP | 43.5 | -20.2 | 1.50 H | 275 | 31.8 | -8.5 | | | 4 | 216.97 | 25.8 QP | 46.0 | -20.2 | 1.50 H | 268 | 36.4 | -10.6 | | | 5 | 330.84 | 21.9 QP | 46.0 | -24.1 | 1.00 H | 38 | 27.6 | -5.7 | | | 6 | 540.30 | 27.6 QP | 46.0 | -18.4 | 1.50 H | 300 | 29.0 | -1.4 | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 4. Margin value = Emission Level Limit value - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20dB below the permissible value to be report. | CHANNEL | TX Channel 78 | DETECTOR
FUNCTION | Quasi-Peak (QP) | |-----------------|---------------|----------------------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | TEST MODE | В | | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | | | |-----|---|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--| | NO. | FREQ.
(MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN
(dB) | ANTENNA
HEIGHT
(m) | TABLE
ANGLE
(Degree) | RAW
VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | | 1 | 49.68 | 29.5 QP | 40.0 | -10.5 | 1.00 V | 40 | 38.6 | -9.1 | | | | 2 | 67.96 | 31.1 QP | 40.0 | -8.9 | 1.50 V | 49 | 41.6 | -10.5 | | | | 3 | 104.51 | 24.7 QP | 43.5 | -18.8 | 1.50 V | 174 | 37.2 | -12.5 | | | | 4 | 157.93 | 23.3 QP | 43.5 | -20.2 | 1.50 V | 332 | 31.7 | -8.4 | | | | 5 | 420.81 | 36.1 QP | 46.0 | -9.9 | 1.00 V | 358 | 40.1 | -4.0 | | | | 6 | 562.80 | 27.9 QP | 46.0 | -18.1 | 1.50 V | 47 | 28.9 | -1.0 | | | - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz. - 4. Margin value = Emission Level Limit value - 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20dB below the permissible value to be report. ## **4.2 Conducted Emission Measurement** ## 4.2.1 Limits of Conducted Emission Measurement | Fraguency (MHz) | Conducted Limit (dBuV) | | | | | |-----------------|------------------------|---------|--|--|--| | Frequency (MHz) | Quasi-peak | Average | | | | | 0.15 - 0.5 | 66 - 56 | 56 - 46 | | | | | 0.50 - 5.0 | 56 | 46 | | | | | 5.0 - 30.0 | 60 | 50 | | | | ## 4.2.2 Test Instruments Tested date: Feb. 22 ~ Feb. 23, 2021 | Description & Manufacturer | Model No. | Serial No. | Cal. Date | Cal. Due | |---|--------------------------|----------------|---------------|---------------| | Test Receiver ROHDE & SCHWARZ | ESR3 | 102412 | Jan. 29, 2021 | Jan. 28, 2022 | | RF signal cable (with 10dB PAD)
Woken | 5D-FB | Cable-cond2-01 | Sep. 04, 2020 | Sep. 03, 2021 | | LISN
ROHDE & SCHWARZ
(EUT) | ESH2-Z5 | 100100 | Jan. 18, 2021 | Jan. 17, 2022 | | V-LISN
ROHDE & SCHWARZ
(Peripheral) | ESH3-Z5 | 100312 | Aug. 18, 2020 | Aug. 17, 2021 | | Software
ADT | BV ADT_Cond_
V7.3.7.4 | NA | NA | NA | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. - 2. The test was performed in HwaYa Shielded Room 2 (Conduction 2). - 3. The VCCI Site Registration No. is C-12047. #### 4.2.3 Test Procedures - a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/50 uH of coupling impedance for the measuring instrument. - b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference. - c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded. **Note:** The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz – 30 MHz. #### 4.2.4 Deviation from Test Standard No deviation. ## 4.2.5 Test Setup Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo). ## 4.2.6 EUT Operating Conditions Same as 4.1.6. ## 4.2.7 Test Results ## Worst-case data: ## **GFSK** | Phase | Line (L) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-----------|----------|-------------------|-----------------------------------| | Test Mode | A | | | | | Corr. | | Reading Value | | Emissio | Emission Level | | Limit | | Margin | | |----|----------|--------|---------------|-------|---------|----------------|-------|-------|--------|--------|--| | No | Freq. | Factor | [dB (| (uV)] | [dB | (uV)] | [dB | (uV)] | (d | B) | | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.20600 | 10.12 | 26.64 | 11.59 | 36.76 | 21.71 | 63.37 | 53.37 | -26.61 | -31.66 | | | 2 | 0.29677 | 10.15 | 29.53 | 18.82 | 39.68 | 28.97 | 60.33 | 50.33 | -20.65 | -21.36 | | | 3 | 0.63547 | 10.21 | 27.60 | 17.87 | 37.81 | 28.08 | 56.00 | 46.00 | -18.19 | -17.92 | | | 4 | 0.68954 | 10.22 | 30.59 | 17.41 | 40.81 | 27.63 | 56.00 | 46.00 | -15.19 | -18.37 | | | 5 | 1.75800 | 10.28 | 25.97 | 15.12 | 36.25 | 25.40 | 56.00 | 46.00 | -19.75 | -20.60 | | | 6 | 10.66200 | 10.50 | 19.80 | 12.77 | 30.30 | 23.27 | 60.00 | 50.00 | -29.70 | -26.73 | | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | Phase | Neutral (N) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-----------|-------------|-------------------|-----------------------------------| | Test Mode | A | | | | | Corr. Reading \ | | g Value | Emission Level | | Limit | | Margin | | | |----|-----------------|--------|---------|----------------|-------|-------|-------|--------|--------|--------| | No | Freq. | Factor | [dB (| (uV)] | [dB (| (uV)] | [dB | (uV)] | (d | B) | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | 1 | 0.19469 | 10.12 | 25.60 | 15.55 | 35.72 | 25.67 | 63.83 | 53.83 | -28.11 | -28.16 | | 2 | 0.30389 | 10.16 | 27.78 | 13.80 | 37.94 | 23.96 | 60.14 | 50.14 | -22.20 | -26.18 | | 3 | 0.68954 | 10.24 | 34.49 | 18.52 | 44.73 | 28.76 | 56.00 | 46.00 | -11.27 | -17.24 | | 4 | 1.77800 | 10.31 | 28.56 | 15.31 | 38.87 | 25.62 | 56.00 | 46.00 | -17.13 | -20.38 | | 5 | 3.15000 | 10.38 | 26.97 | 14.07 | 37.35 | 24.45 | 56.00 | 46.00 | -18.65 | -21.55 | | 6 | 10.52200 | 10.62 | 19.17 | 10.01 | 29.79 | 20.63 | 60.00 | 50.00 | -30.21 | -29.37 | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | Phase | Line (L) | LI Jefector Flinction | Quasi-Peak (QP) /
Average (AV) | |-----------|----------|-----------------------|-----------------------------------| | Test Mode | В | | | | | Freq. Corr. | | Reading Value | | Emissio | Emission Level | | Limit | | Margin | | |----|-------------|--------|---------------|-----------|---------|----------------|-------|-----------|--------|--------|--| | No | rieq. | Factor | [dB (| [dB (uV)] | | [dB (uV)] | | [dB (uV)] | | B) | | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.15000 | 10.09 | 15.47 | 1.47 | 25.56 | 11.56 | 66.00 | 56.00 | -40.44 | -44.44 | | | 2 | 0.21400 | 10.12 | 15.12 | 4.64 | 25.24 | 14.76 | 63.05 | 53.05 | -37.81 | -38.29 | | | 3 | 0.67800 | 10.22 | 21.63 | 14.43 | 31.85 | 24.65 | 56.00 | 46.00 | -24.15 | -21.35 | | | 4 | 1.17000 | 10.27 | 14.55 | 7.01 | 24.82 | 17.28 | 56.00 | 46.00 | -31.18 | -28.72 | | | 5 | 2.01800 | 10.29 | 13.03 | 5.82 | 23.32 | 16.11 | 56.00 | 46.00 | -32.68 | -29.89 | | | 6 | 5.65000 | 10.40 | 11.87 | 5.23 | 22.27 | 15.63 | 60.00 | 50.00 | -37.73 | -34.37 | | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | Phase | Neutral (N) | LI JETECTOR FUNCTION | Quasi-Peak (QP) /
Average (AV) | |-----------|-------------|----------------------|-----------------------------------| | Test Mode | В | | | | | Freq. Corr. | | Reading Value | | Emissic | Emission Level | | Limit | | Margin | | |----|-------------|--------|---------------|-----------|---------|----------------|-------|-----------|--------|--------|--| | No | rieq. | Factor | [dB (| [dB (uV)] | | [dB (uV)] | | [dB (uV)] | | (dB) | | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.15400 | 10.10 | 15.33 | 3.83 | 25.43 | 13.93 | 65.78 | 55.78 | -40.35 | -41.85 | | | 2 | 0.31614 | 10.17 | 18.78 | 9.17 | 28.95 | 19.34 | 59.81 | 49.81 | -30.86 | -30.47 | | | 3 | 0.67694 | 10.24 | 26.48 | 17.59 | 36.72 | 27.83 | 56.00 | 46.00 | -19.28 | -18.17 | | | 4 | 2.01800 | 10.32 | 17.42 | 8.46 | 27.74 | 18.78 | 56.00 | 46.00 | -28.26 | -27.22 | | | 5 | 3.36791 | 10.40 | 17.08 | 5.14 | 27.48 | 15.54 | 56.00 | 46.00 | -28.52 | -30.46 | | | 6 | 8.05400 | 10.54 | 16.67 | 6.60 | 27.21 | 17.14 | 60.00 | 50.00 | -32.79 | -32.86 | | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | Phase | Line (L) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-----------|----------|-------------------|-----------------------------------| | Test Mode | С | | | | | Freq. Corr. | | Reading Value | | Emissio | Emission Level | | Limit | | Margin | | |----|-------------|--------|---------------|-----------|---------|----------------|-------|-----------|--------|--------|--| | No | Freq. | Factor | [dB (| [dB (uV)] | | [dB (uV)] | | [dB (uV)] | | (dB) | | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.15000 | 10.07 | 31.84 | 18.56 | 41.91 | 28.63 | 66.00 | 56.00 | -24.09 | -27.37 | | | 2 | 0.17400 | 10.07 | 30.10 | 19.56 | 40.17 | 29.63 | 64.77 | 54.77 | -24.60 | -25.14 | | | 3 | 0.53124 | 10.10 | 24.44 | 19.09 | 34.54 | 29.19 | 56.00 | 46.00 | -21.46 | -16.81 | | | 4 | 1.87000 | 10.16 | 23.61 | 17.90 | 33.77 | 28.06 | 56.00 | 46.00 | -22.23 | -17.94 | | | 5 | 2.54729 | 10.18 | 27.59 | 21.79 | 37.77 | 31.97 | 56.00 | 46.00 | -18.23 | -14.03 | | | 6 | 13.39400 | 10.36 | 16.91 | 9.72 | 27.27 | 20.08 | 60.00 | 50.00 | -32.73 | -29.92 | | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. Report No.: RF200428C03I-2 Reference No.: 210205C01 | Phase | Neutral (N) | LI JETECTOR FUNCTION | Quasi-Peak (QP) /
Average (AV) | |-----------|-------------|----------------------|-----------------------------------| | Test Mode | С | | | | | Freq. Corr. | | Reading Value | | Emissio | Emission Level | | Limit | | Margin | | |----|-------------|--------|---------------|-----------|---------|----------------|-------|-----------|--------|--------|--| | No | Freq. | Factor | [dB (| [dB (uV)] | | [dB (uV)] | | [dB (uV)] | | (dB) | | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.16105 | 10.08 | 29.68 | 17.23 | 39.76 | 27.31 | 65.41 | 55.41 | -25.65 | -28.10 | | | 2 | 0.53970 | 10.11 | 21.44 | 14.77 | 31.55 | 24.88 | 56.00 | 46.00 | -24.45 | -21.12 | | | 3 | 1.23107 | 10.15 | 16.49 | 10.12 | 26.64 | 20.27 | 56.00 | 46.00 | -29.36 | -25.73 | | | 4 | 2.50600 | 10.19 | 25.75 | 19.76 | 35.94 | 29.95 | 56.00 | 46.00 | -20.06 | -16.05 | | | 5 | 13.39000 | 10.49 | 14.43 | 7.79 | 24.92 | 18.28 | 60.00 | 50.00 | -35.08 | -31.72 | | | 6 | 20.37800 | 10.64 | 12.13 | 5.55 | 22.77 | 16.19 | 60.00 | 50.00 | -37.23 | -33.81 | | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | Phase | Line (L) | Detector Function | Quasi-Peak (QP) /
Average (AV) | |-----------|----------|-------------------|-----------------------------------| | Test Mode | D | | | | | Freq. Corr. | | Reading Value | | Emissio | Emission Level | | Limit | | Margin | | |----|-------------|--------|---------------|-----------|---------|----------------|-------|-----------|--------|--------|--| | No | rieq. | Factor | [dB (| [dB (uV)] | | [dB (uV)] | | [dB (uV)] | | (dB) | | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.15400 | 10.07 | 31.44 | 18.66 | 41.51 | 28.73 | 65.78 | 55.78 | -24.27 | -27.05 | | | 2 | 0.16932 | 10.07 | 31.37 | 21.00 | 41.44 | 31.07 | 64.99 | 54.99 | -23.55 | -23.92 | | | 3 | 0.55265 | 10.10 | 23.66 | 17.77 | 33.76 | 27.87 | 56.00 | 46.00 | -22.24 | -18.13 | | | 4 | 2.54058 | 10.18 | 27.79 | 22.34 | 37.97 | 32.52 | 56.00 | 46.00 | -18.03 | -13.48 | | | 5 | 4.93000 | 10.24 | 17.35 | 11.37 | 27.59 | 21.61 | 56.00 | 46.00 | -28.41 | -24.39 | | | 6 | 13.56200 | 10.36 | 19.84 | 17.09 | 30.20 | 27.45 | 60.00 | 50.00 | -29.80 | -22.55 | | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | Phase | Neutral (N) | LI Jefector Flinction | Quasi-Peak (QP) /
Average (AV) | |-----------|-------------|-----------------------|-----------------------------------| | Test Mode | D | | | | | Freq. Corr. | | Reading Value | | Emissic | Emission Level | | Limit | | Margin | | |----|-------------|--------|---------------|-----------|---------|----------------|-------|-----------|--------|--------|--| | No | Freq. | Factor | [dB | [dB (uV)] | | [dB (uV)] | | [dB (uV)] | | (dB) | | | | [MHz] | (dB) | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | Q.P. | AV. | | | 1 | 0.15400 | 10.08 | 32.37 | 19.19 | 42.45 | 29.27 | 65.78 | 55.78 | -23.33 | -26.51 | | | 2 | 0.53124 | 10.11 | 24.70 | 19.36 | 34.81 | 29.47 | 56.00 | 46.00 | -21.19 | -16.53 | | | 3 | 0.95345 | 10.15 | 16.26 | 10.44 | 26.41 | 20.59 | 56.00 | 46.00 | -29.59 | -25.41 | | | 4 | 2.53800 | 10.19 | 27.43 | 21.82 | 37.62 | 32.01 | 56.00 | 46.00 | -18.38 | -13.99 | | | 5 | 13.74600 | 10.50 | 16.13 | 9.25 | 26.63 | 19.75 | 60.00 | 50.00 | -33.37 | -30.25 | | | 6 | 21.16600 | 10.62 | 14.44 | 8.81 | 25.06 | 19.43 | 60.00 | 50.00 | -34.94 | -30.57 | | - 1. Q.P. and AV. are abbreviations of quasi-peak and average individually. - 2. The emission levels of other frequencies were very low against the limit. - 3. Margin value = Emission level Limit value - 4. Correction factor = Insertion loss + Cable loss - 5. Emission Level = Correction Factor + Reading Value. | 5 Pictures of Test Arrangements | |---| | Please refer to the attached file (Test Setup Photo). | Report No.: RF200428C03I-2 Page No. 30 / 31 Reference No.: 210205C01 ## Appendix - Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025. Hsin Chu EMC/RF/Telecom Lab If you have any comments, please feel free to contact us at the following: Lin Kou EMC/RF Lab Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END --- Report No.: RF200428C03I-2 Page No. 31 / 31 Report Format Version: 6.1.1 Reference No.: 210205C01