

File reference No: 2022-05-16

Applicant: Hangzhou Roombanker Technology Co., Ltd

Product: Outdoor LoraWAN Gateway

Model No: DSGW-010C

Trademark: N/A

Test Standards: FCC Part 15 Subpart E, Paragraph 15.407

Test result:

It is herewith confirmed and found to comply with the

requirements set up by ANSI C63.10, FCC Part 15 Subpart C, Paragraph 15.247 regulations for the evaluation of

electromagnetic compatibility

Approved By

21

Terry Tang

Manager

Dated: May 16, 2022

Results appearing herein relate only to the sample tested

The technical reports is issued errors and omissions exempt and is subject to withdrawal at

# SHENZHEN TIMEWAY TESTING LABORATORIES

Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le Village, Nanshan District, Shenzhen, China

Tel (755) 83448688, Fax (755) 83442996, E-Mail:info@timeway-lab.com

Date: 2022-05-16



Page 2 of 169

# **Special Statement:**

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19.

The testing quality system of our laboratory meet with ISO/IEC-17025 requirements, which is approved by CNAL. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

## **CNAS-LAB Code: L2292**

The EMC Laboratory has been assessed and in compliance with CNAS-CL01 accreditation criteria for testing Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of testing Laboratories.

# FCC-Registration No.: 744189

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 744189.

# Industry Canada (IC) — Registration No.:5205A

The EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 5205A.

## **A2LA (Certification Number:5013.01)**

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number:5013.01

Page 3 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



# **Test Report Conclusion**

# Content

| 1.0  | General Details                         | 4   |
|------|-----------------------------------------|-----|
| 1.1  | Test Lab Details.                       | 4   |
| 1.2  | Applicant Details                       | 4   |
| 1.3  | Description of EUT                      | 4   |
| 1.4  | Submitted Sample                        | 6   |
| 1.5  | Test Duration.                          | 6   |
| 1.6  | Test Uncertainty                        | 6   |
| 1.7  | Test By                                 | 6   |
| 2.0  | List of Measurement Equipment           | 7   |
| 3.0  | Technical Details                       | 8   |
| 3.1  | Summary of Test Results.                | 8   |
| 3.2  | Test Standards.                         | 8   |
| 4.0  | EUT Modification.                       | 8   |
| 5.0  | Power Line Conducted Emission Test.     | 9   |
| 5.1  | Schematics of the Test.                 | 9   |
| 5.2  | Test Method and Test Procedure.         | 9   |
| 5.3  | Configuration of the EUT                | 9   |
| 5.4  | EUT Operating Condition.                | 10  |
| 5.5  | Conducted Emission Limit.               | 10  |
| 5.6  | Test Result.                            | 10  |
| 6.0  | Undesirable Emission and Restrict band. | 13  |
| 7.0  | Bandwidth Measurement.                  | 39  |
| 8.0  | Peak Transmit Power Measurement.        | 122 |
| 9.0  | Peak Power Spectral Density Measurement | 128 |
| 10.0 | Frequency Stability                     | 163 |
| 11.0 | Antenna Requirement.                    | 166 |
| 12.0 | FCC ID Label.                           | 167 |
| 13.0 | Photo of Test Setup and EUT View.       | 168 |

Date: 2022-05-16



#### 1.0 General Details

## 1.1 Test Lab Details

Name: SHENZHEN TIMEWAY TESTING LABORATORIES.

Address: Zone C, 1st Floor, Block B, Jun Xiang Da Building, Zhongshan Park Road West, Tong Le

Village, Nanshan District, Shenzhen, China

Telephone: (755) 83448688 Fax: (755) 83442996

Site Listed with Federal Communications commission (FCC)

Registration Number: 744189 For 3m Anechoic Chamber

Site Listed with Industry Canada of Ottawa, Canada

Registration Number: IC: 5205A

For 3m Anechoic Chamber

## 1.2 Applicant Details

Applicant: Hangzhou Roombanker Technology Co., Ltd Address: A#801 Wantong center, Hangzhou, China

Telephone: +86-18768289112

Fax: --

## 1.3 Description of EUT

Product: Outdoor LoraWAN Gateway

Manufacturer: Hangzhou Roombanker Technology Co., Ltd Address: A#801 Wantong center, Hangzhou, China

Trademark: N/A
Additional Trademark: N/A

Model Number: DSGW-010C

Additional Model Number: N/A
Hardware Version: V0.1
Software Version: V0.1
Rating: DC48V

Power Supply: Model: RP028-4800320Z

Input: 100-240V~, 50/60Hz, 0.6A Max; Output: 48V, 0.32A, 15.36W

Type of Modulation IEEE 802.11a/n (HT20/HT40): OFDM (64QAM, 16QAM, QPSK, BPSK);

IEEE 802.11ac: BPSK, QPSK, 16-QAM, 64-QAM, 256-QAM

Frequency Band 1: 5180MHz-5240MHz;

Band 4: 5745MHz-5825MHz

Air Data Rate IEEE 802.11a: 54, 48,36, 24, 18, 12, 9, 6 Mbps

IEEE 802.11n/HT20: mcs0-mcs15 IEEE 802.11n/HT40: mcs0-mcs15 IEEE 802.11ac: NSS1 mcs0-mcs9

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Date: 2022-05-16



Antenna: External Antenna with Reverse polarity N connector used. The gain of the antennas is

0.20dBi (Declared by the manufacturer)

Test Mode: During testing, EUT was set to 100% duty cycle. 6Mbps air data rate was the worst

case for 802.11a mode; mcs0 air data rate was the worst case for 802.11n mode;

NSS1 mcs0 air data rate was the worst case for 802.11ac mode;

Frequency Selection By software

# Each Channel Operation Frequency

| Each Chainlet Operation Frequency |                     |                              |                    |                |           |  |
|-----------------------------------|---------------------|------------------------------|--------------------|----------------|-----------|--|
|                                   | Band 1              |                              |                    |                |           |  |
| 802.11a / 11n HT                  | 20 / 802.11ac VHT20 | 802.11n HT4                  | 40 / 802.11acVHT40 | 802.11ac VHT80 |           |  |
| Channel                           | Frequency           | Channel                      | Frequency          | Channel        | Frequency |  |
| 36                                | 5180MHz             | 38                           | 5190 MHz           | 42             | 5210 MHz  |  |
| 40                                | 5200 MHz            | 46                           | 5230 MHz           |                |           |  |
| 44                                | 5220 MHz            |                              |                    |                |           |  |
| 48                                | 5240 MHz            |                              |                    |                |           |  |
|                                   |                     | В                            | Sand 4             |                |           |  |
| 802.11a / 11n HT                  | 20 / 802.11ac VHT20 | 802.11n HT40 / 802.11acVHT40 |                    | 802.11ac VHT80 |           |  |
| Channel                           | Frequency           | Channel                      | Frequency          | Channel        | Frequency |  |
| 149                               | 5745 MHz            | 151                          | 5755 MHz           | 155            | 5775 MHz  |  |
| 153                               | 5765 MHz            | 159                          | 5795 MHz           |                |           |  |
| 157                               | 5785 MHz            |                              |                    |                |           |  |
| 161                               | 5825 MHz            |                              |                    |                |           |  |

## The selected test channels as follows:

|           | The believed test enamed as follows. |         |           |         |           |  |
|-----------|--------------------------------------|---------|-----------|---------|-----------|--|
| Band 1    |                                      |         |           |         |           |  |
| 802.11a / | 802.11a / 11n HT20 802.11n HT40      |         |           |         | ac VHT80  |  |
| Channel   | Frequency                            | Channel | Frequency | Channel | Frequency |  |
| 36        | 5180MHz                              | 38      | 5190 MHz  | 42      | 5210 MHz  |  |
| 40        | 5200 MHz                             | 46      | 5230 MHz  |         |           |  |
| 48        | 5240 MHz                             |         |           |         |           |  |

|         | Band 4     |         |           |         |           |  |
|---------|------------|---------|-----------|---------|-----------|--|
| 802.11a | / 11n HT20 | 802.11  | n HT40    | 802.11  | ac VHT80  |  |
| Channel | Frequency  | Channel | Frequency | Channel | Frequency |  |
| 149     | 5745 MHz   | 151     | 5755 MHz  | 155     | 5775 MHz  |  |
| 153     | 5765 MHz   | 159     | 5795 MHz  |         |           |  |
| 161     | 5825 MHz   |         |           |         |           |  |

Note: 802.11ac VHT20/VHT40 is similar with 802.11n HT20/HT40.

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: TW2203419-03E Page 6 of 169

Date: 2022-05-16



1.4 Submitted Sample: 1 Samples

1.5 Test Duration 2022-03-28 to 2022-05-16

1.6 Test Uncertainty

Conducted Emissions Uncertainty = 3.6dB

Radiated Emissions below 1GHz Uncertainty =4.7dB

Radiated Emissions above 1GHz Uncertainty =6.0dB

Conducted Power Uncertainty =6.0dB

Occupied Channel Bandwidth Uncertainty =5%

Note: The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.

1.7 Test Engineer

The sample tested by

Print Name: Andy Xing

Date: 2022-05-16



| 2.0 Test Equipment |              |              |              |              |            |
|--------------------|--------------|--------------|--------------|--------------|------------|
| Instrument Type    | Manufacturer | Model        | Serial No.   | Date of Cal. | Due Date   |
| ESPI Test Receiver | R&S          | ESPI 3       | 100379       | 2021-06-18   | 2022-06-17 |
| LISN               | R&S          | EZH3-Z5      | 100294       | 2021-06-18   | 2022-06-17 |
| LISN               | R&S          | EZH3-Z5      | 100253       | 2021-06-18   | 2022-06-17 |
| Impuls-Begrenzer   | R&S          | ESH3-Z2      | 100281       | 2021-06-18   | 2022-06-17 |
| Loop Antenna       | EMCO         | 6507         | 00078608     | 2021-06-18   | 2024-06-17 |
| Spectrum           | R&S          | FSIQ26       | 100292       | 2021-06-18   | 2022-06-17 |
| Horn Antenna       | A-INFO       | LB-180400-KF | J211060660   | 2021-06-18   | 2022-06-17 |
| Horn Antenna       | R&S          | BBHA 9120D   | 9120D-631    | 2021-07-02   | 2024-07-01 |
| Power meter        | Anritsu      | ML2487A      | 6K00003613   | 2021-06-18   | 2022-06-17 |
| Power sensor       | Anritsu      | MA2491A      | 32263        | 2021-06-18   | 2022-06-17 |
| Bilog Antenna      | Schwarebeck  | VULB9163     | 9163/340     | 2021-07-02   | 2024-07-01 |
| 9*6*6 Anechoic     |              |              | N/A          | 2021-07-02   | 2022-07-01 |
| EMI Test Receiver  | RS           | ESVB         | 826156/011   | 2021-06-18   | 2022-06-17 |
| EMI Test Receiver  | RS           | ESH3         | 860904/006   | 2021-06-18   | 2022-06-17 |
| Spectrum           | HP/Agilent   | ESA-L1500A   | US37451154   | 2021-06-18   | 2022-06-17 |
| Spectrum           | HP/Agilent   | E4407B       | MY50441392   | 2021-06-18   | 2022-06-17 |
| Spectrum           | RS           | FSP          | 1164.4391.38 | 2022-01-14   | 2023-01-13 |
| DE C-1-1-          | 71 1:        | ZT26-NJ-NJ-8 |              | 2021 06 10   | 2022 06 17 |
| RF Cable           | Zhengdi      | M/FA         |              | 2021-06-18   | 2022-06-17 |
| RF Cable           | Zhengdi      | 7m           |              | 2021-06-18   | 2022-06-17 |
| RF Switch          | EM           | EMSW18       | 060391       | 2021-06-18   | 2022-06-17 |
| Pre-Amplifier      | Schwarebeck  | BBV9743      | #218         | 2021-06-18   | 2022-06-17 |
| Pre-Amplifier      | HP/Agilent   | 8449B        | 3008A00160   | 2021-06-18   | 2022-06-17 |
| LISN               | SCHAFFNER    | NNB42        | 00012        | 2022-01-05   | 2023-01-04 |

### 2.2 Automation Test Software

For Conducted Emission Test

| Name   | Version           |
|--------|-------------------|
| EZ-EMC | Ver.EMC-CON 3A1.1 |

## For Radiated Emissions

| Name                                            | Version |
|-------------------------------------------------|---------|
| EMI Test Software BL410-EV18.91                 | V18.905 |
| EMI Test Software BL410-EV18.806 High Frequency | V18.06  |

The report refers only to the sample tested and does not apply to the bulk.

This report released in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.

Page 8 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



#### 3.0 **Technical Details**

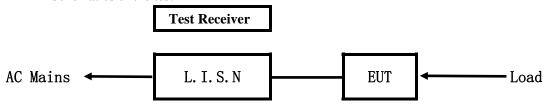
#### 3.1 **Summary of test results**

| The EUT has been tested according to the following specifications:                     |                                           |        |          |  |
|----------------------------------------------------------------------------------------|-------------------------------------------|--------|----------|--|
| Standard                                                                               | Test Type                                 | Result | Notes    |  |
| FCC Part 15, Paragraph 15.407                                                          | <b>Conducted Emission Test</b>            | Pass   | Complies |  |
| FCC Part 15 Subpart E<br>Paragraph 15.407 (b1/4/5/6/7),<br>Part 15.205 and Part 15.209 | Undesirable Emission and<br>Restrict band | Pass   | Complies |  |
| FCC Part 15, Paragraph 15.407<br>(a1/2/3)                                              | Peak Transmit Power                       | Pass   | Complies |  |
| FCC Part 15, Paragraph 15.407<br>(a)(6)                                                | Peak Power Excursion                      | Pass   | Complies |  |
| FCC Part 15, Paragraph 15.407<br>(a/1/2/3)                                             | Peak Power Spectral<br>Density            | Pass   | Complies |  |
| FCC Part 15, Paragraph<br>15.407(g)                                                    | Frequency Stability                       | Pass   | Complies |  |

#### 3.2 **Test Standards**

FCC Part 15 Subpart & Subpart C, Paragraph 15.247, ANSI C63.10:2013 and ANSI C63.4:2014 789033 D02 General UNII Test Procedures New Rules v01r04

#### 4.0 **EUT Modification**

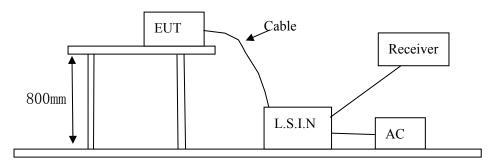

No modification by SHENZHEN TIMEWAY TESTING LABORATORIES.

Date: 2022-05-16



### 5. Power Line Conducted Emission Test

### 5.1 Schematics of the test




**EUT: Equipment Under Test** 

## 5.2 Test Method and test Procedure

The EUT was tested according to ANSI C63.10-2009. The Frequency spectrum From 0.15MHz to 30MHz was investigated. The LISN used was 50ohm/50uH as specified by section 5.1 of ANSI C63.10-2013.

Test Voltage: 120V~, 60Hz Block diagram of Test setup



# 5.3 Configuration of the EUT

The EUT was configured according to ANSI C63.10-2013. All interface ports were connected to the appropriate peripherals. All peripherals and cables are listed below.

### A. EUT

| Device  | Manufacturer                            | Model     | FCC ID         |
|---------|-----------------------------------------|-----------|----------------|
| Outdoor |                                         |           |                |
| LoraWAN | Hangzhou Roombanker Technology Co., Ltd | DSGW-010C | 2AUXBDSGW-010C |
| Gateway |                                         |           |                |

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: TW2203419-03E Page 10 of 169

Date: 2022-05-16



#### B. Internal Device

| Device | Manufacturer | Model | Rating |
|--------|--------------|-------|--------|
|        |              |       |        |

# C. Peripherals

| Device | Manufacturer | Model | Rating |
|--------|--------------|-------|--------|
|        |              | -     | -      |

5.4 EUT Operating Condition

Operating condition is according to ANSI C63.10 -2013.

- A Setup the EUT and simulators as shown on follow
- B Enable AF signal and confirm EUT active to normal condition
- 5.5 Power line conducted Emission Limit according to Paragraph 15.207

| Frequency        | Limits (dB μ V)  |               |  |
|------------------|------------------|---------------|--|
| (MHz)            | Quasi-peak Level | Average Level |  |
| 0.15 ~ 0.50      | 66.0~56.0*       | 56.0~46.0*    |  |
| $0.50 \sim 5.00$ | 56.0             | 46.0          |  |
| 5.00 ~ 30.00     | 60.0             | 50.0          |  |

Notes:

- 1. \*Decreasing linearly with logarithm of frequency.
- 2. The tighter limit shall apply at the transition frequencies

### 5.6 Test Results

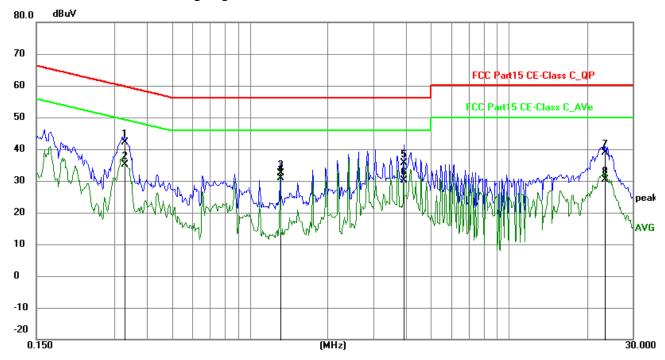
The frequency spectrum from 0.15MHz to 30MHz was investigated. All reading are quasi-peak values with a resolution bandwidth of 9kHz.

Note: Only the worst case was recorded in the test report.

Date: 2022-05-16



#### A: Conducted Emission on Live Terminal (150kHz to 30MHz)


# **EUT Operating Environment**

Humidity: 65%RH Atmospheric Pressure: 101 kPa Temperature: 26°C

**EUT set Condition: Keeping WIFI Transmitting** 

**Results: Pass** 

Please refer to following diagram for individual

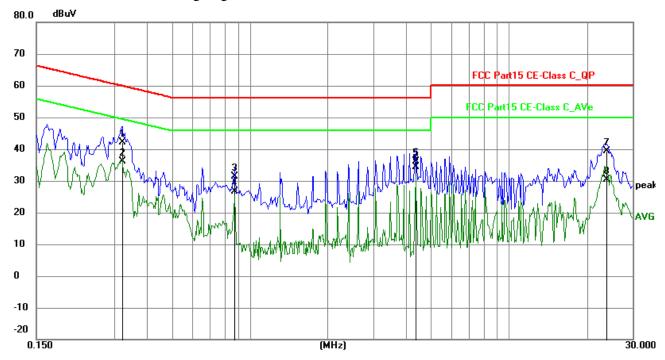


| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|----------------|-----------------|-----------------|----------------|----------|-----|
| 1   | 0.3294             | 32.45             | 9.76           | 42.21           | 59.47           | -17.26         | QP       | Р   |
| 2   | 0.3294             | 25.31             | 9.76           | 35.07           | 49.47           | -14.40         | AVG      | Р   |
| 3   | 1.3122             | 22.49             | 9.79           | 32.28           | 56.00           | -23.72         | QP       | Р   |
| 4   | 1.3122             | 20.97             | 9.79           | 30.76           | 46.00           | -15.24         | AVG      | Р   |
| 5   | 3.9399             | 25.68             | 9.88           | 35.56           | 56.00           | -20.44         | QP       | Р   |
| 6   | 3.9399             | 20.37             | 9.88           | 30.25           | 46.00           | -15.75         | AVG      | Р   |
| 7   | 23.3931            | 27.94             | 10.89          | 38.83           | 60.00           | -21.17         | QP       | Р   |
| 8   | 23.3931            | 19.53             | 10.89          | 30.42           | 60.00           | -29.58         | QP       | Р   |

Date: 2022-05-16



# B: Conducted Emission on Neutral Terminal (150kHz to 30MHz)


**EUT Operating Environment** 

Temperature: 26°C Humidity: 65%RH Atmospheric Pressure: 101 kPa

**EUT set Condition: Keeping WIFI Transmitting** 

**Results: Pass** 

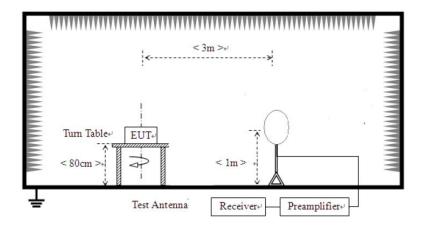
Please refer to following diagram for individual



| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB) | Level<br>(dBuV) | Limit<br>(dBuV) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|----------------|-----------------|-----------------|----------------|----------|-----|
| 1   | 0.3215             | 32.49             | 9.76           | 42.25           | 59.67           | -17.42         | QP       | Р   |
| 2   | 0.3215             | 26.43             | 9.76           | 36.19           | 49.67           | -13.48         | AVG      | Р   |
| 3   | 0.8754             | 21.48             | 9.79           | 31.27           | 56.00           | -24.73         | QP       | Р   |
| 4   | 0.8754             | 16.81             | 9.79           | 26.60           | 46.00           | -19.40         | AVG      | Р   |
| 5   | 4.3728             | 26.13             | 9.90           | 36.03           | 56.00           | -19.97         | QP       | Ъ   |
| 6   | 4.3728             | 24.56             | 9.90           | 34.46           | 46.00           | -11.54         | AVG      | Р   |
| 7   | 23.8338            | 28.41             | 10.92          | 39.33           | 60.00           | -20.67         | QP       | Р   |
| 8   | 23.8338            | 19.34             | 10.92          | 30.26           | 50.00           | -19.74         | AVG      | Р   |

Date: 2022-05-16

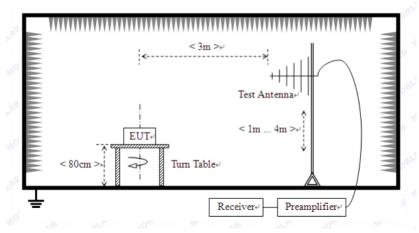



### 6 Undesirable Emission and Restrict band

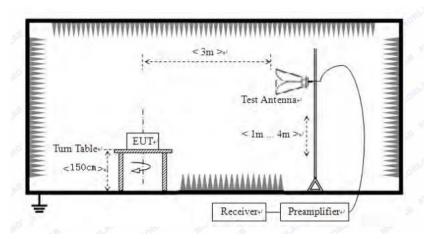
- 6.1 Test Method and test Procedure:
- (1) The EUT was tested according to ANSI C63.10-2013. The radiated test was performed at Timeway Laboratory. This site is on file with the FCC laboratory division, Registration No.744189
- (2) The EUT, peripherals were put on the turntable which table size is 1m x 1.5 m, table high 0.8 m. All set up is according to ANSI C63.10-2013.
- (3) The frequency spectrum from 30 MHz to 40 GHz was investigated. All readings from 30 MHz to 1 GHz are Quasi-peak values with a resolution bandwidth of 120 kHz. For measurement above 1GHz, peak values with RBW=1MHz, VBW=3MHz and PK detector.

  Measurements were made at 3 meters.
- (4) The antenna high is varied from 1 m to 4 m high to find the maximum emission for each frequency.
- (5) Maximizing procedure was performed on the six (6) highest emissions to ensure EUT compliance is with all installation combinations. All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB of specification limit), and are distinguished with a "**QP**" in the data table.
- (6) The antenna polarization: Vertical polarization and Horizontal polarization.

## **Block diagram of Test setup**


For radiated emissions from 9kHz to 30MHz




Date: 2022-05-16



For radiated emissions from 30MHz to1GHz



For radiated emissions above 1GHz



- 6.2 Configuration of The EUT
  Same as section 5.3 of this report
- 6.3 EUT Operating Condition
  Same as section 5.4 of this report.
- 6.4 Radiated Emission Limit

All emission from a digital device, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strength specified below:

Page 15 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



## Frequencies in restricted band are complied to limit on Paragraph 15.209

| Frequency Range (MHz) | Distance (m) | Field strength (dB $\mu$ V/m) |
|-----------------------|--------------|-------------------------------|
| 30-88                 | 3            | 40.0                          |
| 88-216                | 3            | 43.5                          |
| 216-960               | 3            | 46.0                          |
| Above 960             | 3            | 54.0                          |

- (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27dBm/MHz
- (2) For transmitters operating in the 5.725-5.825 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an EIRP of -17dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an EIRP of -27dBm/MHz.

Note:

- 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
- 2. In the Above Table, the higher limit applies at the band edges.
- 3. Distance refers to the distance in meters between the measuring instrument antenna and the EUT
- 4. This is a handhold device. The radiated emissions should be tested under 3-axes position (Lying, Side, and Stand), After pre-test. It was found that the worse radiated emission was get at the lying position.

Note: Only the worst case was recorded in the test report. and 802.11a is the worst case.

Report No.: TW2203419-03E Page 16 of 169

Date: 2022-05-16



Test result

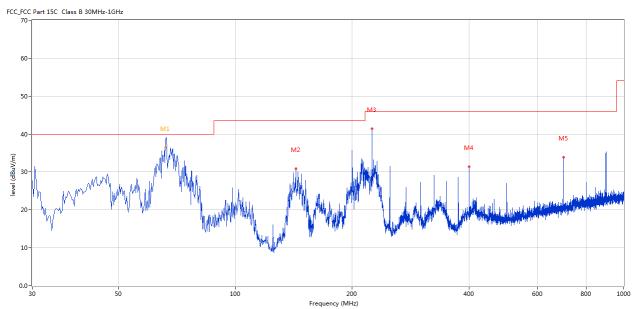
General Radiated Emission Data and Harmonics Radiated Emission Data

Radiated Emission In Horizontal (30MHz----1000MHz)

**EUT set Condition: Keeping WIFI Transmitting** 

**Results: Pass** 

Page 17 of 169


Report No.: TW2203419-03E

Date: 2022-05-16



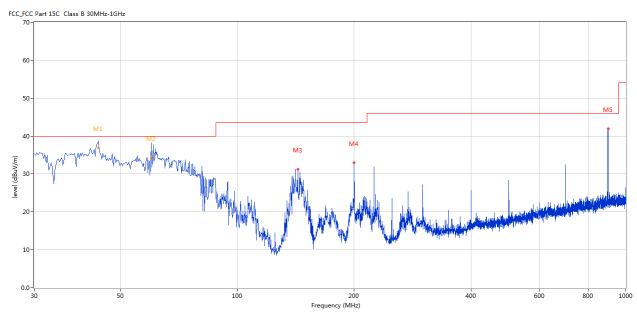
# Test Figure:

H



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table  | Height | ANT        | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|--------|--------|------------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          | (o)    | (cm)   |            |         |
| 1   | 66.123    | 39.49    | -13.97 | 40.0     | -0.51      | Peak     | 0.00   | 100    | Horizontal | Pass    |
| 1*  | 66.123    | 36.37    | -13.97 | 40.0     | -3.63      | QP       | 0.00   | 100    | Horizontal | Pass    |
| 2   | 143.219   | 30.85    | -17.22 | 43.5     | -12.65     | Peak     | 122.00 | 100    | Horizontal | Pass    |
| 3   | 224.921   | 41.43    | -12.93 | 46.0     | -4.57      | Peak     | 28.00  | 100    | Horizontal | Pass    |
| 4   | 399.963   | 31.42    | -8.57  | 46.0     | -14.58     | Peak     | 54.00  | 100    | Horizontal | Pass    |
| 5   | 699.860   | 33.87    | -4.20  | 46.0     | -12.13     | Peak     | 75.00  | 100    | Horizontal | Pass    |

Page 18 of 169


Report No.: TW2203419-03E

Date: 2022-05-16



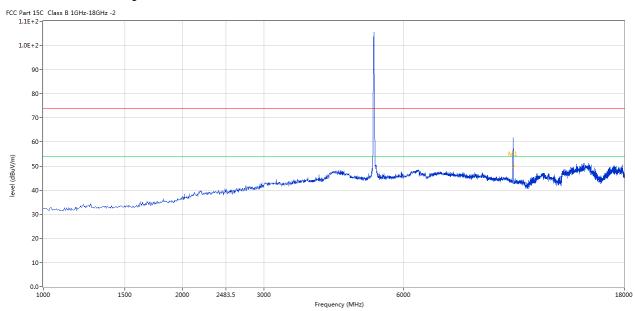
# Test Figure:

V



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table  | Height | ANT      | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|--------|--------|----------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          | (o)    | (cm)   |          |         |
| 1   | 43.819    | 38.68    | -11.48 | 40.0     | -1.32      | Peak     | 283.00 | 100    | Vertical | Pass    |
| 1*  | 43.819    | 36.87    | -11.48 | 40.0     | -3.13      | QP       | 283.00 | 100    | Vertical | Pass    |
| 2   | 60.062    | 38.24    | -12.97 | 40.0     | -1.76      | Peak     | 288.00 | 100    | Vertical | Pass    |
| 2*  | 60.062    | 34.29    | -12.97 | 40.0     | -5.71      | QP       | 288.00 | 100    | Vertical | Pass    |
| 3   | 143.219   | 31.28    | -17.22 | 43.5     | -12.22     | Peak     | 256.00 | 100    | Vertical | Pass    |
| 4   | 199.950   | 32.90    | -13.45 | 43.5     | -10.60     | Peak     | 341.00 | 100    | Vertical | Pass    |
| 5   | 900.115   | 41.97    | -1.86  | 46.0     | -4.03      | Peak     | 277.00 | 100    | Vertical | Pass    |

Page 19 of 169


Report No.: TW2203419-03E

Date: 2022-05-16

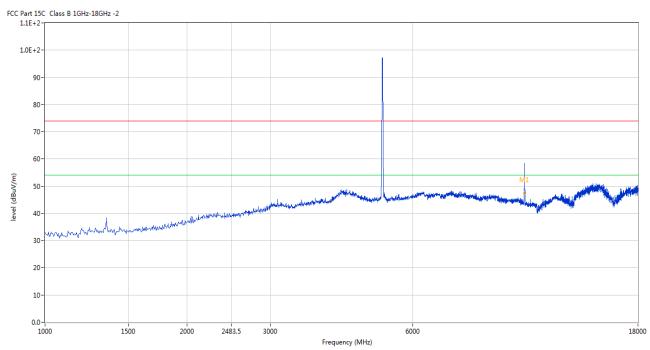


Please refer to the following test plots for details:

# CH36 for 11a at 6Mbps: Horizontal



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT        | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|------------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |            |         |
| 1   | 10356.161 | 62.82    | 6.25   | 74.0     | -11.18     | Peak     | 267.00    | 100    | Horizontal | Pass    |
| 1** | 10356.161 | 49.91    | 6.25   | 54.0     | -4.09      | AV       | 267.00    | 100    | Horizontal | Pass    |


Page 20 of 169

Report No.: TW2203419-03E

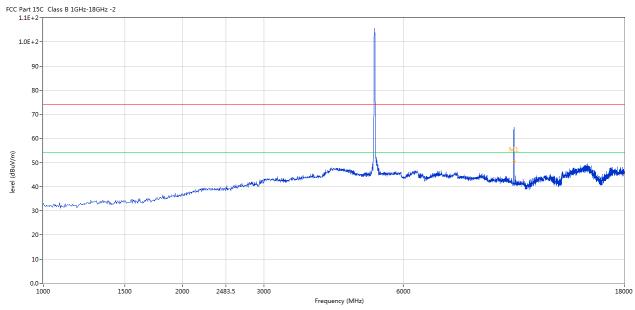
Date: 2022-05-16



# CH36 for 11a at 6Mbps: Vertical



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT      | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|----------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |          |         |
| 1   | 10360.410 | 58.34    | 6.24   | 74.0     | -15.66     | Peak     | 193.00    | 100    | Vertical | Pass    |
| 1** | 10360.410 | 47.43    | 6.24   | 54.0     | -6.57      | AV       | 193.00    | 100    | Vertical | Pass    |


Page 21 of 169

Report No.: TW2203419-03E

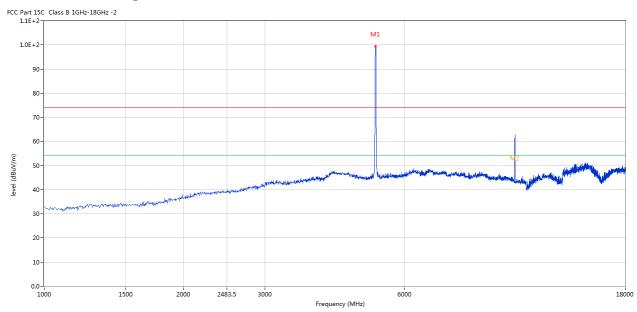
Date: 2022-05-16



# CH40 for 11a at 6Mbps: Horizontal



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT        | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|------------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |            |         |
| 1   | 10398.650 | 64.57    | 6.17   | 74.0     | -9.43      | Peak     | 265.00    | 100    | Horizontal | Pass    |
| 1** | 10398.650 | 50.49    | 6.17   | 54.0     | -3.51      | AV       | 265.00    | 100    | Horizontal | Pass    |


Page 22 of 169

Report No.: TW2203419-03E

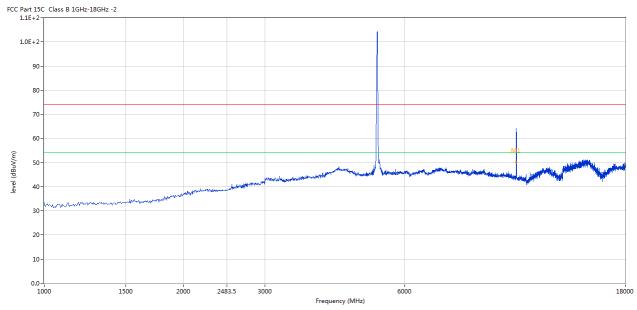
Date: 2022-05-16



# CH40 for 11a at 6Mbps: Vertical



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT      | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|----------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |          |         |
| 1   | 5202.199  | 99.50    | 3.64   | 74.0     | 25.50      | Peak     | 197.00    | 100    | Vertical | N/A     |
| 2   | 10398.650 | 62.72    | 6.17   | 74.0     | -11.28     | Peak     | 197.00    | 100    | Vertical | Pass    |
| 2** | 10398.650 | 47.83    | 6.17   | 54.0     | -6.17      | AV       | 197.00    | 100    | Vertical | Pass    |


Page 23 of 169

Report No.: TW2203419-03E

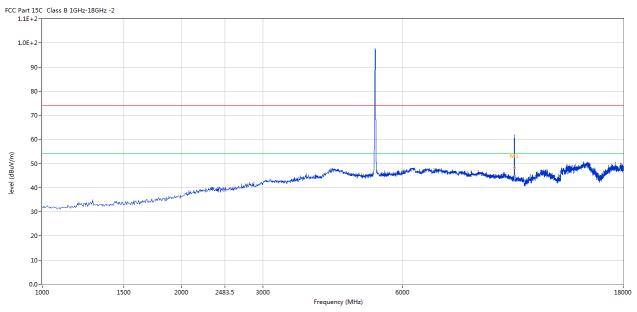
Date: 2022-05-16



# CH48 for 11a at 6Mbps: Horizontal



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT        | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|------------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |            |         |
| 1   | 10466.633 | 64.13    | 6.03   | 74.0     | -9.87      | Peak     | 263.00    | 100    | Horizontal | Pass    |
| 1** | 10466.633 | 50.11    | 6.03   | 54.0     | -3.89      | AV       | 263.00    | 100    | Horizontal | Pass    |


Page 24 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



# CH48 for 11g at 6Mbps: Vertical



| No. | Frequency | Results  | Factor | Limit    | Over Limit | Detector | Table (o) | Height | ANT      | Verdict |
|-----|-----------|----------|--------|----------|------------|----------|-----------|--------|----------|---------|
|     | (MHz)     | (dBuV/m) | (dB)   | (dBuV/m) | (dB)       |          |           | (cm)   |          |         |
| 1   | 10479.380 | 61.88    | 6.00   | 74.0     | -12.12     | Peak     | 205.00    | 100    | Vertical | Pass    |
| 1** | 10479.380 | 48.37    | 6.00   | 54.0     | -5.63      | AV       | 205.00    | 100    | Vertical | Pass    |

Note: 1. For radiated Emissions from 18-40GHz and below 30MHz, it is only the floor noise and less than the limit for more than 20dB. No necessary to take down.

2. 802.11a is the worst case.

Date: 2022-05-16



| Restricted band Me | Restricted band Measurement |                |               |                          |  |  |  |  |  |  |  |  |
|--------------------|-----------------------------|----------------|---------------|--------------------------|--|--|--|--|--|--|--|--|
| EUT                | Outdoor Lo                  | oraWAN Gateway | Test Mode:    | Channel 36 (5180MHz)-11a |  |  |  |  |  |  |  |  |
| Mode               | Keeping                     | g Transmitting | Input Voltage | DC48V                    |  |  |  |  |  |  |  |  |
| Temperature        | 24                          | l deg. C,      | Humidity      | 56% RH                   |  |  |  |  |  |  |  |  |
| Test Result:       |                             | Pass           | Detector      | PK                       |  |  |  |  |  |  |  |  |
| 5150               | PK (dBμV/m)                 | 45.7 (PK)      | T in it       | 27.10 // 41.1            |  |  |  |  |  |  |  |  |
|                    | EIRP (dBm) -49.5            |                | Limit         | -27dBm/MHz               |  |  |  |  |  |  |  |  |
| Polarity           | Н                           | orizontal      |               |                          |  |  |  |  |  |  |  |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 45.7 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=45.7-95.2=-49.5dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                      |               |               |                          |  |
|-----------------------------|----------------------|---------------|---------------|--------------------------|--|
| EUT                         | Outdoor Lo           | raWAN Gateway | Test Mode:    | Channel 36 (5180MHz)-11a |  |
| Mode                        | Keeping Transmitting |               | Input Voltage | DC48V                    |  |
| Temperature                 | 24 deg. C,           |               | Humidity      | 56% RH                   |  |
| Test Result:                |                      | Pass          | Detector      | PK                       |  |
| 5150                        | PK (dBµV/m)          | 42.6 (PK)     | T in it       | 27 10/MII                |  |
|                             | EIRP (dBm) -52.6     |               | Limit         | -27dBm/MHz               |  |
| Polarity                    | Vertical             |               |               |                          |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 42.6 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 42.6 - 95.2 = -52.6 dBm$ 

Date: 2022-05-16



| Restricted band Measurement |                      |               |               |                          |  |
|-----------------------------|----------------------|---------------|---------------|--------------------------|--|
| EUT                         | Outdoor Lo           | raWAN Gateway | Test Mode:    | Channel 48 (5240MHz)-11a |  |
| Mode                        | Keeping Transmitting |               | Input Voltage | DC48V                    |  |
| Temperature                 | 24 deg. C,           |               | Humidity      | 56% RH                   |  |
| Test Result:                |                      | Pass          | Detector      | PK                       |  |
| 5250                        | PK (dBµV/m)          | 49.1 (PK)     | T in it       | 27 10 / 11               |  |
|                             | EIRP (dBm) -46.1     |               | Limit         | -27dBm/MHz               |  |
| Polarity                    | Но                   | orizontal     |               |                          |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 49.1 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=49.1-95.2=-46.1dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                      |               |               |                          |  |
|-----------------------------|----------------------|---------------|---------------|--------------------------|--|
| EUT                         | Outdoor Lo           | raWAN Gateway | Test Mode:    | Channel 48 (5240MHz)-11a |  |
| Mode                        | Keeping Transmitting |               | Input Voltage | DC48V                    |  |
| Temperature                 | 24 deg. C,           |               | Humidity      | 56% RH                   |  |
| Test Result:                |                      | Pass          | Detector      | PK                       |  |
| 5250                        | PK (dBµV/m)          | 46.8 (PK)     | T ' '/        | 27.15 (2.01)             |  |
|                             | EIRP (dBm) -48.4     |               | Limit         | -27dBm/MHz               |  |
| Polarity                    | Vertical             |               |               |                          |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 46.8dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 46.8 - 95.2 = -48.4 dBm$ 

Date: 2022-05-16



| Restricted band Measurement |                      |                |               |                           |  |
|-----------------------------|----------------------|----------------|---------------|---------------------------|--|
| EUT                         | Outdoor Lo           | oraWAN Gateway | Test Mode:    | Channel 149 (5745MHz)-11a |  |
| Mode                        | Keeping Transmitting |                | Input Voltage | DC48V                     |  |
| Temperature                 | 24 deg. C,           |                | Humidity      | 56% RH                    |  |
| Test Result:                |                      | Pass           | Detector      | PK                        |  |
| 5725                        | PK (dBµV/m)          | 53.9 (PK)      | T ''4         | 17 ID - /A (II            |  |
|                             | EIRP (dBm) -41.3     |                | Limit         | -17dBm/MHz                |  |
| Polarity                    | Но                   | orizontal      |               |                           |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 53.9 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=53.9-95.2=-41.3dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                         |                      |               |                           |  |
|-----------------------------|-------------------------|----------------------|---------------|---------------------------|--|
| EUT                         | Outdoor LoraWAN Gateway |                      | Test Mode:    | Channel 149 (5745MHz)-11a |  |
| Mode                        | Keeping Transmitting    |                      | Input Voltage | DC48V                     |  |
| Temperature                 | 24 deg. C,              |                      | Humidity      | 56% RH                    |  |
| Test Result:                |                         | Pass                 | Detector      | PK                        |  |
| 5725                        | PK (dBμV/m)             | PK (dBμV/m) 47.6(PK) |               | 17.10/МП                  |  |
|                             | EIRP (dBm) -47.6        |                      | Limit         | -17dBm/MHz                |  |
| Polarity                    | Vertical                |                      |               |                           |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 47.6 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 47.6 - 95.2 = -47.6 dBm$ 

Date: 2022-05-16



| Restricted band Measurement |                      |               |               |                           |
|-----------------------------|----------------------|---------------|---------------|---------------------------|
| EUT                         | Outdoor Lo           | raWAN Gateway | Test Mode:    | Channel 161 (5825MHz)-11a |
| Mode                        | Keeping Transmitting |               | Input Voltage | DC48V                     |
| Temperature                 | 24 deg. C,           |               | Humidity      | 56% RH                    |
| Test Result:                |                      | Pass          |               | PK                        |
| 5850                        | PK (dBµV/m)          | 55.8 (PK)     | T imit        | 17 JD /MIL                |
|                             | EIRP (dBm) -39.4     |               | Limit         | -17dBm/MHz                |
| Polarity                    | Но                   | orizontal     |               |                           |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 55.8 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=55.8-95.2=-39.4dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                      |               |               |                           |  |
|-----------------------------|----------------------|---------------|---------------|---------------------------|--|
| EUT                         | Outdoor Lo           | raWAN Gateway | Test Mode:    | Channel 161 (5825MHz)-11a |  |
| Mode                        | Keeping Transmitting |               | Input Voltage | DC48V                     |  |
| Temperature                 | 24 deg. C,           |               | Humidity      | 56% RH                    |  |
| Test Result:                |                      | Pass          | Detector      | PK                        |  |
| 5850                        | PK (dBµV/m)          | 50.2 (PK)     | <b>.</b>      | 1515 241                  |  |
|                             | EIRP (dBm) -45.0     |               | Limit         | -17dBm/MHz                |  |
| Polarity                    | Vertical             |               |               |                           |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m]=50.2 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 50.2 - 95.2 = -45.0 dBm$ 

Date: 2022-05-16



| Restricted band Measurement |                      |               |               |                    |  |
|-----------------------------|----------------------|---------------|---------------|--------------------|--|
| EUT                         | Outdoor Lo           | raWAN Gateway | Test Mode:    | Channel 36         |  |
|                             |                      |               |               | (5180MHz)-11n/HT20 |  |
| Mode                        | Keeping Transmitting |               | Input Voltage | DC48V              |  |
| Temperature                 | 24 deg. C,           |               | Humidity      | 56% RH             |  |
| Test Result:                |                      | Pass          | Detector      | PK                 |  |
| 5150                        | PK (dBµV/m)          | 46.5(PK)      | T : '/        | 27.15 (2.01)       |  |
|                             | EIRP (dBm) -48.7     |               | Limit         | -27dBm/MHz         |  |
| Polarity                    | Horizontal           |               |               |                    |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 46.5 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=46.5-95.2=-48.7dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                      |                |               |                    |  |
|-----------------------------|----------------------|----------------|---------------|--------------------|--|
| EUT                         | Outdoor Lo           | oraWAN Gateway | Test Mode:    | Channel 36         |  |
|                             |                      |                |               | (5180MHz)-11n/HT20 |  |
| Mode                        | Keeping Transmitting |                | Input Voltage | DC48V              |  |
| Temperature                 | 24 deg. C,           |                | Humidity      | 56% RH             |  |
| Test Result:                |                      | Pass           | Detector      | PK                 |  |
| 5150                        | PK (dBµV/m)          | 43.7 (PK)      | T ::          | 27 10/MII          |  |
|                             | EIRP (dBm) -51.5     |                | Limit         | -27dBm/MHz         |  |
| Polarity                    | 7                    | Vertical       |               |                    |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 43.7dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 43.7 - 95.2 = -51.5 dBm$ 

Date: 2022-05-16



| Restricted band Measurement |                      |               |               |                       |  |
|-----------------------------|----------------------|---------------|---------------|-----------------------|--|
| EUT                         | Outdoor Lo           | raWAN Gateway | Test Mode:    | Channel 48 (5240MHz)- |  |
|                             |                      |               |               | 11n/HT20              |  |
| Mode                        | Keeping Transmitting |               | Input Voltage | DC48V                 |  |
| Temperature                 | 24 deg. C,           |               | Humidity      | 56% RH                |  |
| Test Result:                |                      | Pass          | Detector      | PK                    |  |
| 5250                        | PK (dBμV/m)          | 47.1 (PK)     | T : :/        | 27.15 /2/11           |  |
|                             | EIRP (dBm) -48.1     |               | Limit         | -27dBm/MHz            |  |
| Polarity                    | Horizontal           |               |               |                       |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 47.1 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=47.1-95.2=-48.1dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                      |                |               |                       |  |
|-----------------------------|----------------------|----------------|---------------|-----------------------|--|
| EUT                         | Outdoor Lo           | oraWAN Gateway | Test Mode:    | Channel 48 (5240MHz)- |  |
|                             |                      |                |               | 11n/HT20              |  |
| Mode                        | Keeping Transmitting |                | Input Voltage | DC48V                 |  |
| Temperature                 | 24 deg. C,           |                | Humidity      | 56% RH                |  |
| Test Result:                |                      | Pass           | Detector      | PK                    |  |
| 5250                        | PK (dBµV/m)          | 44.9(PK)       | T 114         | 27 10/MII             |  |
|                             | EIRP (dBm) -50.3     |                | Limit         | -27dBm/MHz            |  |
| Polarity                    | 7                    | Vertical       |               |                       |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 44.9dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 44.9 - 95.2 = -50.3 dBm$ 

Date: 2022-05-16



| Restricted band Measurement |                      |                |               |                        |  |
|-----------------------------|----------------------|----------------|---------------|------------------------|--|
| EUT                         | Outdoor Lo           | oraWAN Gateway | Test Mode:    | Channel 149 (5745MHz)- |  |
|                             |                      |                |               | 11n/HT20               |  |
| Mode                        | Keeping Transmitting |                | Input Voltage | DC48V                  |  |
| Temperature                 | 24 deg. C,           |                | Humidity      | 56% RH                 |  |
| Test Result:                |                      | Pass           | Detector      | PK                     |  |
| 5725                        | PK (dBµV/m)          | 50.7 (PK)      | T ::          | 17.10/МП               |  |
|                             | EIRP (dBm) -44.5     |                | Limit         | -17dBm/MHz             |  |
| Polarity                    | Horizontal           |                |               |                        |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 50.7 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=50.7-95.2=-44.5dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                      |                |               |                        |  |
|-----------------------------|----------------------|----------------|---------------|------------------------|--|
| EUT                         | Outdoor Lo           | oraWAN Gateway | Test Mode:    | Channel 149 (5745MHz)- |  |
|                             |                      |                |               | 11n/HT20               |  |
| Mode                        | Keeping Transmitting |                | Input Voltage | DC48V                  |  |
| Temperature                 | 24 deg. C,           |                | Humidity      | 56% RH                 |  |
| Test Result:                |                      | Pass           | Detector      | PK                     |  |
| 5725                        | PK (dBµV/m)          | 46.6 (PK)      | T :           | 17.10/МП               |  |
|                             | EIRP (dBm)           | -48.6          | Limit         | -17dBm/MHz             |  |
| Polarity                    | Vertical             |                |               |                        |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 46.6dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 46.6 - 95.2 = -48.6 dBm$ 

Date: 2022-05-16



| Restricted band Measurement |                      |                |               |                        |  |
|-----------------------------|----------------------|----------------|---------------|------------------------|--|
| EUT                         | Outdoor Lo           | oraWAN Gateway | Test Mode:    | Channel 161 (5825MHz)- |  |
|                             |                      |                |               | 11n/HT20               |  |
| Mode                        | Keeping Transmitting |                | Input Voltage | DC48V                  |  |
| Temperature                 | 24 deg. C,           |                | Humidity      | 56% RH                 |  |
| Test Result:                |                      | Pass           |               | PK                     |  |
| 5850                        | PK (dBµV/m)          | 50.9 (PK)      | T ''/         | 17.10/МП               |  |
|                             | EIRP (dBm) -44.3     |                | Limit         | -17dBm/MHz             |  |
| Polarity                    | Horizontal           |                |               |                        |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 50.9dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=50.9-95.2=-44.3dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                      |                |               |                        |  |
|-----------------------------|----------------------|----------------|---------------|------------------------|--|
| EUT                         | Outdoor Lo           | oraWAN Gateway | Test Mode:    | Channel 161 (5825MHz)- |  |
|                             |                      |                |               | 11n/HT20               |  |
| Mode                        | Keeping Transmitting |                | Input Voltage | DC48V                  |  |
| Temperature                 | 24 deg. C,           |                | Humidity      | 56% RH                 |  |
| Test Result:                |                      | Pass           | Detector      | PK                     |  |
| 5850                        | PK (dBµV/m)          | 46.1 (PK)      | T ''4         | 17 ID /MII             |  |
|                             | EIRP (dBm) -49.1     |                | Limit         | -17dBm/MHz             |  |
| Polarity                    | Vertical             |                |               |                        |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 46.1dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 46.1 - 95.2 = -49.1 dBm$ 

Date: 2022-05-16



| Restricted band Measurement |                      |                |               |                    |  |
|-----------------------------|----------------------|----------------|---------------|--------------------|--|
| EUT                         | Outdoor Lo           | oraWAN Gateway | Test Mode:    | Channel 38         |  |
|                             |                      |                |               | (5190MHz)-11n/HT40 |  |
| Mode                        | Keeping Transmitting |                | Input Voltage | DC48V              |  |
| Temperature                 | 24 deg. C,           |                | Humidity      | 56% RH             |  |
| Test Result:                |                      | Pass           | Detector      | PK                 |  |
| 5150                        | PK (dBµV/m)          | 44.2 (PK)      | T in it       | 27 10/MII          |  |
|                             | EIRP (dBm) -51.0     |                | Limit         | -27dBm/MHz         |  |
| Polarity                    | Horizontal           |                |               |                    |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 44.2 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=44.2-95.2=-51.0 dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                      |                |               |                    |  |
|-----------------------------|----------------------|----------------|---------------|--------------------|--|
| EUT                         | Outdoor Lo           | oraWAN Gateway | Test Mode:    | Channel 38         |  |
|                             |                      |                |               | (5190MHz)-11n/HT40 |  |
| Mode                        | Keeping Transmitting |                | Input Voltage | DC48V              |  |
| Temperature                 | 24 deg. C,           |                | Humidity      | 56% RH             |  |
| Test Result:                |                      | Pass           | Detector      | PK                 |  |
| 5150                        | PK (dBµV/m)          | 42.7 (PK)      | T 114         | 27 10/MII          |  |
|                             | EIRP (dBm) -52.5     |                | Limit         | -27dBm/MHz         |  |
| Polarity                    | Vertical             |                |               |                    |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 42.7dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=42.7-95.2=-52.5dBm$ 

Date: 2022-05-16



| Restricted band Measurement |                      |                |               |                       |  |
|-----------------------------|----------------------|----------------|---------------|-----------------------|--|
| EUT                         | Outdoor Lo           | oraWAN Gateway | Test Mode:    | Channel 46 (5230MHz)- |  |
|                             |                      |                |               | 11n/HT40              |  |
| Mode                        | Keeping Transmitting |                | Input Voltage | DC48V                 |  |
| Temperature                 | 24 deg. C,           |                | Humidity      | 56% RH                |  |
| Test Result:                |                      | Pass           | Detector      | PK                    |  |
| 5250                        | PK (dBµV/m)          | 48.9(PK)       | T :           | 27 10/MII             |  |
|                             | EIRP (dBm) -46.3     |                | Limit         | -27dBm/MHz            |  |
| Polarity                    | Horizontal           |                |               |                       |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 48.9 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=48.9-95.2=-46.3dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                      |                |               |                       |  |
|-----------------------------|----------------------|----------------|---------------|-----------------------|--|
| EUT                         | Outdoor Lo           | oraWAN Gateway | Test Mode:    | Channel 46 (5230MHz)- |  |
|                             |                      |                |               | 11n/HT40              |  |
| Mode                        | Keeping Transmitting |                | Input Voltage | DC48V                 |  |
| Temperature                 | 24 deg. C,           |                | Humidity      | 56% RH                |  |
| Test Result:                |                      | Pass           | Detector      | PK                    |  |
| 5250                        | PK (dBµV/m)          | 45.4(PK)       | T ''          | 27 ID /MII            |  |
|                             | EIRP (dBm)           | -49.8          | Limit         | -27dBm/MHz            |  |
| Polarity                    | Vertical             |                |               |                       |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 45.4dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 45.4 - 95.2 = -49.8 dBm$ 

Date: 2022-05-16



| Restricted band Measurement |                         |          |               |                        |  |
|-----------------------------|-------------------------|----------|---------------|------------------------|--|
| EUT                         | Outdoor LoraWAN Gateway |          | Test Mode:    | Channel 151 (5755MHz)- |  |
|                             |                         |          |               | 11n/HT40               |  |
| Mode                        | Keeping Transmitting    |          | Input Voltage | DC48V                  |  |
| Temperature                 | 24 deg. C,              |          | Humidity      | 56% RH                 |  |
| Test Result:                |                         | Pass     | Detector      | PK                     |  |
| 5725                        | PK (dBµV/m)             | 51.8(PK) | T ::4         | 17 ID/MII              |  |
|                             | EIRP (dBm) -43.4        |          | Limit         | -17dBm/MHz             |  |
| Polarity                    | Horizontal              |          |               | 1                      |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 51.8 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=51.8 - 95.2=-43.4dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                         |          |               |                        |  |
|-----------------------------|-------------------------|----------|---------------|------------------------|--|
| EUT                         | Outdoor LoraWAN Gateway |          | Test Mode:    | Channel 151 (5755MHz)- |  |
|                             |                         |          |               | 11n/HT40               |  |
| Mode                        | Keeping Transmitting    |          | Input Voltage | DC48V                  |  |
| Temperature                 | 24 deg. C,              |          | Humidity      | 56% RH                 |  |
| Test Result:                |                         | Pass     |               | PK                     |  |
| 5725                        | PK (dBµV/m)             | 46.1(PK) | T ::4         | 17.10/МП               |  |
|                             | EIRP (dBm)              | -49.1    | Limit         | -17dBm/MHz             |  |
| Polarity                    | Vertical                |          |               |                        |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 46.1dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 46.1 - 95.2 = -49.1 dBm$ 

Date: 2022-05-16



| Restricted band Measurement |                      |               |               |                        |  |
|-----------------------------|----------------------|---------------|---------------|------------------------|--|
| EUT                         | Outdoor Lo           | raWAN Gateway | Test Mode:    | Channel 159 (5795MHz)- |  |
|                             |                      |               |               | 11n/HT40               |  |
| Mode                        | Keeping Transmitting |               | Input Voltage | DC48V                  |  |
| Temperature                 | 24 deg. C,           |               | Humidity      | 56% RH                 |  |
| Test Result:                |                      | Pass          | Detector      | PK                     |  |
| 5850                        | PK (dBµV/m)          | 53.5 (PK)     | T ' '/        | 1710 AUI               |  |
|                             | EIRP (dBm)           | -41.7         | Limit         | -17dBm/MHz             |  |
| Polarity                    | Horizontal           |               |               |                        |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 53.5 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=53.5-95.2=-41.7dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                      |               |               |                        |  |  |
|-----------------------------|----------------------|---------------|---------------|------------------------|--|--|
| EUT                         | Outdoor Lo           | raWAN Gateway | Test Mode:    | Channel 159 (5795MHz)- |  |  |
|                             |                      |               |               | 11n/HT40               |  |  |
| Mode                        | Keeping Transmitting |               | Input Voltage | DC48V                  |  |  |
| Temperature                 | 24 deg. C,           |               | Humidity      | 56% RH                 |  |  |
| Test Result:                |                      | Pass          | Detector      | PK                     |  |  |
| 5850                        | PK (dBµV/m)          | 47.9(PK)      | T :           | 1710 (MI)              |  |  |
|                             | EIRP (dBm)           | -47.3         | Limit         | -17dBm/MHz             |  |  |
| Polarity                    | Vertical             |               |               |                        |  |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 47.9 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2 = 47.9 - 95.2 = -47.3 dBm$ 

Date: 2022-05-16



| Restricted band Measurement |                       |                |               |                      |  |  |  |  |
|-----------------------------|-----------------------|----------------|---------------|----------------------|--|--|--|--|
| EUT                         | Outdoor Lo            | oraWAN Gateway | Test Mode:    | Channel 42           |  |  |  |  |
|                             |                       |                |               | (5210MHz)-11ac/VHT80 |  |  |  |  |
| Mode                        | Keeping               | g Transmitting | Input Voltage | DC48V                |  |  |  |  |
| Temperature                 | 24                    | deg. C,        | Humidity      | 56% RH               |  |  |  |  |
| Test Result:                |                       | Pass           | Detector      | PK                   |  |  |  |  |
| 5150                        | PK (dBμV/m) 47.3 (PK) |                | T in it       | 27.15 (4.11)         |  |  |  |  |
|                             | EIRP (dBm) -47.9      |                | Limit         | -27dBm/MHz           |  |  |  |  |
| Polarity                    | Но                    | orizontal      |               |                      |  |  |  |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 47.3 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=47.3-95.2=-47.9dBm$ 

2. RBW=1MHz, VBW=3MHz

| Restricted band Measurement |                       |                |               |                       |  |  |  |  |
|-----------------------------|-----------------------|----------------|---------------|-----------------------|--|--|--|--|
| EUT                         | Outdoor Lo            | oraWAN Gateway | Test Mode:    | Channel 42 (5210MHz)- |  |  |  |  |
|                             |                       |                |               | 11ac/VHT80            |  |  |  |  |
| Mode                        | Keeping               | g Transmitting | Input Voltage | DC48V                 |  |  |  |  |
| Temperature                 | 24                    | l deg. C,      | Humidity      | 56% RH                |  |  |  |  |
| Test Result:                |                       | Pass           | Detector      | PK                    |  |  |  |  |
| 5150                        | PK (dBμV/m) 45.3 (PK) |                | T             | 27 ID A 41            |  |  |  |  |
|                             | EIRP (dBm) -49.9      |                | Limit         | -27dBm/MHz            |  |  |  |  |
| Polarity                    |                       | Vertical       |               |                       |  |  |  |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 45.3 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=45.3-95.2=-49.9dBm$ 

2. RBW=1MHz, VBW=3MHz

Date: 2022-05-16



| Restricted band Measurement |                  |                       |               |                        |  |  |  |  |
|-----------------------------|------------------|-----------------------|---------------|------------------------|--|--|--|--|
| EUT                         | Outdoor Lo       | oraWAN Gateway        | Test Mode:    | Channel 155 (5775MHz)- |  |  |  |  |
|                             |                  |                       |               | 11ac/VHT80             |  |  |  |  |
| Mode                        | Keeping          | g Transmitting        | Input Voltage | DC48V                  |  |  |  |  |
| Temperature                 | 24               | deg. C,               | Humidity      | 56% RH                 |  |  |  |  |
| Test Result:                |                  | Pass                  | Detector      | PK                     |  |  |  |  |
| 5850                        | PK (dBµV/m)      | PK (dBμV/m) 52.8 (PK) |               | 17.15 A.01             |  |  |  |  |
|                             | EIRP (dBm) -42.4 |                       | Limit         | -17dBm/MHz             |  |  |  |  |
| Polarity                    | Но               | orizontal             |               |                        |  |  |  |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 52.8 dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=52.8-95.2=-42.4 dBm$ 

2. RBW=1MHz, VBW=3MHz

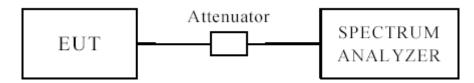
| Restricted band Measurement |                       |                |               |                        |  |  |  |  |
|-----------------------------|-----------------------|----------------|---------------|------------------------|--|--|--|--|
| EUT                         | Outdoor Lo            | oraWAN Gateway | Test Mode:    | Channel 157 (5775MHz)- |  |  |  |  |
|                             |                       |                |               | 11ac/VHT80             |  |  |  |  |
| Mode                        | Keeping               | g Transmitting | Input Voltage | DC48V                  |  |  |  |  |
| Temperature                 | 24                    | deg. C,        | Humidity      | 56% RH                 |  |  |  |  |
| Test Result:                |                       | Pass           | Detector      | PK                     |  |  |  |  |
| 5850                        | PK (dBμV/m) 47.0 (PK) |                | T 1           | 17.15 A.01             |  |  |  |  |
|                             | EIRP (dBm) -48.2      |                | Limit         | -17dBm/MHz             |  |  |  |  |
| Polarity                    | 7                     | Vertical       |               |                        |  |  |  |  |

Remark: 1. According to KDB 789033 D02 General UNII Test Procedures New Rules v01 section G) d) (ii), for measurement above 1000MHz@3m distance, the limit of EIRP is calculated as follows:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$ 

For Example, if  $E[dB\mu V/m] = 47.0dB\mu V/m$ ,

 $EIRP[dBm] = E[dB\mu V/m] - 95.2=47.0-95.2=-48.2dBm$ 


2. RBW=1MHz, VBW=3MHz

Date: 2022-05-16



#### 7.0 Emission Bandwidth

# 7.1 Test Setup



## 7.3 Test Procedure for Emission Bandwidth

- 1. Set RBW = approximately 1% of the emission bandwidth.
- 2. Set VBW> RBW
- 3 Detector = Peak
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

### 7.4 Test Procedure for Minimum Bandwidth for the Band 5725-5850MHz

- 1. Set RBW = 100 kHz.
- 2. Set  $VBW \ge 3 \times RBW$ .
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

## 7.5 Test Procedure for 99% Bandwidth

- 1. Set center frequency to the nominal EUT channel center frequency
- 2. Set span = 1.5 times to 5.0 times OBW
- 3. Set RBW= 1% TO 5% of the OBW
- 4. Set  $VBW \ge 3 \times RBW$
- 5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Other, peak detection and max mode (until trace stabilizes) shall be used.
- 6. Use the 99% power bandwidth function of the instrument

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

Report No.: TW2203419-03E Page 40 of 169

Date: 2022-05-16

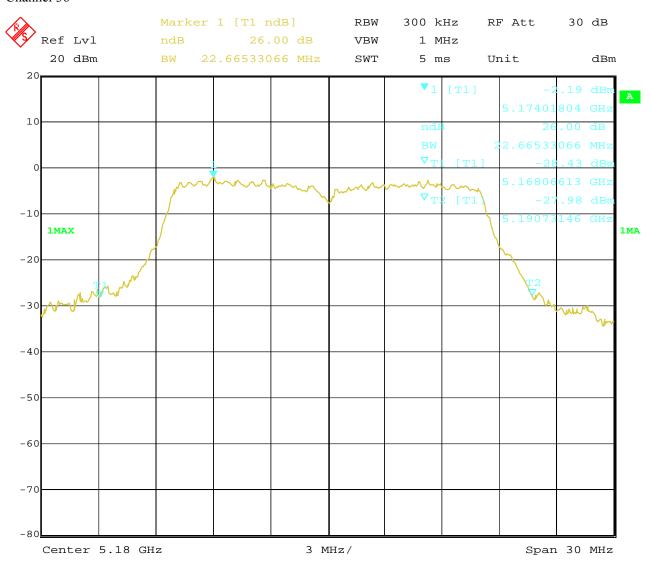


## 7.6 Test Result

| EUT       |         | Outdoor LoraWAN Gateway |                           | Model              | DSGW-010C              |            |  |
|-----------|---------|-------------------------|---------------------------|--------------------|------------------------|------------|--|
| Mode      |         | 802.11a                 |                           | Input Voltage      | DC48V                  |            |  |
| Temperate | ure     |                         | 24 deg. (                 | Ξ,                 | Humidity               | 56% RH     |  |
| Channel   |         | el Frequency<br>(MHz)   | Data Transfer Rate (Mbps) | Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass/ Fail |  |
| 26dB Bar  | ndwidth |                         |                           |                    |                        |            |  |
| 36        |         | 5180                    | 6                         | 22.67              |                        | Pass       |  |
| 40        |         | 5200                    | 6                         | 21.76              |                        | Pass       |  |
| 48        | 5240    |                         | 6                         | 21.76              |                        | Pass       |  |
|           |         |                         |                           |                    |                        |            |  |
| 99% Ban   | dwidth  |                         |                           |                    |                        |            |  |
| 36        |         | 5180                    | 6                         | 17.13              |                        | Pass       |  |
| 40        |         | 5200                    | 6                         | 17.01              |                        | Pass       |  |
| 48        |         | 5240                    | 6                         | 16.95              |                        | Pass       |  |

Page 41 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



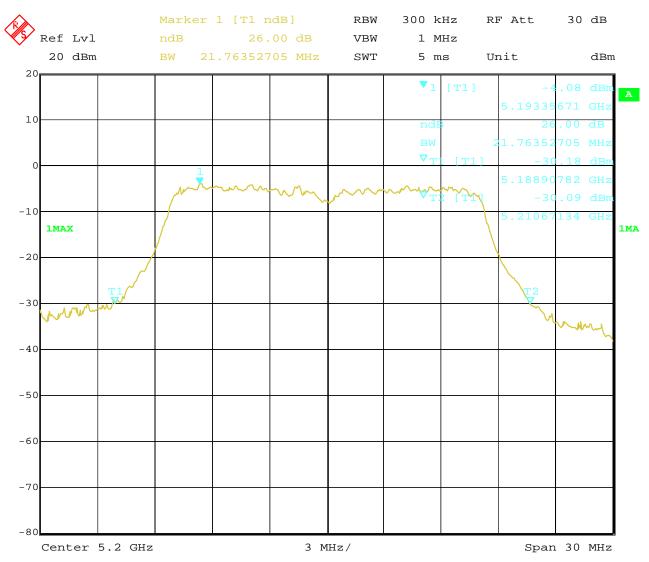
Test Figure:

#### 26dB Bandwidth

### Channel 36



24.APR.2022 14:32:38 Date:


Page 42 of 169

Report No.: TW2203419-03E

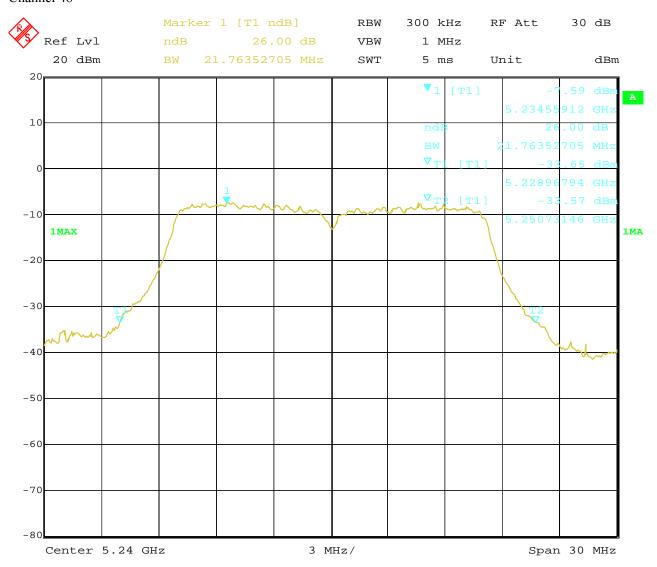
Date: 2022-05-16



#### Channel 40



24.APR.2022 14:38:45 Date:


Page 43 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



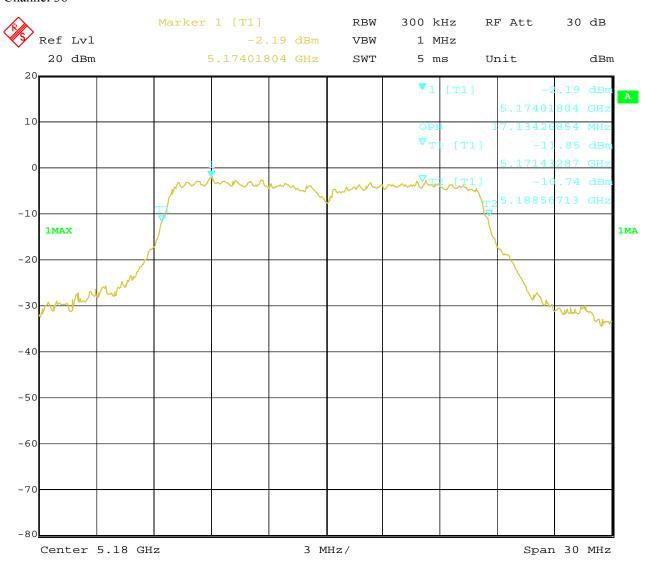
#### Channel 48



Date: 24.APR.2022 14:43:30

Page 44 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



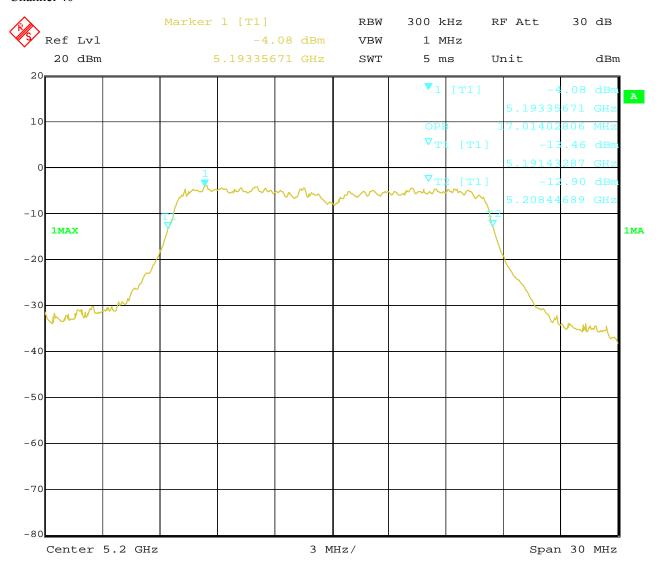
Test Figure:

### 99% Bandwidth

### Channel 36



24.APR.2022 14:32:47 Date:


Page 45 of 169

Report No.: TW2203419-03E

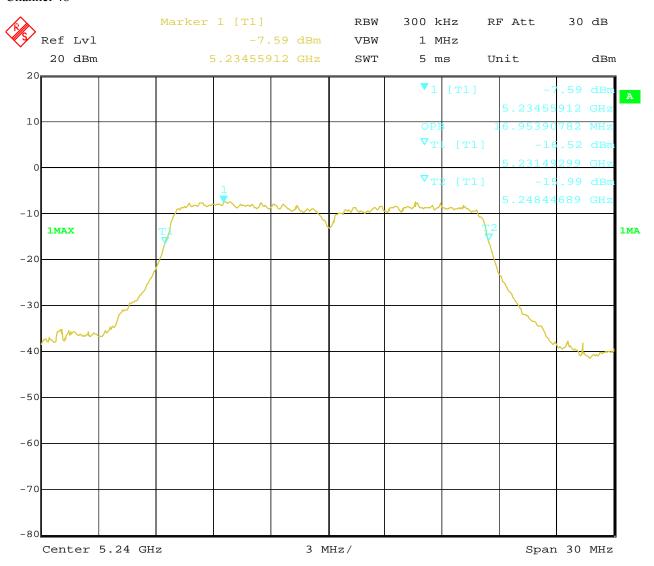
Date: 2022-05-16



#### Channel 40



24.APR.2022 14:38:30 Date:


Page 46 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



#### Channel 48



Date: 24.APR.2022 14:43:44

Page 47 of 169

Report No.: TW2203419-03E

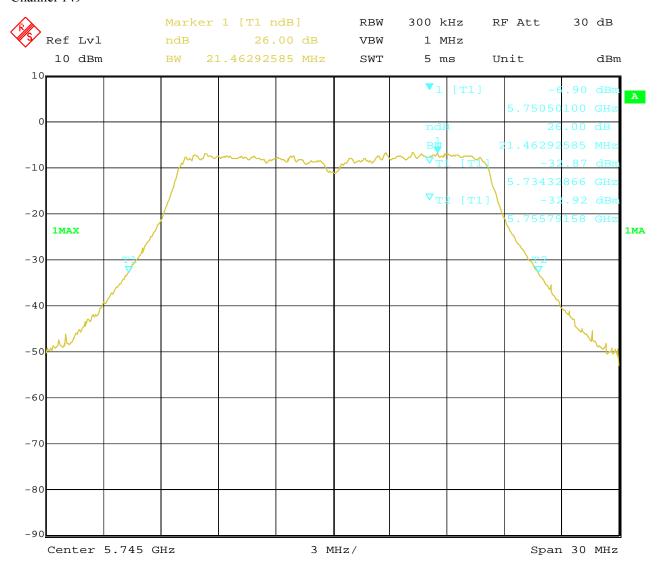
Date: 2022-05-16



| EUT       |         | Outdoo                | or LoraWAi                         | N Gateway          | Model                  |         | DSGW-010C  |
|-----------|---------|-----------------------|------------------------------------|--------------------|------------------------|---------|------------|
| Mode      |         |                       | 802.11a                            |                    | Input Voltage          |         | DC48V      |
| Temperatu | ure     |                       | 24 deg. (                          | Ξ,                 | Humidity               |         | 56% RH     |
| Channel   |         | el Frequency<br>(MHz) | Data<br>Transfer<br>Rate<br>(Mbps) | Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) |         | Pass/ Fail |
| 26dB Bar  | ndwidth |                       |                                    |                    |                        |         |            |
| 149       |         | 5745                  | 6                                  | 21.46              |                        |         | Pass       |
| 153       |         | 5765                  | 6                                  | 21.46              |                        | <b></b> | Pass       |
| 161       |         | 5825                  | 6                                  | 21.28              |                        |         | Pass       |
|           |         |                       |                                    |                    |                        |         |            |
| 6dB Band  | dwidth  |                       |                                    |                    |                        |         |            |
| 149       |         | 5745                  | 6                                  | 16.35              | (                      | ).5     | Pass       |
| 153       |         | 5765                  | 6                                  | 16.37              | (                      | ).5     | Pass       |
| 161       |         | 5825                  | 6                                  | 16.35 0.5          |                        | ).5     | Pass       |
|           |         |                       |                                    |                    |                        |         |            |
| 99% Ban   | dwidth  |                       |                                    |                    |                        |         |            |
| 149       |         | 5745                  | 6                                  | 16.95              |                        |         | Pass       |
| 153       |         | 5765                  | 6                                  | 16.95              |                        |         | Pass       |
| 161       |         | 5825                  | 6                                  | 16.95              |                        |         | Pass       |

Page 48 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



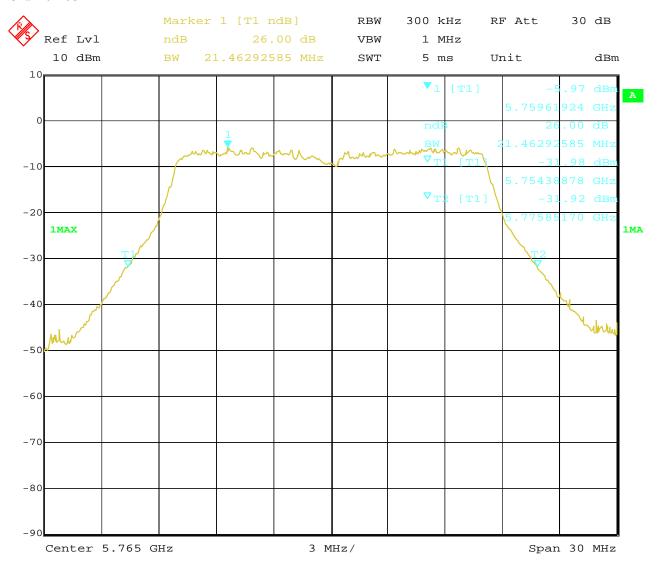
Test Figure:

#### 26dB Bandwidth

### Channel 149



24.APR.2022 20:03:36 Date:


Page 49 of 169

Report No.: TW2203419-03E

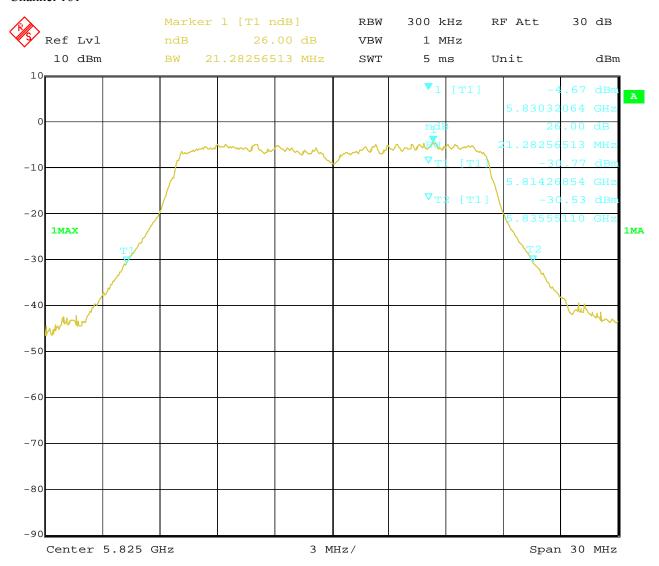
Date: 2022-05-16



### Channel 153



Date: 24.APR.2022 20:00:11


Page 50 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



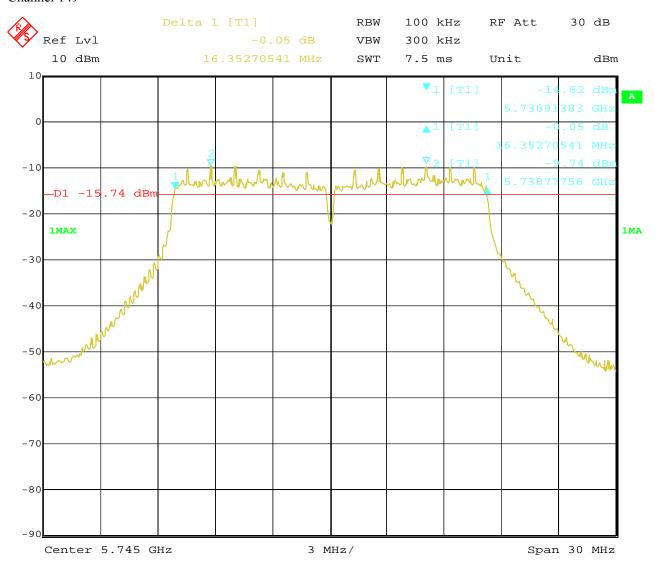
### Channel 161



Date: 24.APR.2022 20:06:20

Page 51 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



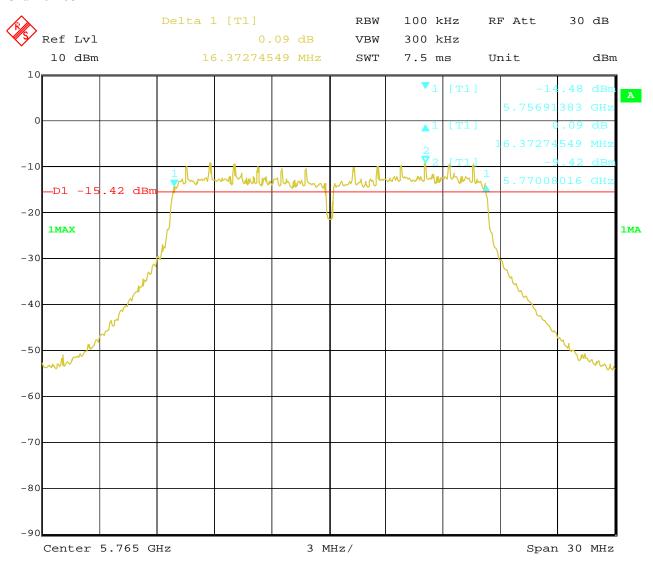
Test Figure:

#### 6dB Bandwidth

### Channel 149



24.APR.2022 18:07:56 Date:


Page 52 of 169

Report No.: TW2203419-03E

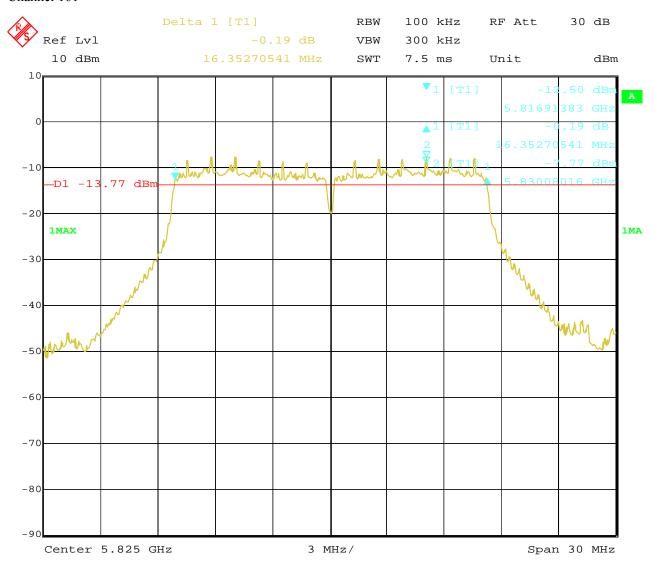
Date: 2022-05-16



### Channel 153



Date: 24.APR.2022 18:11:41


Page 53 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



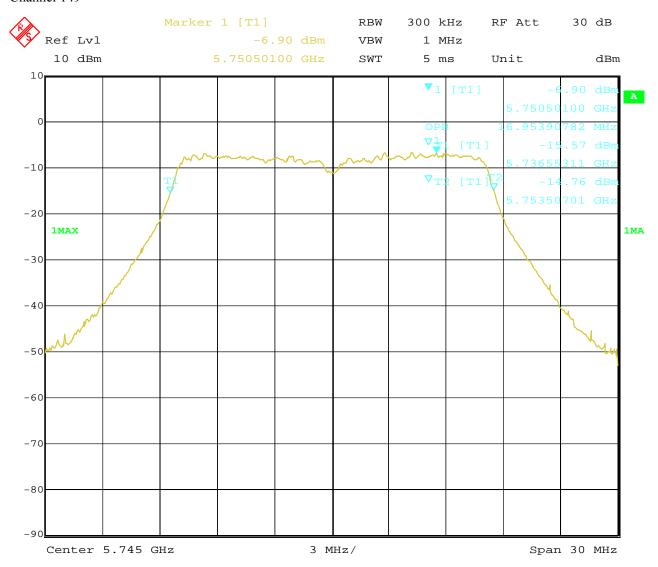
### Channel 161



Date: 24.APR.2022 18:15:46

Page 54 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



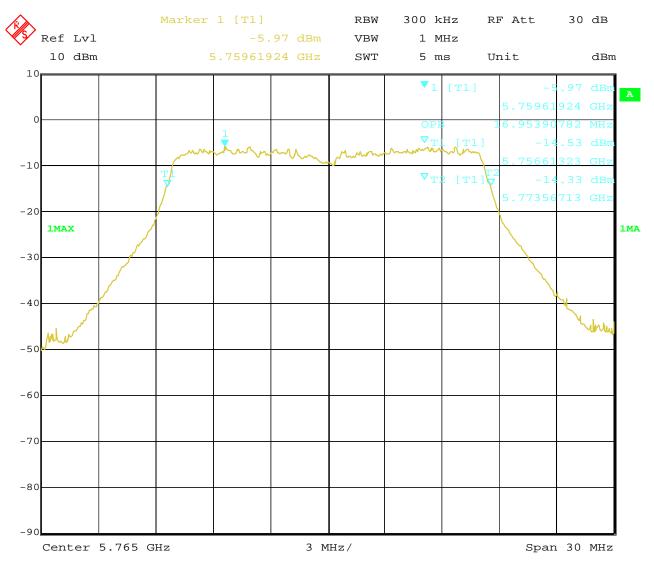
Test Figure:

### 99% Bandwidth

### Channel 149



24.APR.2022 20:03:48 Date:


Page 55 of 169

Report No.: TW2203419-03E

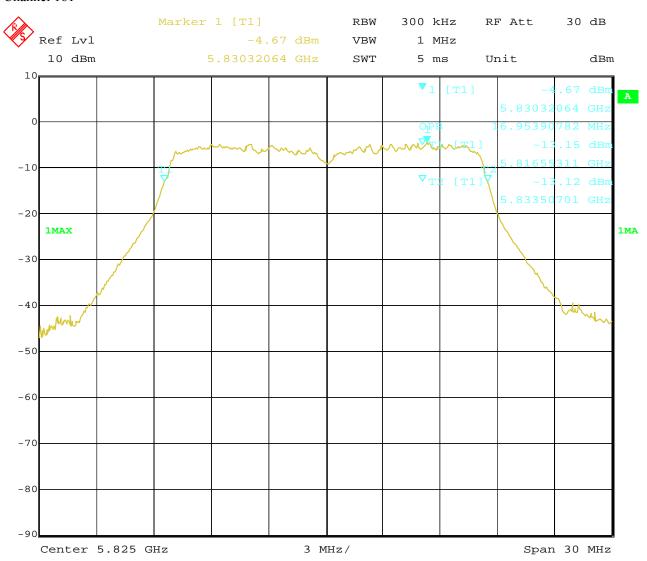
Date: 2022-05-16



### Channel 153



Date: 24.APR.2022 19:59:58


Page 56 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



### Channel 161

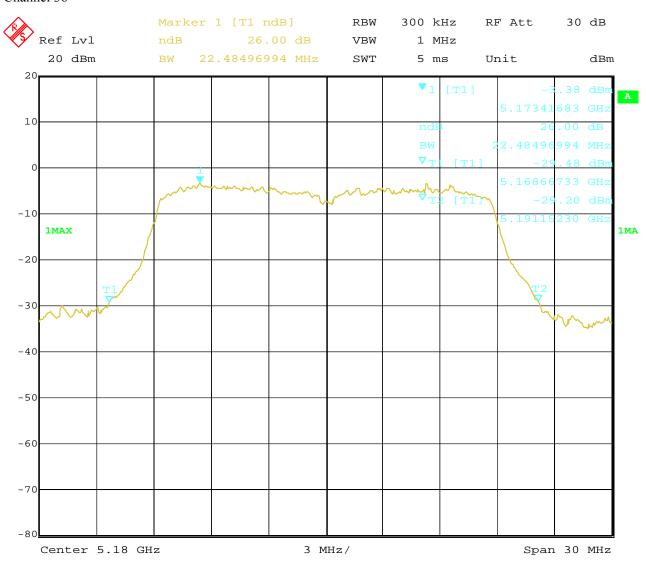


Date: 24.APR.2022 20:06:05 Report No.: TW2203419-03E Page 57 of 169

Date: 2022-05-16



| EUT       |         | Outdoor LoraWAN Gateway |                           | N Gateway          | Model                  | DSGW-010C  |
|-----------|---------|-------------------------|---------------------------|--------------------|------------------------|------------|
| Mode      |         | 802.11n HT20            |                           | Input Voltage      | DC48V                  |            |
| Temperati | ure     |                         | 24 deg.                   | C,                 | Humidity               | 56% RH     |
| Channel   |         | el Frequency<br>(MHz)   | Data Transfer Rate (Mbps) | Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass/ Fail |
| 26dB Bar  | ndwidth |                         |                           |                    |                        |            |
| 36        |         | 5180                    | mcs0                      | 22.48              |                        | Pass       |
| 40        |         | 5200                    | mcs0                      | 22.48              |                        | Pass       |
| 48        |         | 5240                    | mcs0                      | 22.18              |                        | Pass       |
|           |         |                         | ,                         |                    | •                      |            |
| 99% Ban   | dwidth  |                         |                           |                    |                        |            |
| 36        |         | 5180                    | mcs0                      | 18.04              |                        | Pass       |
| 40        |         | 5200                    | mcs0                      | 18.04              |                        | Pass       |
| 48        |         | 5240                    | mcs0                      | 18.04              |                        | Pass       |


Date: 2022-05-16



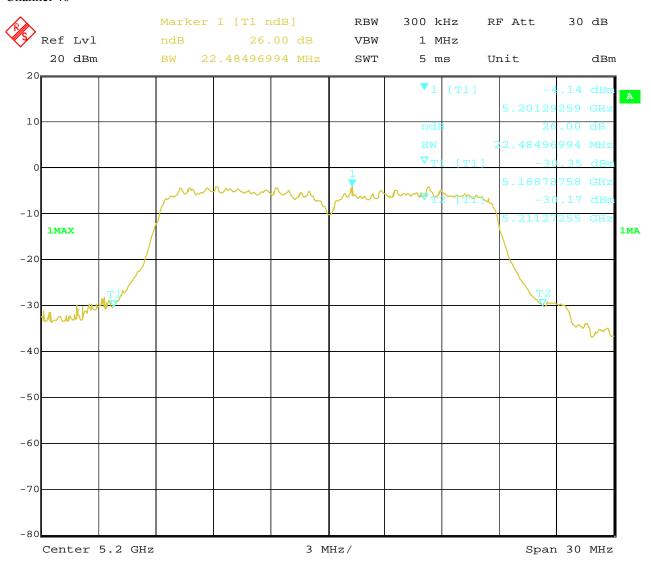
Test Configure

#### 26dB Bandwidth

### Channel 36



24.APR.2022 14:57:58 Date:


Page 59 of 169

Report No.: TW2203419-03E

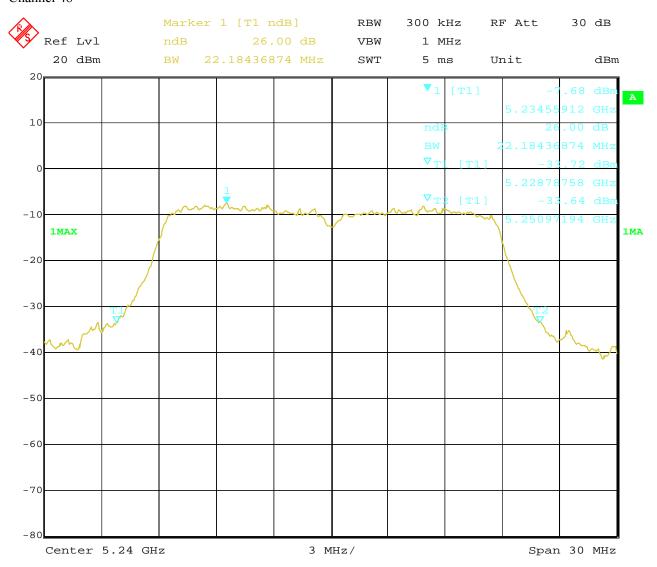
Date: 2022-05-16



#### Channel 40



24.APR.2022 14:53:36 Date:


Page 60 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



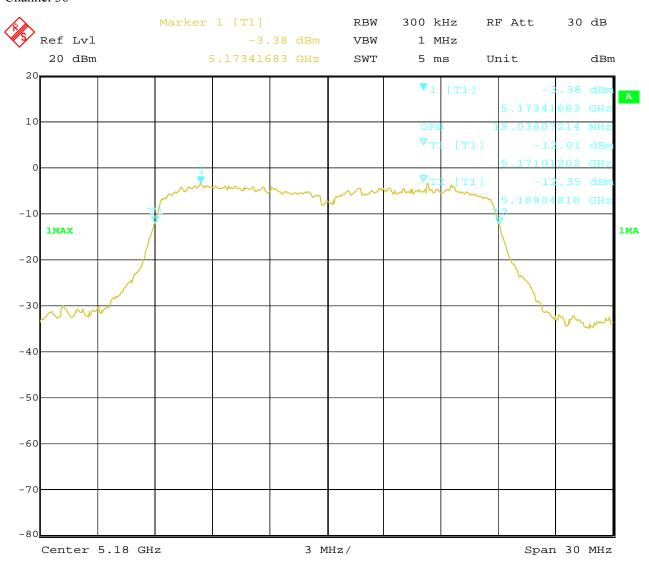
#### Channel 48



Date: 24.APR.2022 14:46:54

Page 61 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



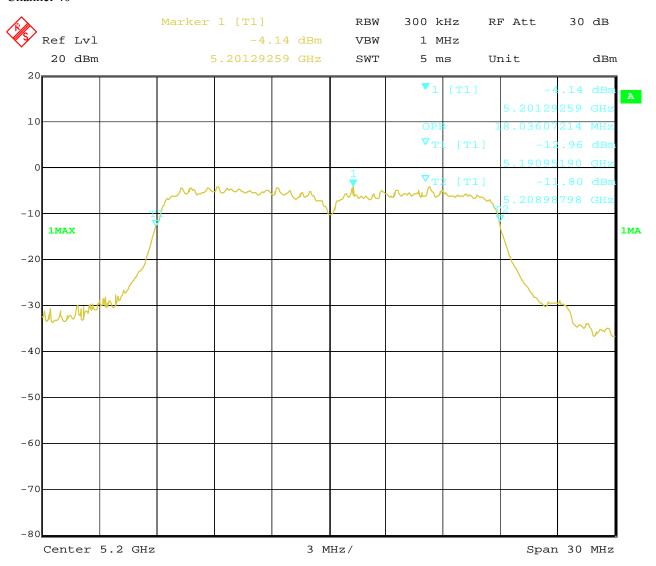
Test Configure

### 99% Bandwidth

### Channel 36



24.APR.2022 14:57:45 Date:


Page 62 of 169

Report No.: TW2203419-03E

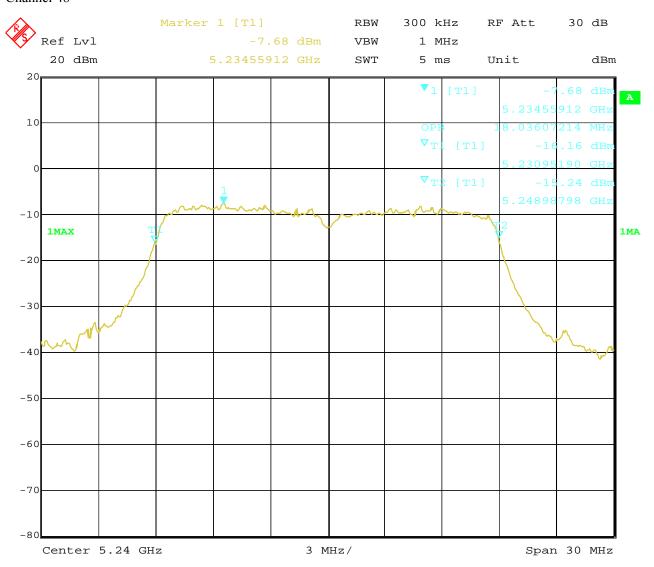
Date: 2022-05-16



#### Channel 40



24.APR.2022 14:56:17 Date:


Page 63 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



#### Channel 48



Date: 24.APR.2022 14:46:09

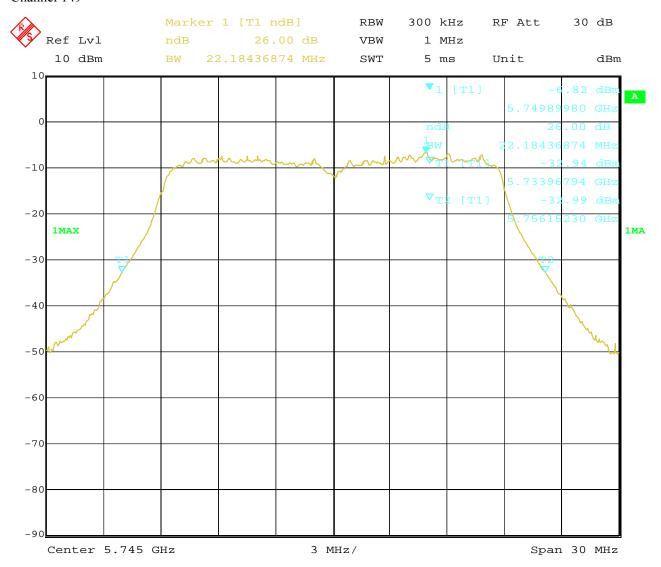
Page 64 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



| EUT       |                         | Outdoor LoraWAN Gateway |                           | N Gateway          | Model                  | DSGW-010C  |
|-----------|-------------------------|-------------------------|---------------------------|--------------------|------------------------|------------|
| Mode      | de 802.                 |                         | 802.11n H                 | IT20               | Input Voltage          | DC48V      |
| Temperati | ure                     |                         | 24 deg.                   | C,                 | Humidity               | 56% RH     |
| Channel   | Channel Frequency (MHz) |                         | Data Transfer Rate (Mbps) | Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass/ Fail |
| 26dB Bar  | ndwidth                 |                         |                           |                    |                        |            |
| 149       |                         | 5745                    | 6                         | 22.18              |                        | Pass       |
| 153       |                         | 5765                    | 6                         | 22.18              |                        | Pass       |
| 161       |                         | 5825                    | 6                         | 21.76              |                        | Pass       |
|           |                         |                         |                           |                    |                        |            |
| 6dB Band  | dwidth                  |                         |                           |                    |                        |            |
| 149       |                         | 5745                    | 6                         | 17.45              | 0.5                    | Pass       |
| 153       |                         | 5765                    | 6                         | 17.56              | 0.5                    | Pass       |
| 161       |                         | 5825                    | 6                         | 17.37              | 0.5                    | Pass       |
|           |                         |                         |                           |                    |                        |            |
| 99% Ban   | dwidth                  |                         |                           |                    |                        |            |
| 149       |                         | 5745                    | 6                         | 17.98              |                        | Pass       |
| 153       |                         | 5765                    | 6                         | 17.98              |                        | Pass       |
| 161       |                         | 5825                    | 6                         | 17.92              |                        | Pass       |


Date: 2022-05-16



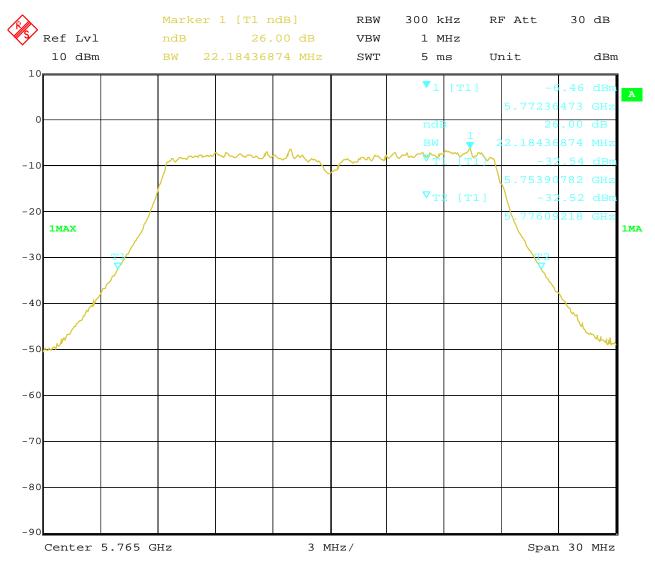
Test Configure

#### 26dB Bandwidth

### Channel 149



24.APR.2022 19:49:13 Date:


Page 66 of 169

Report No.: TW2203419-03E

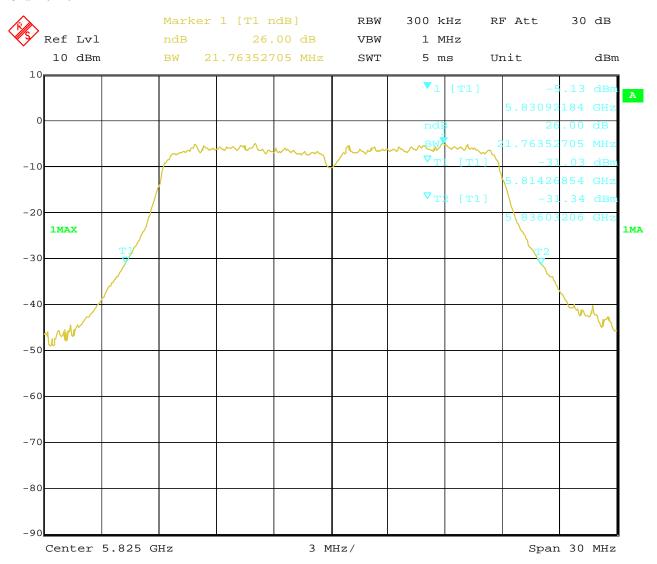
Date: 2022-05-16



### Channel 153



Date: 24.APR.2022 19:52:55


Page 67 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



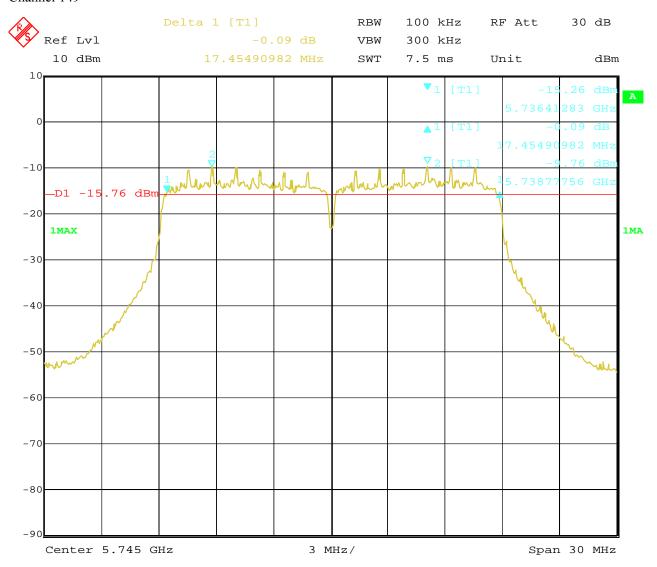
### Channel 161



Date: 24.APR.2022 19:54:10

Page 68 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



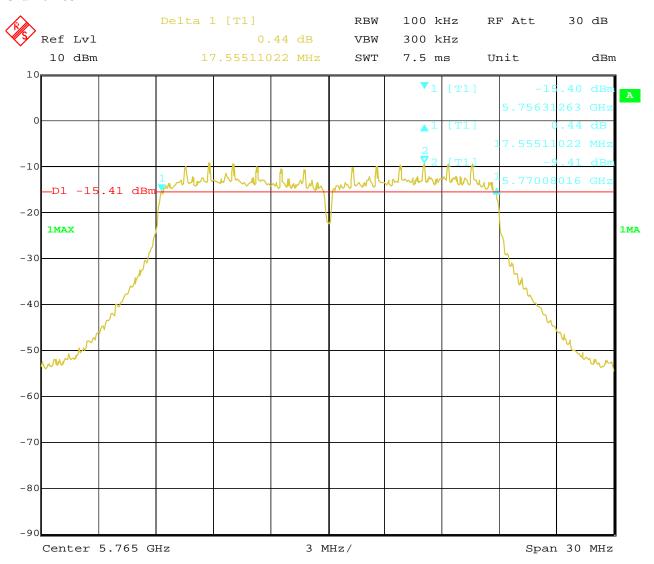
Test Configure

#### 6dB Bandwidth

### Channel 149



24.APR.2022 18:26:51 Date:


Page 69 of 169

Report No.: TW2203419-03E

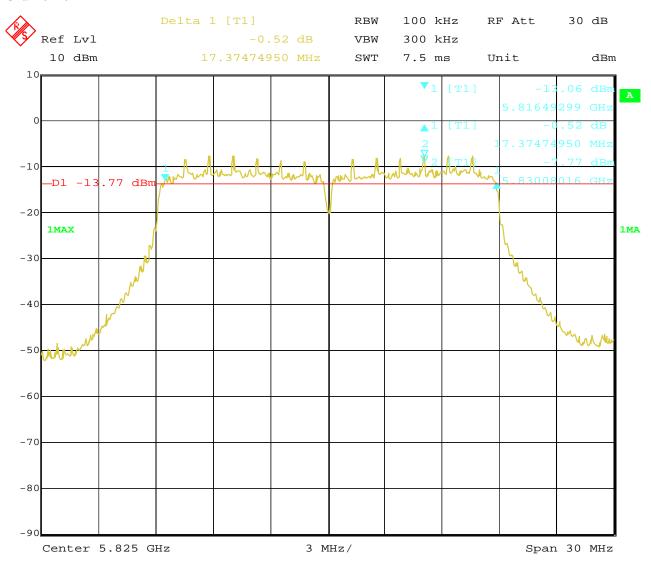
Date: 2022-05-16



### Channel 153



Date: 24.APR.2022 18:23:18


Page 70 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



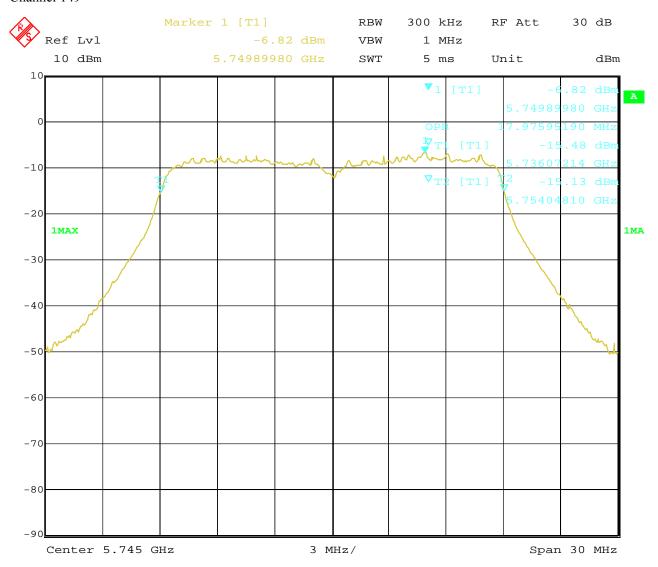
### Channel 161



Date: 24.APR.2022 18:18:51

Page 71 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



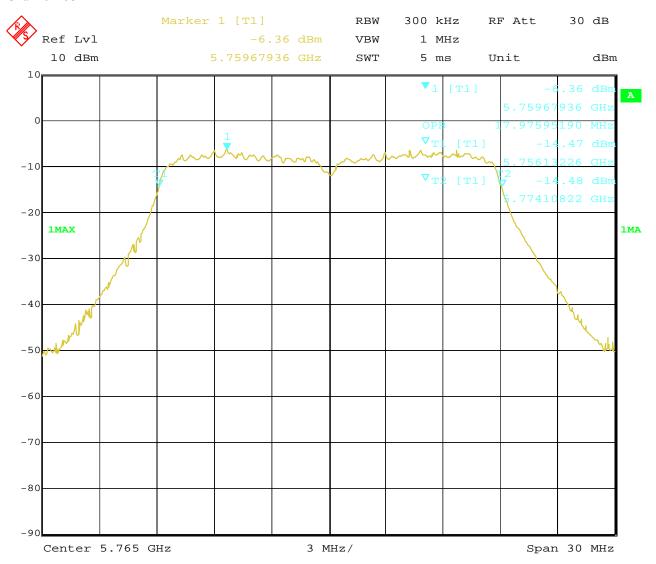
Test Configure

### 99% Bandwidth

### Channel 149



24.APR.2022 19:48:44 Date:


Page 72 of 169

Report No.: TW2203419-03E

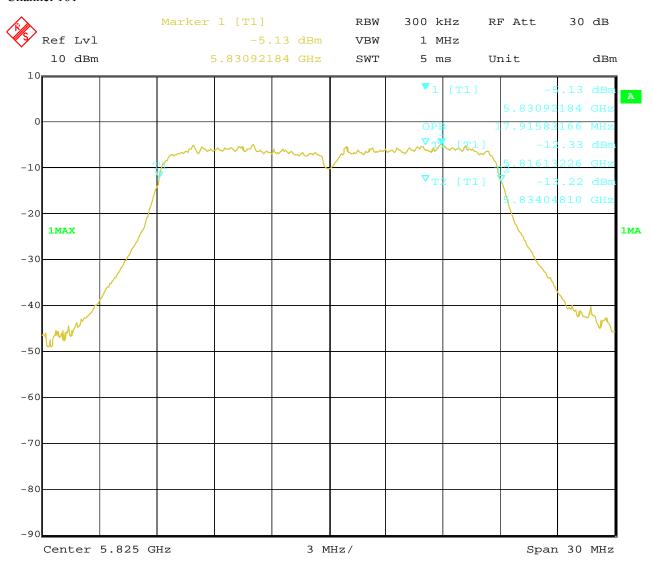
Date: 2022-05-16



### Channel 153



Date: 24.APR.2022 19:56:11


Page 73 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



# Channel 161



Date: 24.APR.2022 19:54:23 Report No.: TW2203419-03E Page 74 of 169

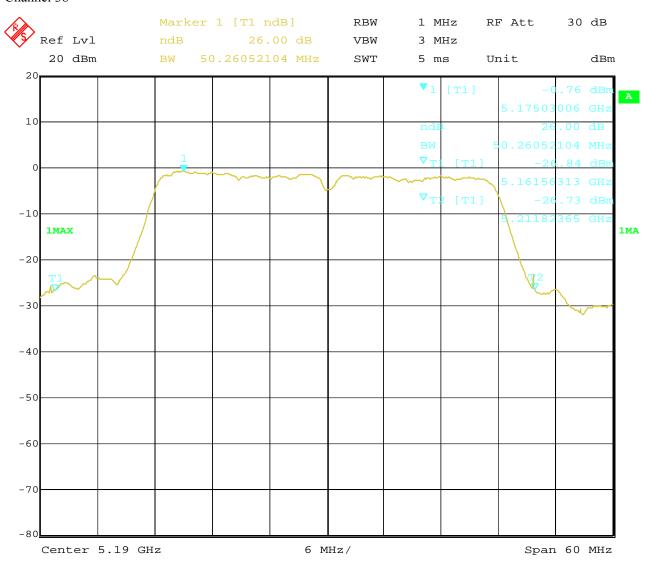
Date: 2022-05-16



| EUT            |                            | Outdoor LoraWAN Gateway |                           |                    | Model                  | DSGW-010C  |  |  |
|----------------|----------------------------|-------------------------|---------------------------|--------------------|------------------------|------------|--|--|
| Mode           |                            | 802.11n HT40            |                           |                    | Input Voltage          | DC48V      |  |  |
| Temperature    |                            | 24 deg. C,              |                           |                    | Humidity               | 56% RH     |  |  |
| Channel        | Channel Frequency<br>(MHz) |                         | Data Transfer Rate (Mbps) | Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass/ Fail |  |  |
| 26dB Bandwidth |                            |                         |                           |                    |                        |            |  |  |
| 38             | 5190                       |                         | mcs0                      | 50.26              |                        | Pass       |  |  |
| 46             | 5230                       |                         | mcs0                      | 44.73              |                        | Pass       |  |  |
|                |                            |                         |                           |                    |                        |            |  |  |
| 99% Bandwidth  |                            |                         |                           |                    |                        |            |  |  |
| 38             | 5190                       |                         | mcs0                      | 37.03              |                        | Pass       |  |  |
| 46             |                            | 5230                    | mcs0                      | 37.15              |                        | Pass       |  |  |

Page 75 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



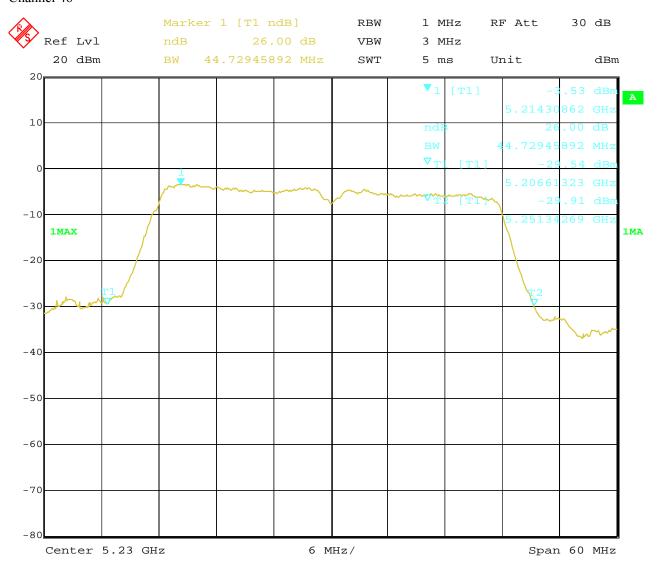
Test Configure

## 26dB Bandwidth

# Channel 38



24.APR.2022 15:23:00 Date:


Page 76 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



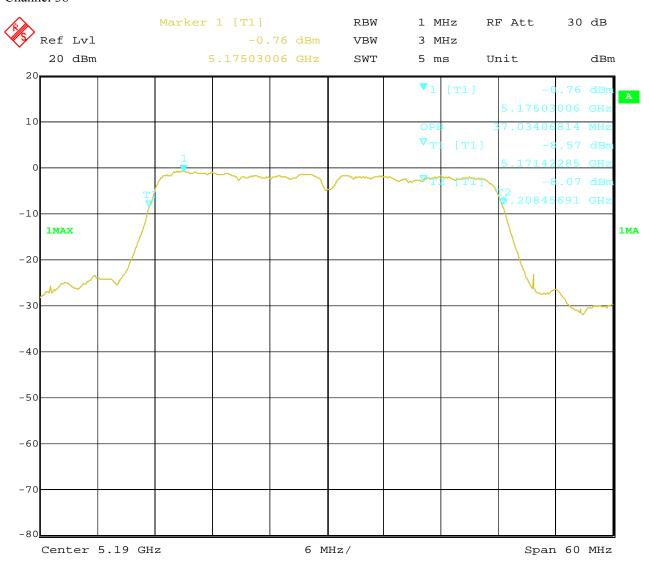
## Channel 46



Date: 24.APR.2022 15:28:08

Page 77 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



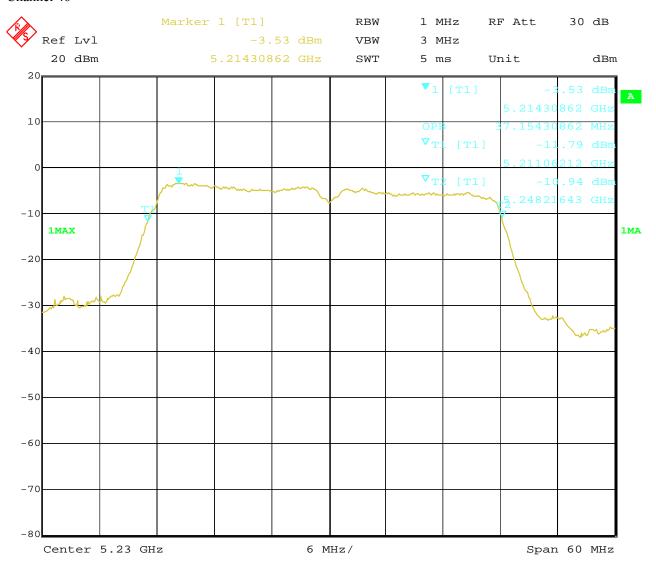
Test Configure

# 99% Bandwidth

# Channel 38



24.APR.2022 15:22:28 Date:


Page 78 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



## Channel 46



Date: 24.APR.2022 15:28:20 Report No.: TW2203419-03E Page 79 of 169

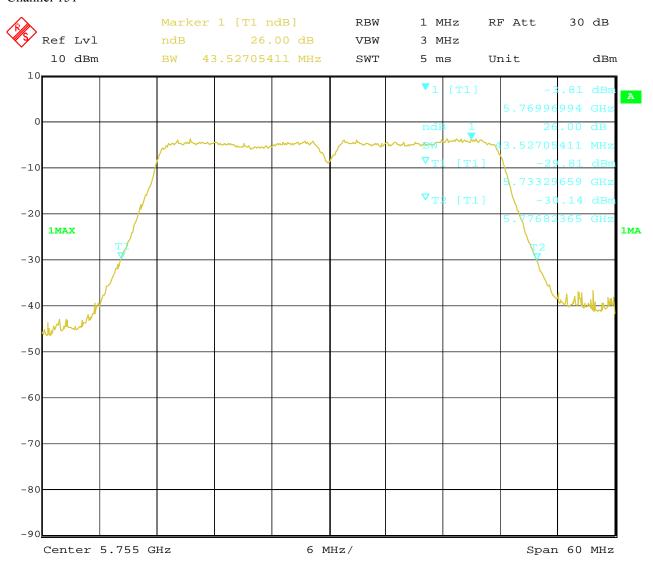
Date: 2022-05-16



| EUT           | EUT O                      |              | Outdoor LoraWAN Gateway   |                    | Model                  | DSGW-010C  |  |  |
|---------------|----------------------------|--------------|---------------------------|--------------------|------------------------|------------|--|--|
| Mode          |                            | 802.11n HT40 |                           |                    | Input Voltage          | DC48V      |  |  |
| Temperature   |                            |              | 24 deg. C,                |                    |                        | 56% RH     |  |  |
| Channel       | Channel Frequency<br>(MHz) |              | Data Transfer Rate (Mbps) | Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass/ Fail |  |  |
| 26dB Bar      | ndwidth                    |              |                           |                    |                        |            |  |  |
| 151           | 5755                       |              | mcs0                      | 43.53              |                        | Pass       |  |  |
| 159           | 5795                       |              | mcs0                      | 43.53              |                        | Pass       |  |  |
|               |                            |              |                           |                    |                        |            |  |  |
| 6dB Band      | dwidth                     |              |                           |                    |                        |            |  |  |
| 151           | 5755                       |              | mcs0                      | 35.75              | 0.5                    | Pass       |  |  |
| 159           | 5795                       |              | mcs0                      | 35.99              | 0.5                    | Pass       |  |  |
|               |                            |              |                           |                    |                        |            |  |  |
| 99% Bandwidth |                            |              |                           |                    |                        |            |  |  |
| 151           | 5755                       |              | mcs0                      | 36.79              |                        | Pass       |  |  |
| 159           | 5795                       |              | mcs0                      | 36.79              |                        | Pass       |  |  |

Page 80 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



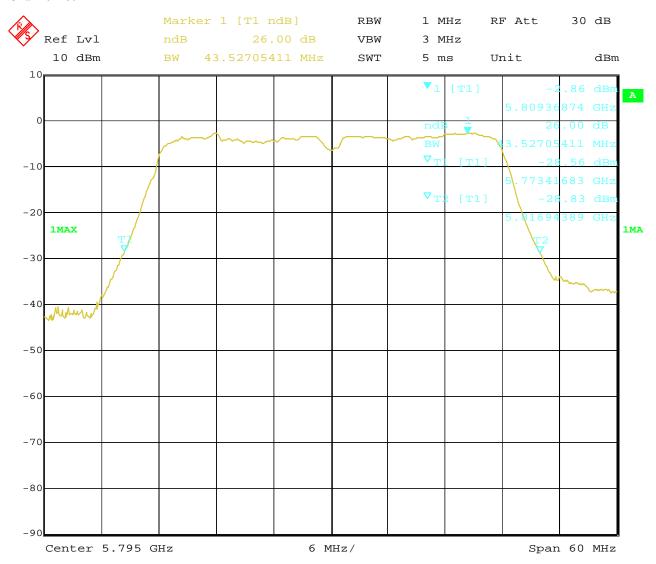
Test Configure

## 26dB Bandwidth

# Channel 151



24.APR.2022 19:21:41 Date:


Page 81 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



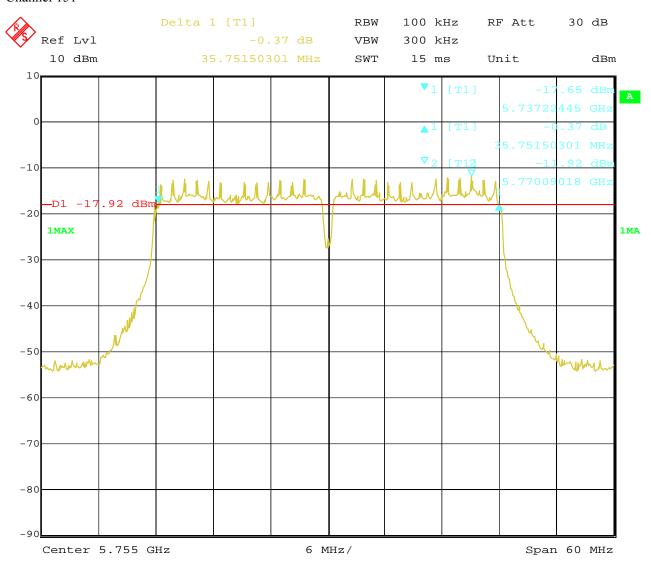
# Channel 159



Date: 24.APR.2022 19:25:26

Page 82 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



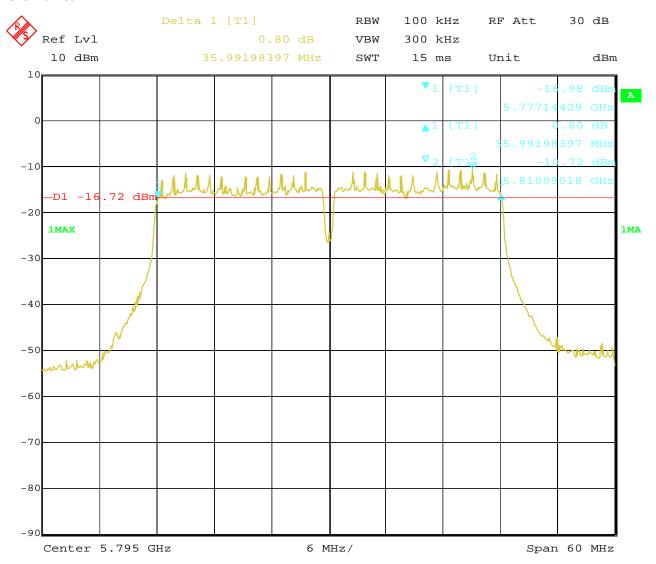
Test Configure

## 6dB Bandwidth

# Channel 151



24.APR.2022 18:53:28 Date:


Page 83 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



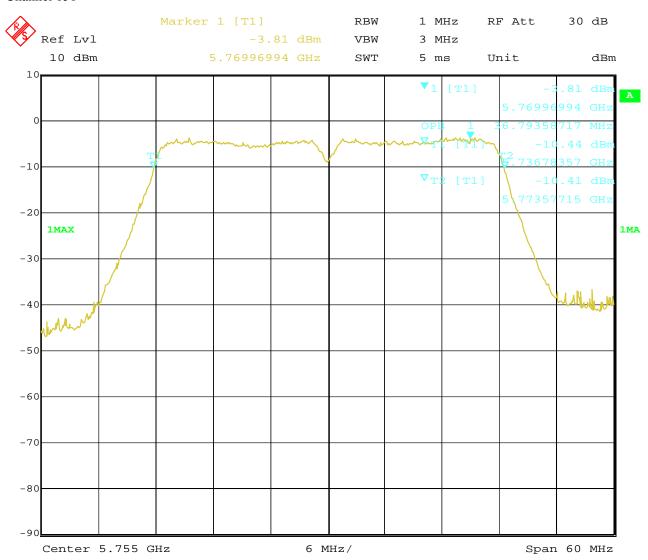
# Channel 159



Date: 24.APR.2022 18:49:58

Page 84 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



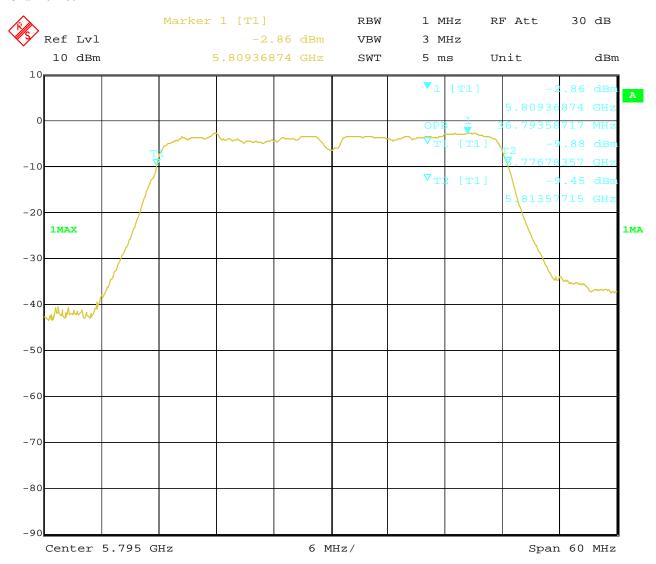
Test Configure

# 99% Bandwidth

# Channel 151



24.APR.2022 19:21:17 Date:


Page 85 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



# Channel 159



Date: 24.APR.2022 19:25:43 Report No.: TW2203419-03E Page 86 of 169

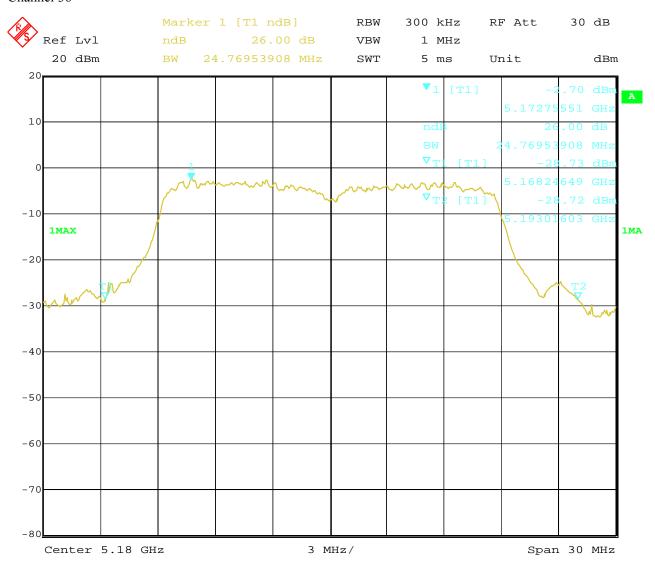
Date: 2022-05-16



| EUT         |                         | Outdoor LoraWAN Gateway |                           |                    | Model                  | DSGW-010C  |  |  |
|-------------|-------------------------|-------------------------|---------------------------|--------------------|------------------------|------------|--|--|
| Mode        |                         | 802.11ac VHT20          |                           |                    | Input Voltage          | DC48V      |  |  |
| Temperature |                         | 24 deg. C,              |                           |                    | Humidity               | 56% RH     |  |  |
| Channel     | Channel Frequency (MHz) |                         | Data Transfer Rate (Mbps) | Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass/ Fail |  |  |
| 26dB Bar    | ndwidth                 |                         |                           |                    |                        |            |  |  |
| 36          | 5180                    |                         | mcs0                      | 24.77              |                        | Pass       |  |  |
| 40          | 5200                    |                         | mcs0                      | 23.27              |                        | Pass       |  |  |
| 48          | 5240                    |                         | mcs0                      | 22.18              |                        | Pass       |  |  |
|             |                         |                         |                           |                    |                        |            |  |  |
| 99% Ban     | dwidth                  |                         |                           |                    |                        |            |  |  |
| 36          | 5180                    |                         | mcs0                      | 18.10              |                        | Pass       |  |  |
| 40          |                         | 5200                    | mcs0                      | 18.10              |                        | Pass       |  |  |
| 48          |                         | 5240                    | mcs0                      | 18.04              |                        | Pass       |  |  |

Page 87 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



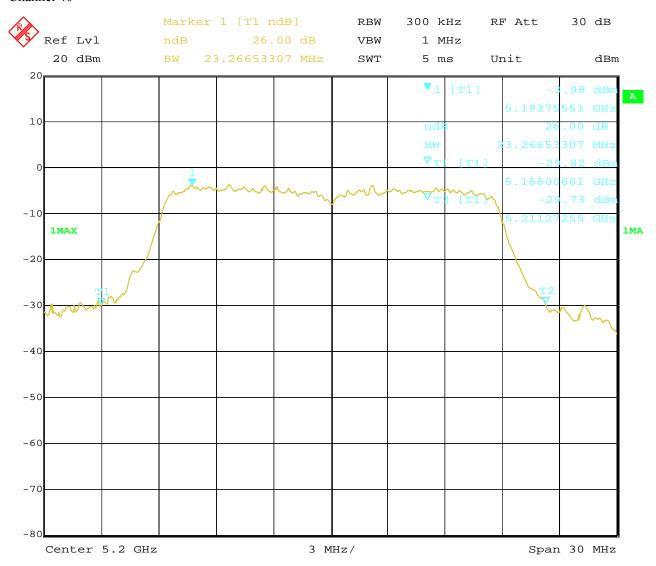
Test Configure

## 26dB Bandwidth

# Channel 36



24.APR.2022 15:03:45 Date:


Page 88 of 169

Report No.: TW2203419-03E

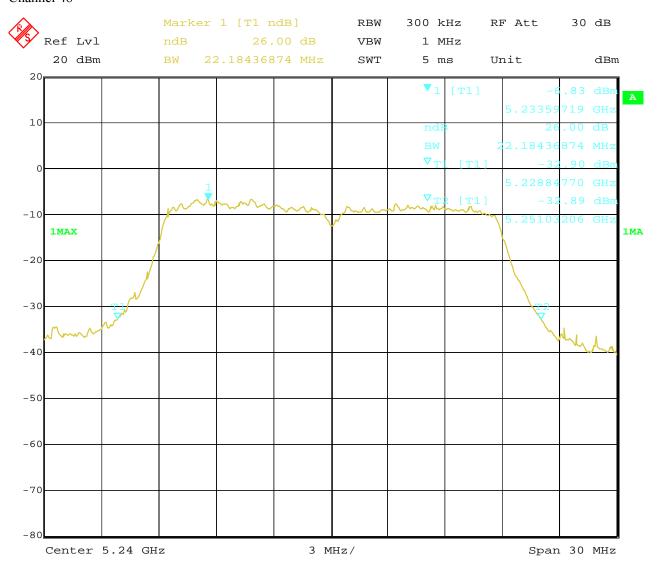
Date: 2022-05-16



## Channel 40



24.APR.2022 15:07:29 Date:


Page 89 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



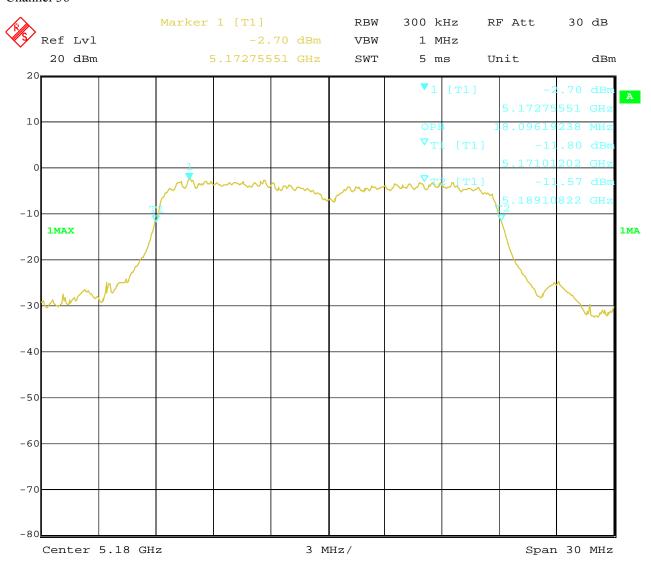
## Channel 48



Date: 24.APR.2022 15:11:48

Page 90 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



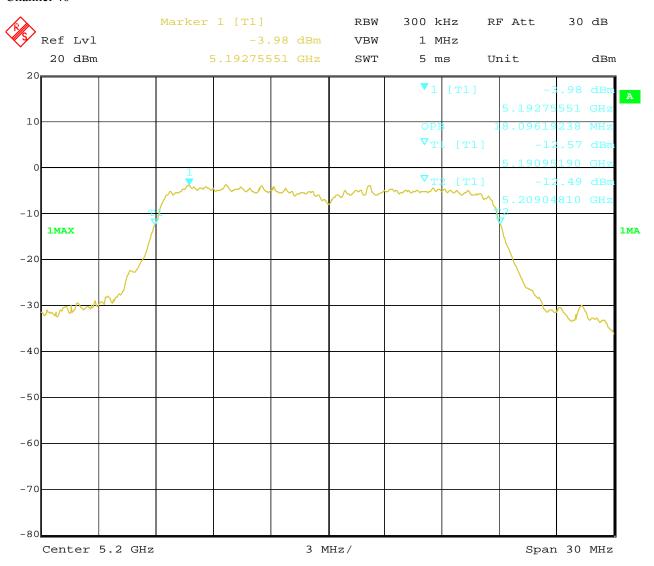
Test Configure

# 99% Bandwidth

# Channel 36



24.APR.2022 15:04:09 Date:


Page 91 of 169

Report No.: TW2203419-03E

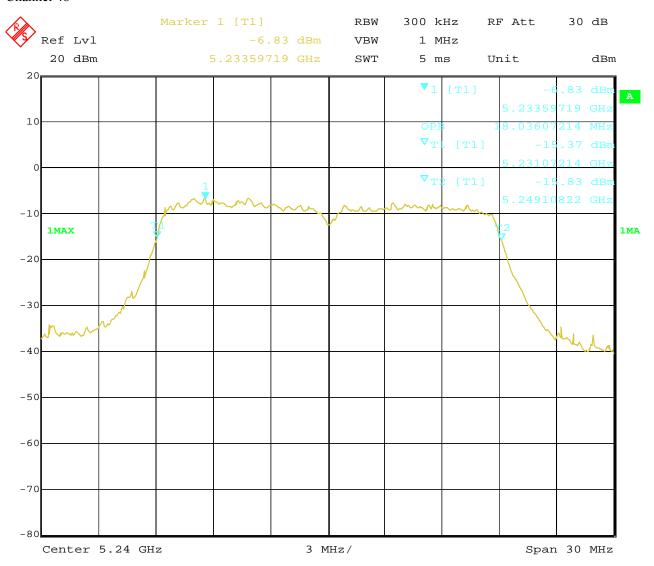
Date: 2022-05-16



## Channel 40



24.APR.2022 15:07:18 Date:


Page 92 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



## Channel 48



Date: 24.APR.2022 15:12:23

Page 93 of 169

Report No.: TW2203419-03E

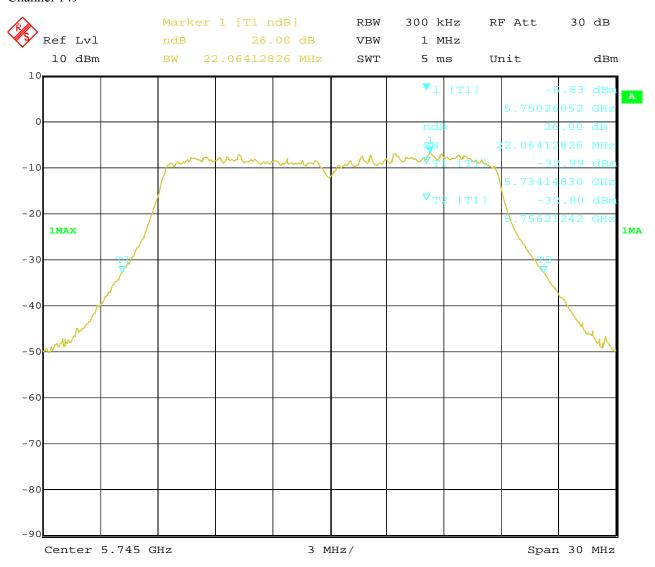
Date: 2022-05-16



| EUT         |                         | Outdo | or LoraWA                          | N Gateway          | Model                  | DSGW-010C  |
|-------------|-------------------------|-------|------------------------------------|--------------------|------------------------|------------|
| Mode        |                         |       | 802.11ac V                         | HT20               | Input Voltage          | DC48V      |
| Temperature |                         |       | 24 deg.                            | C,                 | Humidity               | 56% RH     |
| Channel     | Channel Frequency (MHz) |       | Data<br>Transfer<br>Rate<br>(Mbps) | Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass/ Fail |
| 26dB Bar    | ndwidth                 |       |                                    |                    |                        |            |
| 149         |                         | 5745  | 6                                  | 22.06              |                        | Pass       |
| 153         |                         | 5765  | 6                                  | 21.94              |                        | Pass       |
| 161         |                         | 5825  | 6                                  | 21.70              |                        | Pass       |
|             |                         |       |                                    |                    |                        |            |
| 6dB Band    | dwidth                  |       |                                    |                    |                        |            |
| 149         | 5745                    |       | 6                                  | 17.45              | 0.5                    | Pass       |
| 153         | 5765                    |       | 6                                  | 17.58              | 0.5                    | Pass       |
| 161         | 5825                    |       | 6                                  | 17.43              | 0.5                    | Pass       |
|             |                         |       |                                    |                    |                        |            |
| 99% Ban     | dwidth                  |       |                                    |                    |                        |            |
| 149         | 5745                    |       | 6                                  | 17.92              |                        | Pass       |
| 153         | 5765                    |       | 6                                  | 18.04              |                        | Pass       |
| 161         | 5825                    |       | 6                                  | 17.92              |                        | Pass       |

Page 94 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



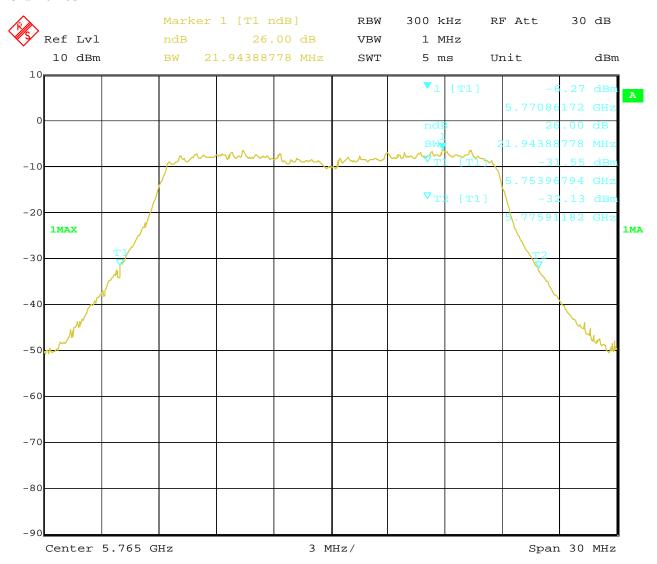
Test Configure

## 26dB Bandwidth

# Channel 149



24.APR.2022 20:12:24 Date:


Page 95 of 169

Report No.: TW2203419-03E

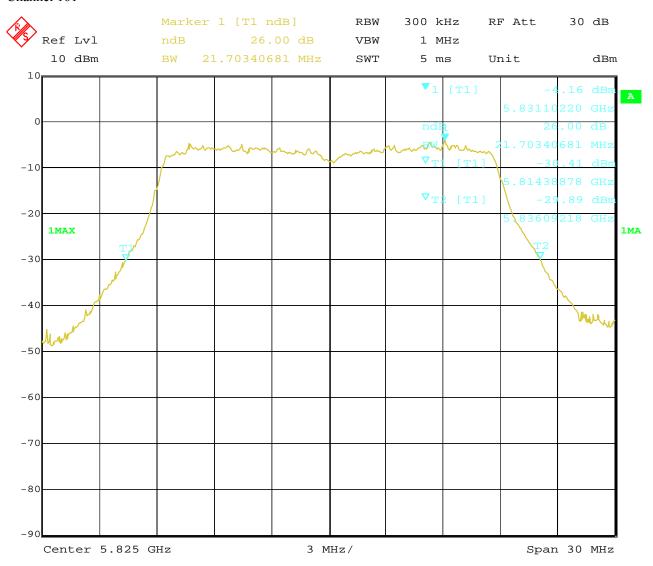
Date: 2022-05-16



# Channel 153



Date: 24.APR.2022 20:10:04


Page 96 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



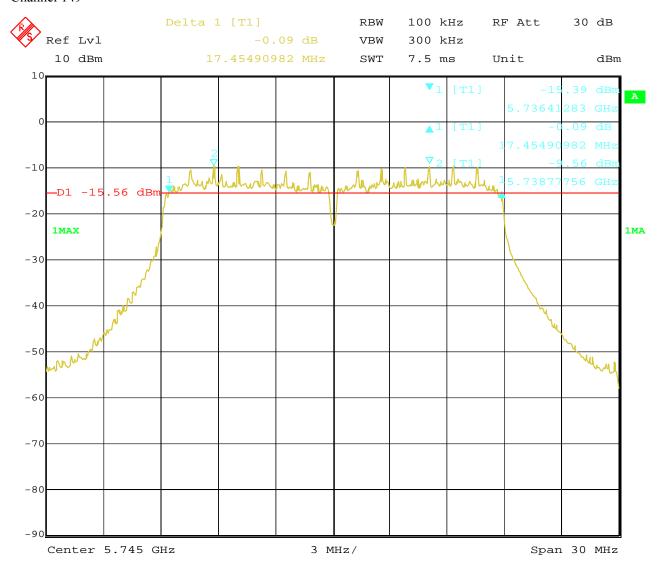
# Channel 161



Date: 24.APR.2022 20:07:39

Page 97 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



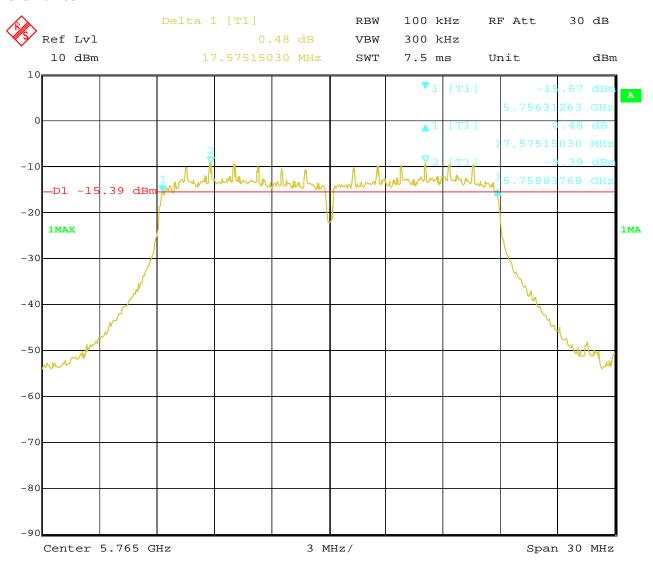
Test Configure

## 6dB Bandwidth

# Channel 149



24.APR.2022 18:28:20 Date:


Page 98 of 169

Report No.: TW2203419-03E

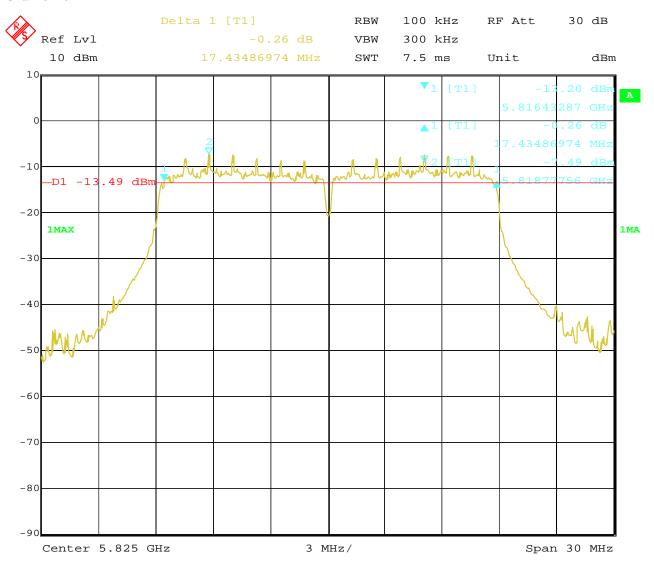
Date: 2022-05-16



# Channel 153



Date: 24.APR.2022 18:30:57


Page 99 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



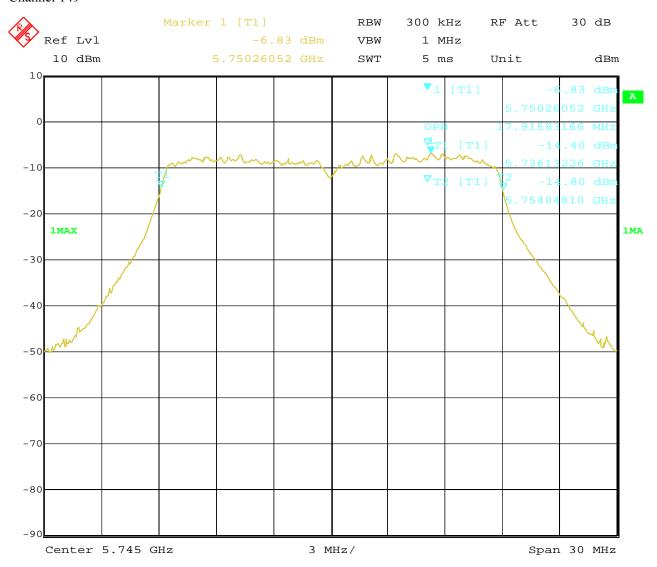
# Channel 161



Date: 24.APR.2022 18:34:59

Page 100 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



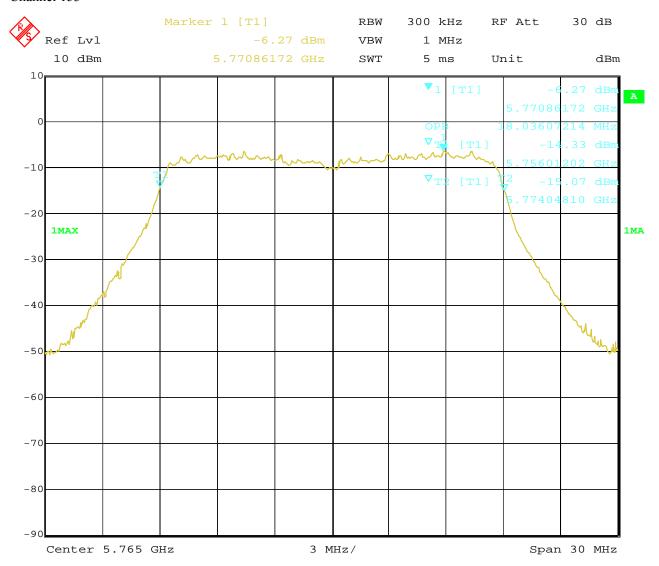
Test Configure

# 99% Bandwidth

# Channel 149



24.APR.2022 20:12:41 Date:


Page 101 of 169

Report No.: TW2203419-03E

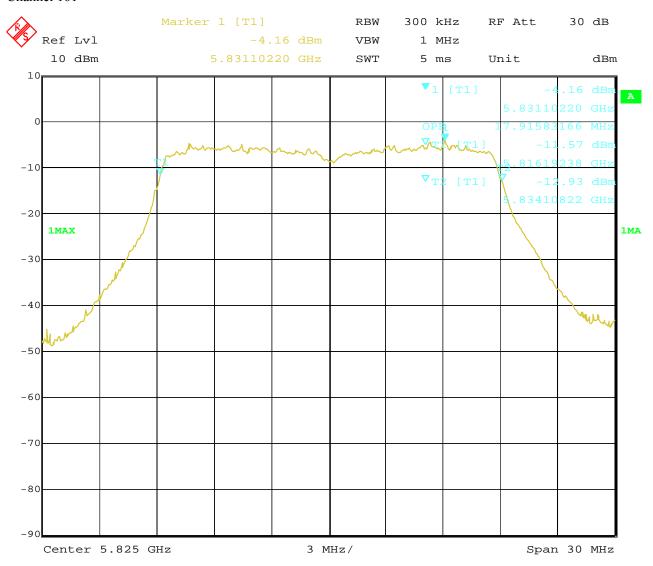
Date: 2022-05-16



# Channel 153



Date: 24.APR.2022 20:09:48


Page 102 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



# Channel 161



Date: 24.APR.2022 20:08:00

Page 103 of 169

Report No.: TW2203419-03E

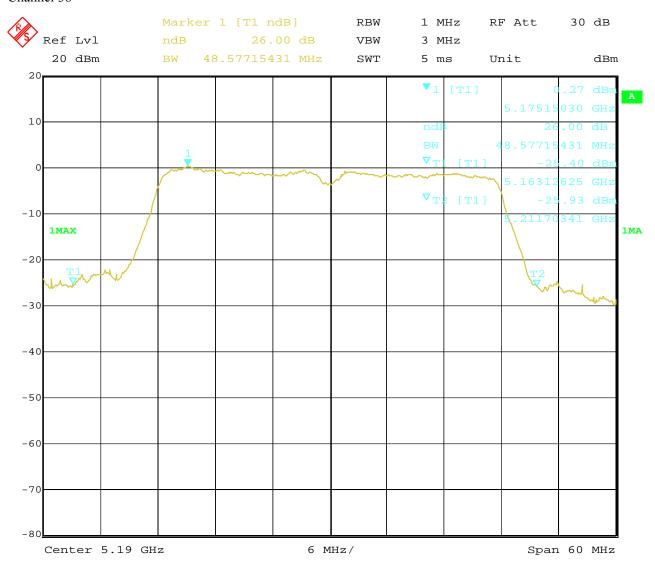
Date: 2022-05-16



| EUT           |                            | Outdoor LoraWAN Gateway |                           |                    | Model                  | DSGW-010C  |  |  |  |
|---------------|----------------------------|-------------------------|---------------------------|--------------------|------------------------|------------|--|--|--|
| Mode          |                            | 802.11ac VHT40          |                           |                    | Input Voltage          | DC48V      |  |  |  |
| Temperature   |                            | 24 deg. C,              |                           |                    | Humidity               | 56% RH     |  |  |  |
| Channel       | Channel Frequency<br>(MHz) |                         | Data Transfer Rate (Mbps) | Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass/ Fail |  |  |  |
| 26dB Bar      | 26dB Bandwidth             |                         |                           |                    |                        |            |  |  |  |
| 38            | 5190                       |                         | mcs0                      | 48.58              |                        | Pass       |  |  |  |
| 46            | 5230                       |                         | mcs0                      | 44.01              |                        | Pass       |  |  |  |
|               |                            |                         |                           |                    |                        |            |  |  |  |
| 99% Bandwidth |                            |                         |                           |                    |                        |            |  |  |  |
| 38            | 5190                       |                         | mcs0                      | 36.91              |                        | Pass       |  |  |  |
| 46            |                            | 5230                    | mcs0                      | 36.91              |                        | Pass       |  |  |  |

Page 104 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



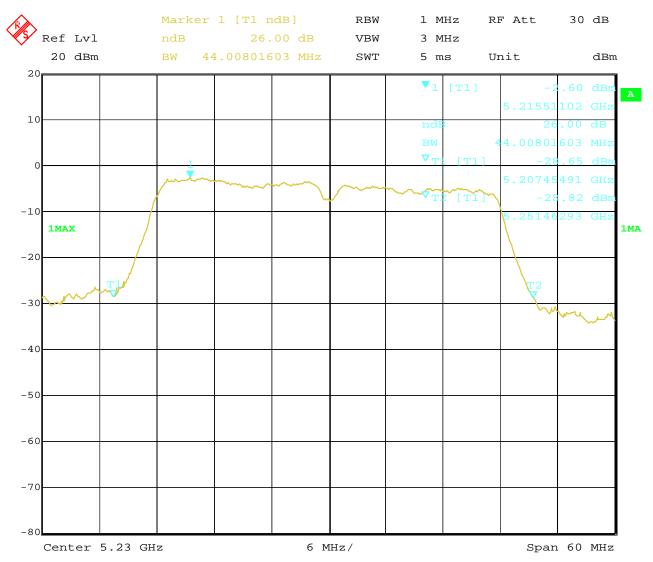
Test Configure

## 26dB Bandwidth

# Channel 38



24.APR.2022 15:38:37 Date:


Page 105 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



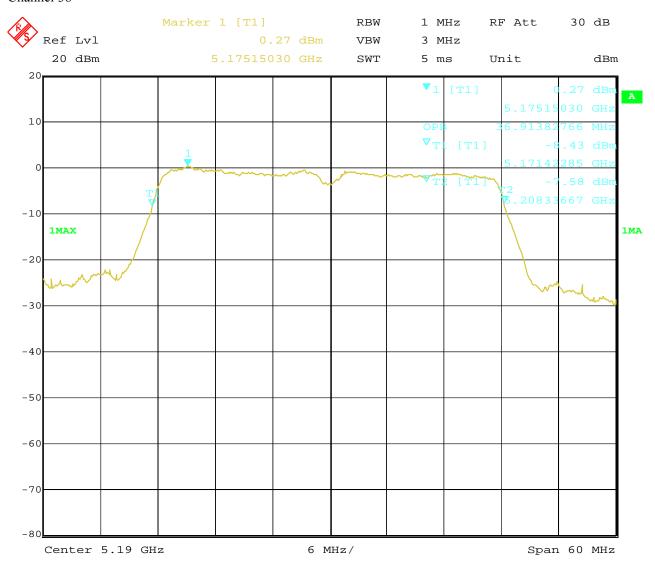
## Channel 46



Date: 24.APR.2022 15:34:58

Page 106 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



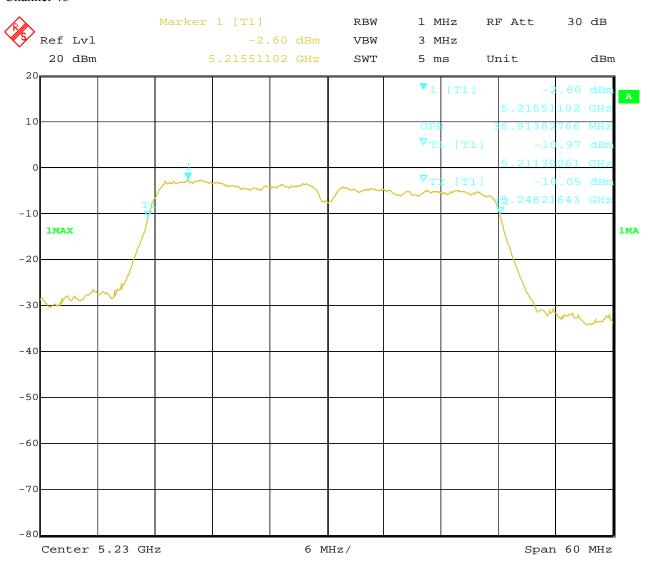
Test Configure

# 99% Bandwidth

# Channel 38



24.APR.2022 15:39:09 Date:


Page 107 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



## Channel 46



Date: 24.APR.2022 15:34:39

Page 108 of 169

Report No.: TW2203419-03E

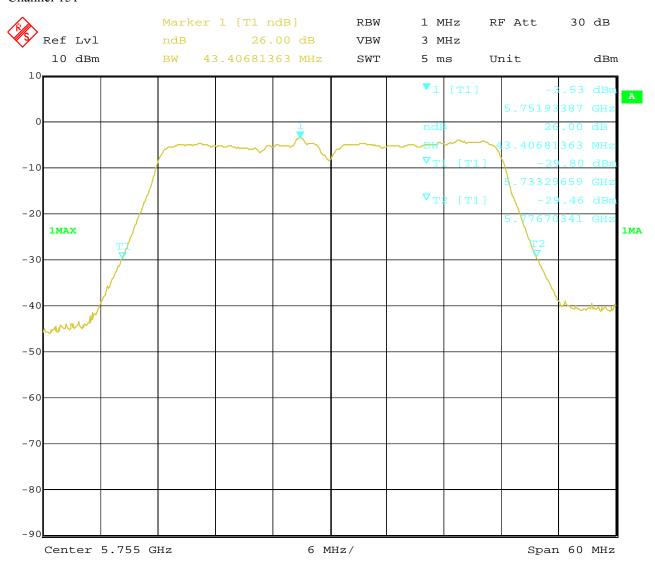
Date: 2022-05-16



| EUT           |                            | Outdoor LoraWAN Gateway |                           |                    | Model                  | DSGW-010C  |  |  |
|---------------|----------------------------|-------------------------|---------------------------|--------------------|------------------------|------------|--|--|
| Mode          |                            | 802.11ac VHT40          |                           |                    | Input Voltage          | DC48V      |  |  |
| Temperature   |                            |                         | 24 deg.                   | С,                 | Humidity               | 56% RH     |  |  |
| Channel       | Channel Frequency<br>(MHz) |                         | Data Transfer Rate (Mbps) | Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass/ Fail |  |  |
| 26dB Bar      | ndwidth                    |                         |                           |                    |                        |            |  |  |
| 151           | 5755                       |                         | mcs0                      | 43.41              |                        | Pass       |  |  |
| 159           | 5795                       |                         | mcs0                      | 43.77              |                        | Pass       |  |  |
|               |                            |                         |                           |                    |                        |            |  |  |
| 6dB Band      | dwidth                     |                         |                           |                    |                        |            |  |  |
| 151           | 5755                       |                         | mcs0                      | 35.47              | 0.5                    | Pass       |  |  |
| 159           | 5795                       |                         | mcs0                      | 35.78              | 0.5                    | Pass       |  |  |
|               |                            |                         |                           |                    |                        |            |  |  |
| 99% Bandwidth |                            |                         |                           |                    |                        |            |  |  |
| 151           | 5755                       |                         | mcs0                      | 36.91              |                        | Pass       |  |  |
| 159           | 5795                       |                         | mcs0                      | 36.91              |                        | Pass       |  |  |

Page 109 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



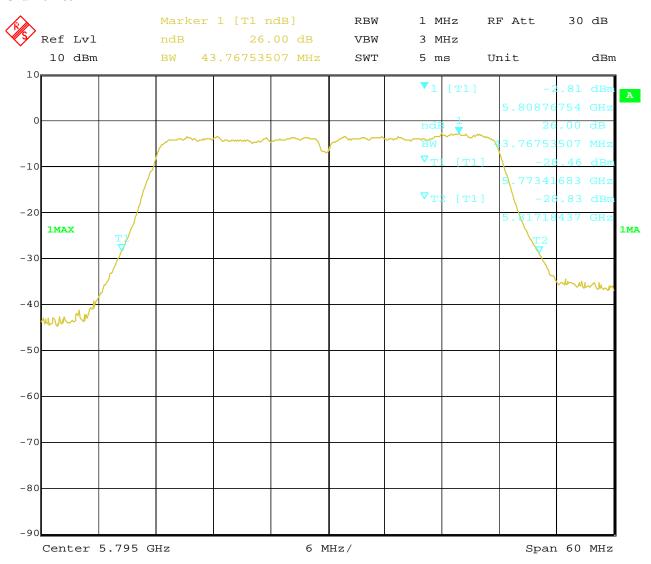
Test Configure

#### 26dB Bandwidth

## Channel 151



24.APR.2022 19:19:49 Date:


Page 110 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



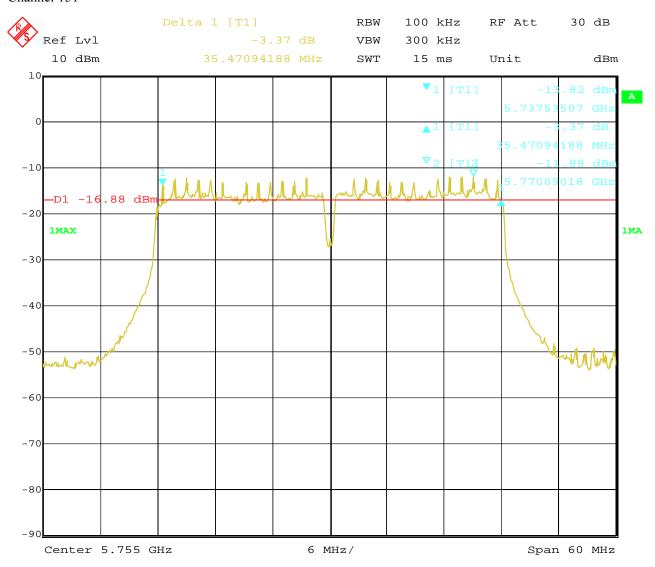
## Channel 159



Date: 24.APR.2022 19:17:50

Page 111 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



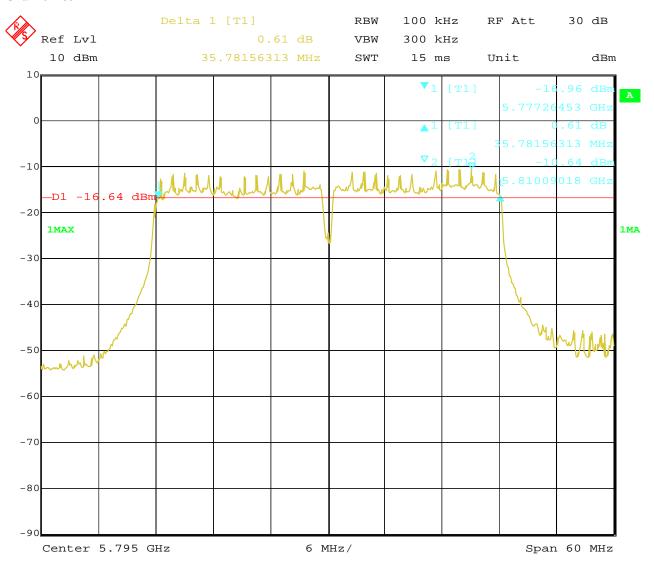
Test Configure

#### 6dB Bandwidth

## Channel 151



24.APR.2022 18:42:20 Date:


Page 112 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



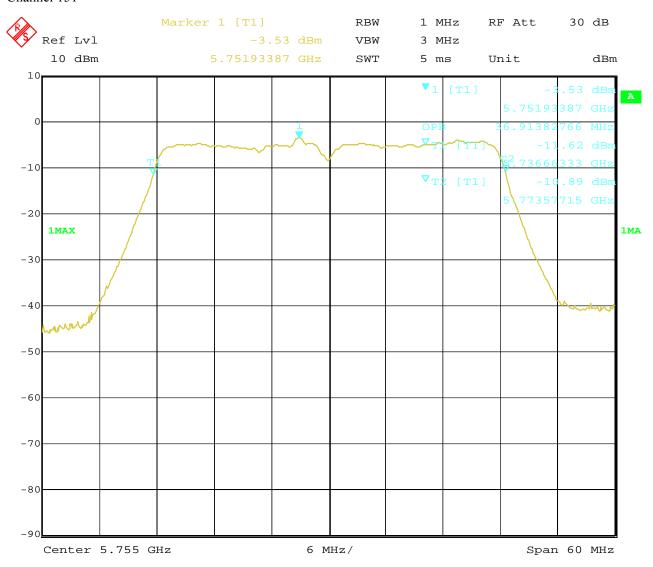
## Channel 159



Date: 24.APR.2022 18:45:34

Page 113 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



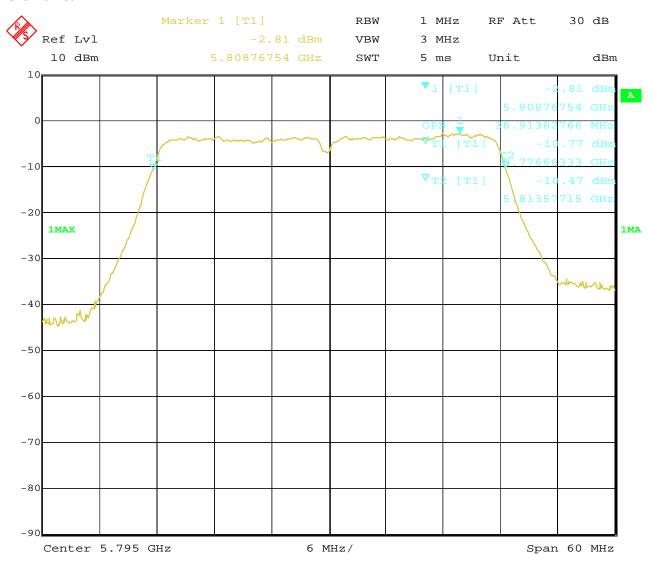
Test Configure

## 99% Bandwidth

## Channel 151



24.APR.2022 19:20:03 Date:


Page 114 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



## Channel 159



Date: 24.APR.2022 19:17:39

Page 115 of 169

Report No.: TW2203419-03E

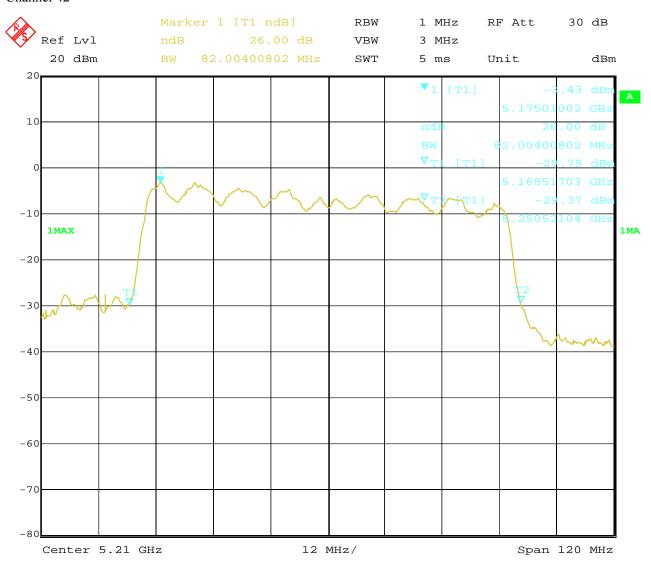
Date: 2022-05-16



| EUT       |               | Outdo                 | or LoraWA                 | N Gateway          | Model                 | DSGW-010C  |  |  |
|-----------|---------------|-----------------------|---------------------------|--------------------|-----------------------|------------|--|--|
| Mode      |               | :                     | 802.11ac VHT80            |                    | Input Voltage         | DC48V      |  |  |
| Temperati | ure           |                       | 24 deg.                   | C,                 | Humidity              | 56% RH     |  |  |
| Channel   |               | el Frequency<br>(MHz) | Data Transfer Rate (Mbps) | Bandwidth<br>(MHz) | Minimum Limi<br>(MHz) | Pass/ Fail |  |  |
| 26dB Bar  | ndwidth       |                       |                           |                    |                       |            |  |  |
| 42        |               | 5210                  | mcs0                      | 82.00              |                       | Pass       |  |  |
|           |               |                       |                           |                    |                       |            |  |  |
| 99% Ban   | 99% Bandwidth |                       |                           |                    |                       |            |  |  |
| 42        | 5210          |                       | mcs0                      | 75.99              |                       | Pass       |  |  |

Page 116 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



Test Configure

#### 26dB Bandwidth

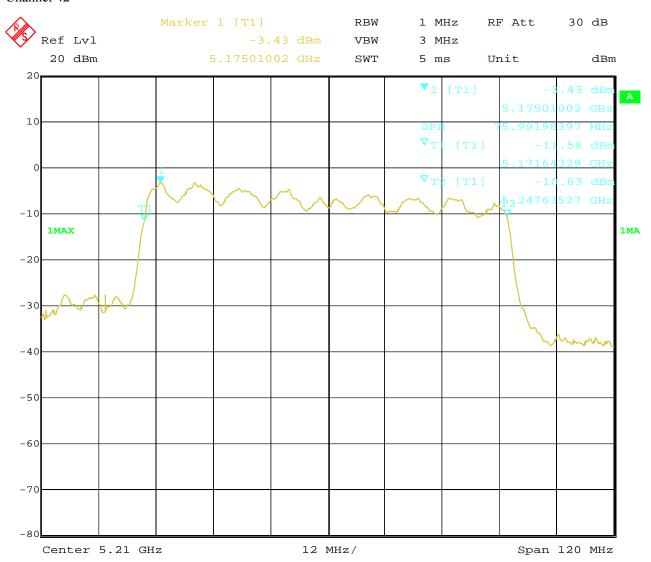
## Channel 42



24.APR.2022 15:44:52 Date:

Page 117 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



Test Configure

## 99% Bandwidth

## Channel 42



24.APR.2022 15:44:36 Date:

Page 118 of 169

Report No.: TW2203419-03E

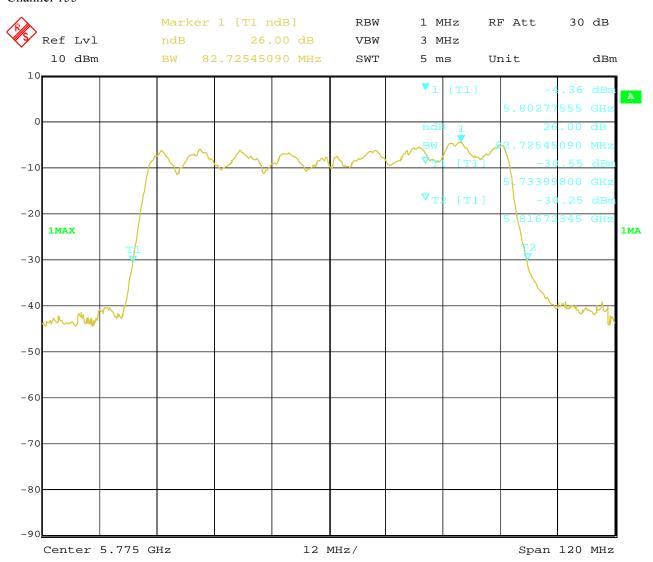
Date: 2022-05-16



| EUT      |                            | Outo | door LoraW                | AN Gateway         | Model                  | DSGW-010C  |      |  |      |  |         |  |      |       |  |      |
|----------|----------------------------|------|---------------------------|--------------------|------------------------|------------|------|--|------|--|---------|--|------|-------|--|------|
| Mode     |                            |      | 802.11ac                  | VHT80              | Input Voltage          | DC48V      |      |  |      |  |         |  |      |       |  |      |
| Temperat | ure                        |      | 24 deg                    | g. C,              | Humidity               | 56% RH     |      |  |      |  |         |  |      |       |  |      |
| Channel  | Channel Frequency<br>(MHz) |      | Data Transfer Rate (Mbps) | Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) | Pass/ Fail |      |  |      |  |         |  |      |       |  |      |
| 26dB Bar | ndwidth                    |      |                           |                    |                        |            |      |  |      |  |         |  |      |       |  |      |
| 155      | 5775                       |      | 5775                      |                    | 5775                   |            | 5775 |  | 5775 |  | 55 5775 |  | mcs0 | 82.73 |  | Pass |
|          |                            |      |                           |                    |                        |            |      |  |      |  |         |  |      |       |  |      |
| 6dB Band | dwidth                     |      |                           |                    |                        |            |      |  |      |  |         |  |      |       |  |      |
| 155      |                            | 5775 | mcs0                      | 75.59              | 0.5                    | Pass       |      |  |      |  |         |  |      |       |  |      |
|          |                            |      |                           |                    |                        |            |      |  |      |  |         |  |      |       |  |      |
| 99% Ban  | 99% Bandwidth              |      |                           |                    |                        |            |      |  |      |  |         |  |      |       |  |      |
| 155      | 155 5775                   |      |                           | 75.99              |                        | Pass       |      |  |      |  |         |  |      |       |  |      |

Page 119 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



Test Configure

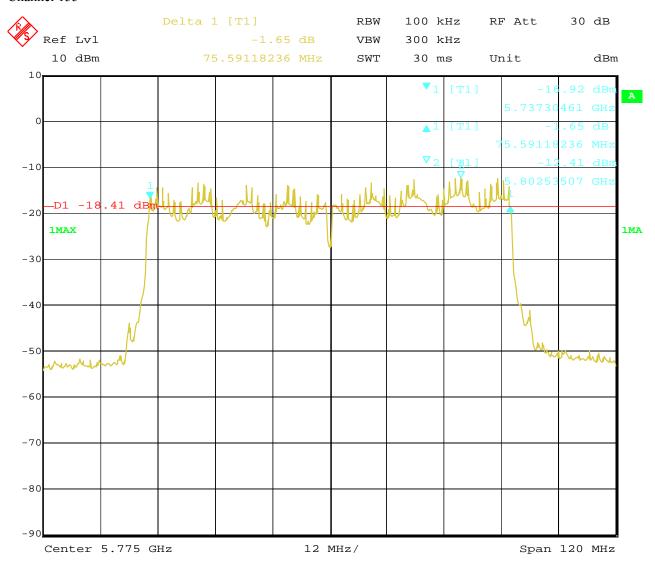
#### 26dB Bandwidth

## Channel 155



24.APR.2022 19:12:10 Date:

Page 120 of 169


Report No.: TW2203419-03E

Date: 2022-05-16



## **6dB Bandwidth**

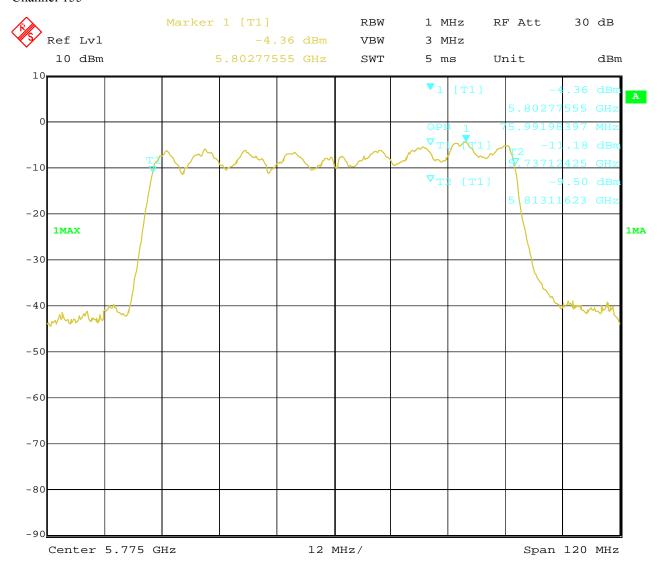
## Channel 155



24.APR.2022 18:57:57 Date:

Page 121 of 169

Report No.: TW2203419-03E


Date: 2022-05-16



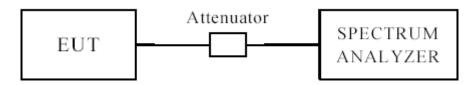
Test Configure

## 99% Bandwidth

## Channel 155



24.APR.2022 19:12:36 Date:


Report No.: TW2203419-03E

Date: 2022-05-16



### 8.0 Peak Transmit Power Measurement

# 8.1 Test Setup



## 8.2 Limits of Peak Transmit Power Measurement

| Operation Band |                                   | EUT Category                      | Limit                                    |  |  |
|----------------|-----------------------------------|-----------------------------------|------------------------------------------|--|--|
|                |                                   | Outdoor Access Point              | 1 Watt (30 dBm) ≤ (Max. e.i.r.p 125mW    |  |  |
|                |                                   |                                   | (21 dBm) at any elevation angle above 30 |  |  |
|                |                                   |                                   | degrees as measured from the horizon)    |  |  |
| U-NII-1        | Fixed point-to-point Access Point |                                   | 1 Watt (30 dBm)                          |  |  |
|                |                                   | Indoor Access Point               | 1 Watt (30 dBm)                          |  |  |
|                | √                                 | Mobile and Portable client device | 250mW (24 dBm)                           |  |  |
| U-NII-2A       |                                   |                                   | 250mW (24 dBm) or 11 dBm+10 log B*       |  |  |
| U-NII-2C       |                                   |                                   | 250mW (24 dBm) or 11 dBm+10 log B*       |  |  |
| U-NII-3        |                                   |                                   | 1 Watt (30 dBm)                          |  |  |

Note: Where B is the 26dB emission bandwidth in MHz.

## **8.3 Test Procedure**

The RF power output was measured with a Spectrum analyzer connected to the RF Antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate centre frequency.

Note: the average power was measured

Page 123 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



#### **8.4Test Results**

| EU      | T               |       | Outdoor LoraWAN Gateway | Model        | DSGW-010C  |
|---------|-----------------|-------|-------------------------|--------------|------------|
| Mod     | de              |       | 802.11a                 | Test Voltage | DC48V      |
| Temper  | rature          |       | 24 deg. C,              | Humidity     | 56% RH     |
| Channel | Frequer<br>(MHz | -     | Power (dBm)             | Limit (dBm)  | Pass/ Fail |
| 36      | 5180            | )     | 4.11                    | 24           | Pass       |
| 40      | 5200            | )     | 3.34                    | 24           | Pass       |
| 48      | 5240            | -0.24 |                         | 24           | Pass       |
| 149     | 5745            | 5     | 0.69                    | 30           | Pass       |
| 153     | 5765            | 5     | 1.19                    | 30           | Pass       |
| 161     | 5825            | 5     | 2.89                    | 30           | Pass       |

Note: 1. At finial test to get the worst-case emission at 6Mbps for CH36, CH40, CH48, CH149, CH153 and CH161

- 2. The result basic equation calculation as follow: Average Power Output = AV Power Reading + Cable loss + Attenuator
- 3. The worse case was recorded

Page 124 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



| EU      | Т               | Outdoor LoraWAN Gateway |              | Model        |          | DSGW-010C |            |
|---------|-----------------|-------------------------|--------------|--------------|----------|-----------|------------|
| Mod     | de              |                         | 802.11n HT20 | Test Voltage |          |           | DC48V      |
| Temper  | ature           |                         | 24 deg. C,   | Hun          | nidity   |           | 56% RH     |
| Channel | Frequer<br>(MHz | -                       | Power (dBm)  |              | Limit (d | Bm)       | Pass/ Fail |
| 36      | 5180            | )                       | 4.10         | 4.10         |          |           | Pass       |
| 40      | 5200            | )                       | 3.24         |              | 24       |           | Pass       |
| 48      | 5240            | )                       | -0.29        |              | 24       |           | Pass       |
| 149     | 5745            |                         | 0.65         |              | 30       |           | Pass       |
| 153     | 5765            |                         | 0.99         |              | 30       |           | Pass       |
| 161     | 5825            |                         | 2.79         |              | 30       |           | Pass       |

Note: 1. At finial test to get the worst-case emission at mcs0 for CH36, CH40, CH48, CH149, CH153 and CH161

2. The result basic equation calculation as follow:

Average Power Output = AV Power Reading + Cable loss + Attenuator

3. The worse case was recorded

Page 125 of 169

Date: 2022-05-16

Report No.: TW2203419-03E



| EU      | T             |   | Outdoor LoraWAN Gateway |    | Model       |  | DSGW-010C  |
|---------|---------------|---|-------------------------|----|-------------|--|------------|
| Mo      | de            |   | 802.11n HT40            | Те | est Voltage |  | DC48V      |
| Temper  | rature        |   | 24 deg. C,              | ]  | Humidity    |  | 56% RH     |
| Channel | Freque<br>(MH | - | Power (dBm)             |    | Limit (dBm) |  | Pass/ Fail |
| 38      | 5190          | ) | 3.79                    |    | 24          |  | Pass       |
| 46      | 5230          | ) | 0.58                    |    | 24          |  | Pass       |
| 151     | 575           | 5 | 1.10                    |    | 30          |  | Pass       |
| 159     | 579:          | 5 | 2.27                    |    | 30          |  | Pass       |

Note: 1. At finial test to get the worst-case emission at mcs0 for CH38, CH46, CH151, CH159 and CH161

2. The result basic equation calculation as follow: Average Power Output = AV Power Reading + Cable loss + Attenuator

3. The worse case was recorded

Page 126 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



| EU      | T               |   | Outdoor LoraWAN Gateway | Model        |              | DSGW-010C  |
|---------|-----------------|---|-------------------------|--------------|--------------|------------|
| Mod     | de              |   | 802.11ac VHT20          | Test Voltage | oltage DC48V |            |
| Temper  | rature          |   | 24 deg. C,              | Humidity     |              | 56% RH     |
| Channel | Frequer<br>(MHz | - | Power (dBm)             | Limit (dB    | m)           | Pass/ Fail |
| 36      | 5180            | ) | 4.87                    | 24           |              | Pass       |
| 40      | 5200            | ) | 4.04                    | 24           |              | Pass       |
| 48      | 5240            | ) | 0.45                    | 24           |              | Pass       |
| 149     | 5745            |   | 0.53                    | 30           |              | Pass       |
| 153     | 5765            | 5 | 1.02                    | 30           |              | Pass       |
| 161     | 5825            | 5 | 2.75                    | 30           |              | Pass       |

Note: 1. At finial test to get the worst-case emission at mcs0 for CH36, CH40, CH48, CH149, CH153 and CH161

2. The result basic equation calculation as follow:

Average Power Output = AV Power Reading + Cable loss + Attenuator

3. The worse case was recorded

Page 127 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



| EU      | T             | Outdoor LoraWAN Gateway |                | Model |             |      | DSGW-010C  |  |
|---------|---------------|-------------------------|----------------|-------|-------------|------|------------|--|
| Mod     | de            |                         | 802.11ac VHT40 | Te    | est Voltage |      | DC48V      |  |
| Temper  | ature         |                         | 24 deg. C,     | ]     | Humidity    |      | 56% RH     |  |
| Channel | Freque<br>(MH | _                       | Power (dBm)    |       | Limit (dBm) |      | Pass/ Fail |  |
| 38      | 5190          | 0                       | 4.43           |       | 24          |      | Pass       |  |
| 46      | 5230          | )                       | 1.28           |       | 24          |      | Pass       |  |
| 151     | 575           | 5                       | 1.11           |       | 30          | Pass |            |  |
| 159     | 579:          | 5                       | 2.24           |       | 30          |      | Pass       |  |

Note: 1. At finial test to get the worst-case emission at mcs0 for CH38, CH46, CH151, CH159 and CH161

2. The result basic equation calculation as follow: Average Power Output = AV Power Reading + Cable loss + Attenuator

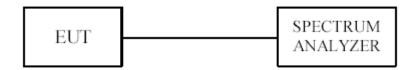
3. The worse case was recorded

| EU      | Т             |   | Outdoor LoraWAN Gateway |              | Model     |    | DSGW-010C  |
|---------|---------------|---|-------------------------|--------------|-----------|----|------------|
| Mod     | de            |   | 802.11ac VHT80          | Test Voltage |           |    | DC48V      |
| Temper  | ature         |   | 24 deg. C,              | ]            | Humidity  |    | 56% RH     |
| Channel | Freque<br>(MH |   | Power (dBm)             |              | Limit (dB | m) | Pass/ Fail |
| 42      | 5210          | 0 | 2.09                    |              | 24        |    | Pass       |
| 155     | 577:          | 5 | 1.50                    |              | 30        |    | Pass       |

Note: 1. At finial test to get the worst-case emission at mcs0 s for CH42 and CH155

- 2. The result basic equation calculation as follow: Average Power Output = AV Power Reading + Cable loss + Attenuator
- 3. The worse case was recorded

Page 128 of 169


Report No.: TW2203419-03E

Date: 2022-05-16



## 9. Power Spectral Density Measurement

# 9.1 Test Setup



## 9.2 Limits of Power Spectral Density Measurement

| Operation Band |   | EUT Category                      | Limit        |
|----------------|---|-----------------------------------|--------------|
|                |   | Outdoor Access Point              |              |
| II NIII 1      |   | Fixed point-to-point Access Point | 17dBm/MHz    |
| U-NII-1        |   | Indoor Access Point               |              |
|                | √ | Mobile and Portable client device | 11dBm/MHz    |
| U-NII-2A       |   |                                   | 11dBm/MHz    |
| U-NII-2C       |   |                                   | 11dBm/MHz    |
| U-NII-3        |   |                                   | 30dBm/500kHz |

## 9.3 Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer
- 2. Set the RBW = 1MHz or 500kHz
- 3. Set the VBW =3MHz or 2MHz
- 4. Set the span to encompass the entire emissions bandwidth (EBW) of the signal
- 5. Detector = RMS
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.

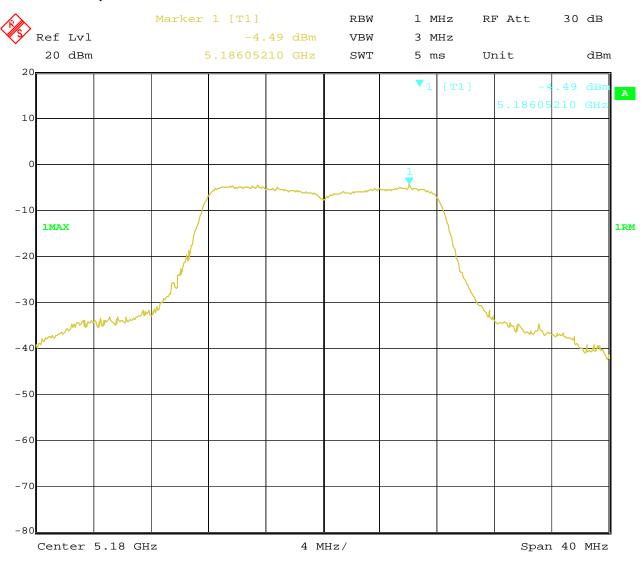
Page 129 of 169 Report No.: TW2203419-03E

Date: 2022-05-16



## 9.4Test Result

| EUT      |      |        | Outdoor LoraWAN Gateway | Model        | DSGW-010C |
|----------|------|--------|-------------------------|--------------|-----------|
| Mode     |      |        | 802.11a 6Mbps           | Test Voltage | DC48V     |
| Temperat | ture |        | 24 deg. C,              | Humidity     | 56% RH    |
| Channel  | Freq | luency | Power Spectral          | Limit        | Pass/ Fai |
|          | (M   | IHz)   | Density(dBm/MHz)        | (dBm/MHz)    |           |
| 36       | 5    | 180    | -4.49                   | 11           | Pass      |
| 40       | 52   | 200    | -5.78                   | 11           | Pass      |
| 48       | 52   | 240    | -8.61                   | 11           | Pass      |
| Channel  | Freq | luency | Power Spectral          | Limit        | Pass/ Fai |
|          | (M   | fHz)   | Density(dBm/500kHz)     | (dBm/500kHz  | )         |
| 149      | 5'   | 745    | -9.68                   | 30           | Pass      |
| 153      | 5'   | 765    | -9.37                   | 30           | Pass      |
| 161      | 5    | 825    | -7.43                   | 30           | Pass      |


Report No.: TW2203419-03E

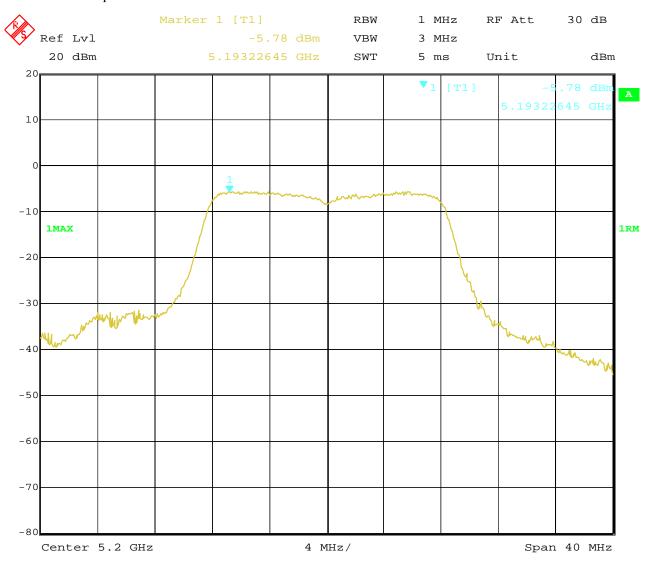
Date: 2022-05-16



## 9.5 Plots of Power Spectral Density Measurement

1.802.11a at 6Mbps of CH36




Page 131 of 169

Report No.: TW2203419-03E

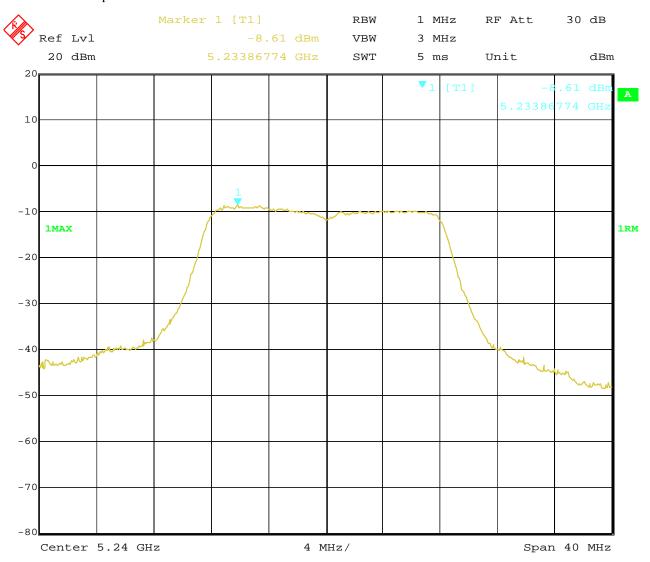
Date: 2022-05-16



## 2.802.11a at 6Mbps of CH40



24.APR.2022 17:18:30 Date:


Page 132 of 169

Report No.: TW2203419-03E

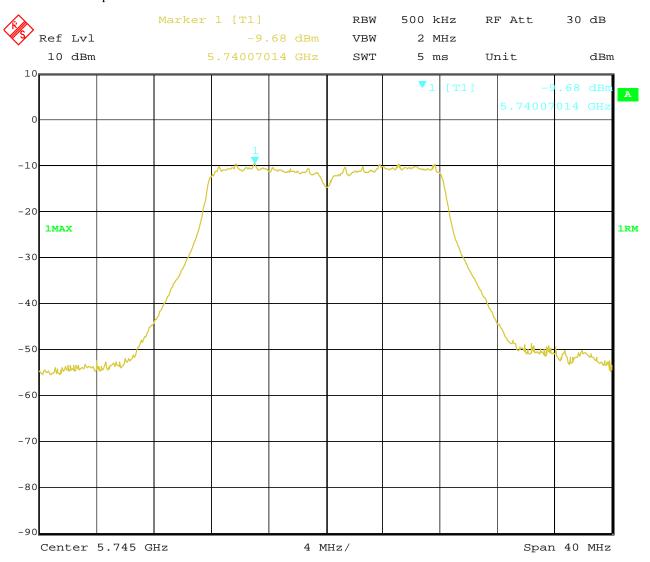
Date: 2022-05-16



## 3.802.11a at 6Mbps of CH48



Date: 24.APR.2022 17:17:38


Page 133 of 169

Report No.: TW2203419-03E

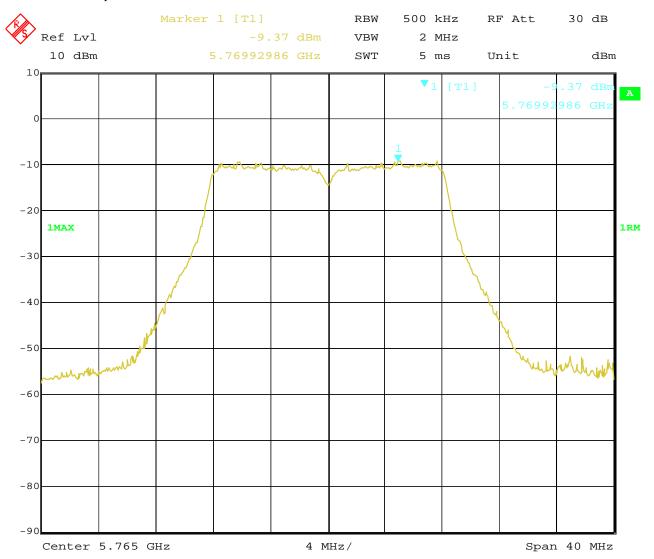
Date: 2022-05-16



## 4.802.11a at 6Mbps of CH149



Date: 24.APR.2022 22:10:09


Page 134 of 169

Report No.: TW2203419-03E

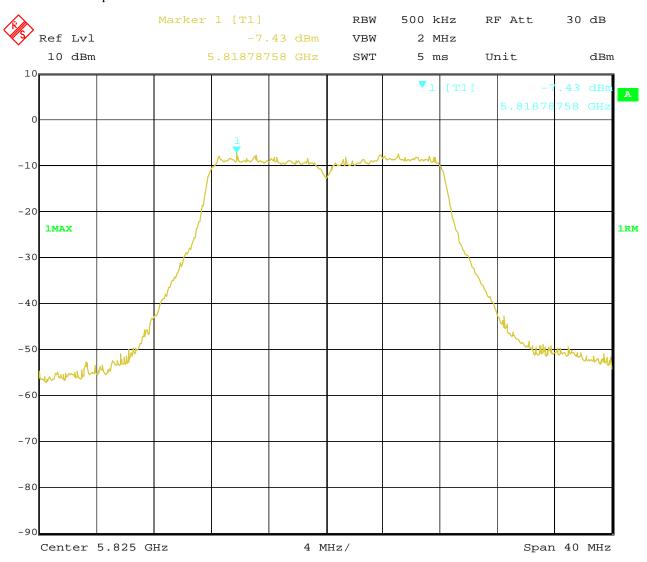
Date: 2022-05-16



## 5.802.11a at 6Mbps of CH153



Date: 24.APR.2022 22:11:38


Page 135 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



## 6.802.11a at 6Mbps of CH161



Date: 24.APR.2022 22:12:35

Page 136 of 169

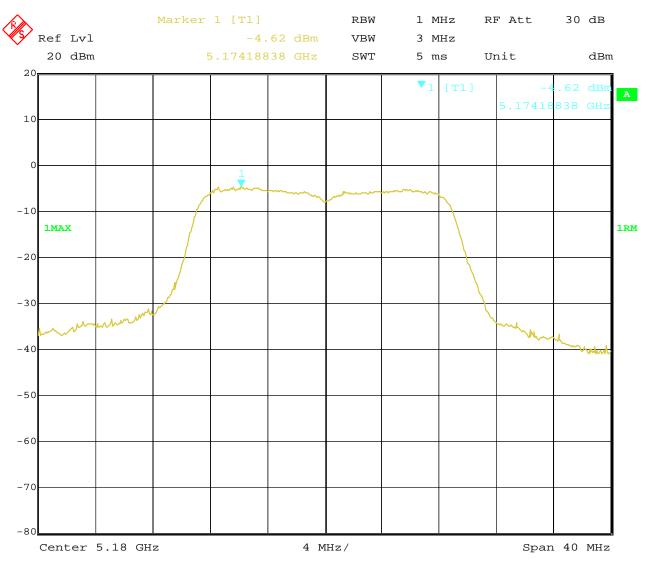
Report No.: TW2203419-03E

Date: 2022-05-16



| EUT      |      |        | Outdoor LoraWAN Gateway | Model        | DSGW-0 | 010C       |
|----------|------|--------|-------------------------|--------------|--------|------------|
| Mode     | ;    |        | 802.11n HT20 mcs0       | Test Voltage | DC48   | BV         |
| Temperat | ture |        | 24 deg. C,              | Humidity     | 56% I  | RH         |
| Channel  | Freq | luency | Power Spectral          | Limit        |        | Pass/ Fail |
|          | (N   | (Hz    | Density(dBm/MHz)        | (dBm/MHz     | 2)     |            |
| 36       | 5    | 180    | -4.62                   | 11           | 11 Pa  |            |
| 40       | 5    | 200    | -5.72                   | 11           |        | Pass       |
| 48       | 5:   | 240    | -8.97                   | 11           |        | Pass       |
| Channel  | Freq | luency | Power Spectral          | Limit        |        | Pass/ Fail |
|          | (M   | Mz)    | Density(dBm/500kHz)     | (dBm/500kH   | łz)    |            |
| 149      | 5'   | 745    | -9.68                   | 30           | 30     |            |
| 153      | 5'   | 765    | -9.20                   | 30           |        | Pass       |
| 161      | 5    | 825    | -7.57                   | 30           | 30     |            |

Page 137 of 169


Report No.: TW2203419-03E

Date: 2022-05-16

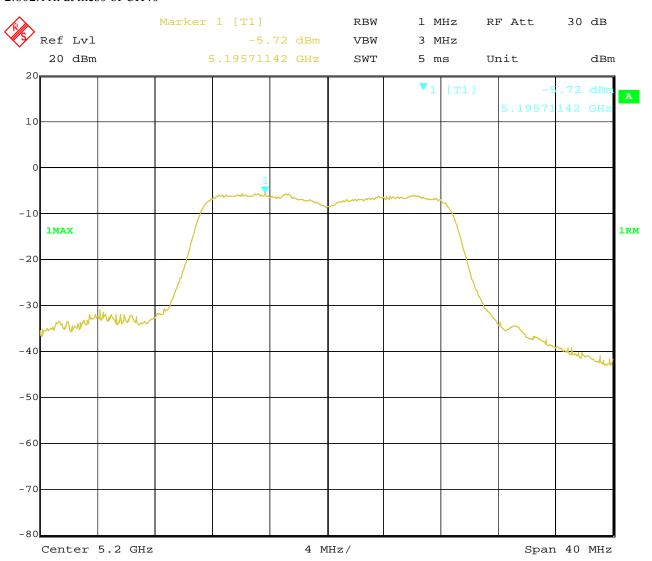


#### **Test Plots**

1.802.11n at mcs0 of CH36



Date: 24.APR.2022 17:03:24


Page 138 of 169

Report No.: TW2203419-03E

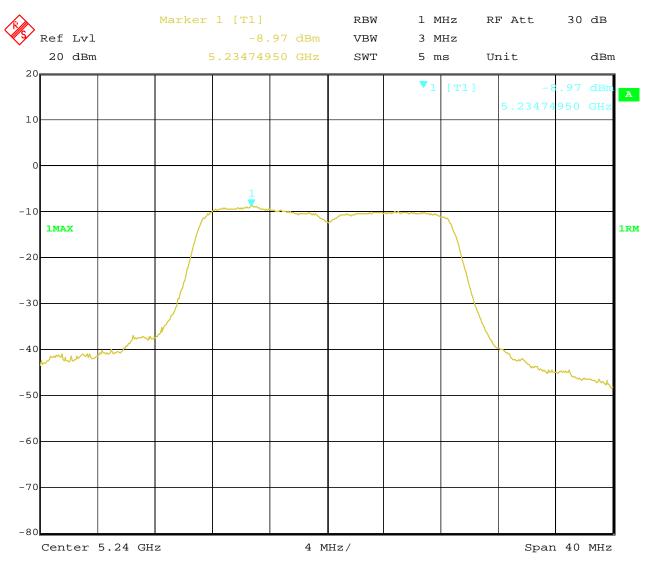
Date: 2022-05-16



#### 2.802.11n at mcs0 of CH40



24.APR.2022 17:08:11 Date:


Page 139 of 169

Report No.: TW2203419-03E

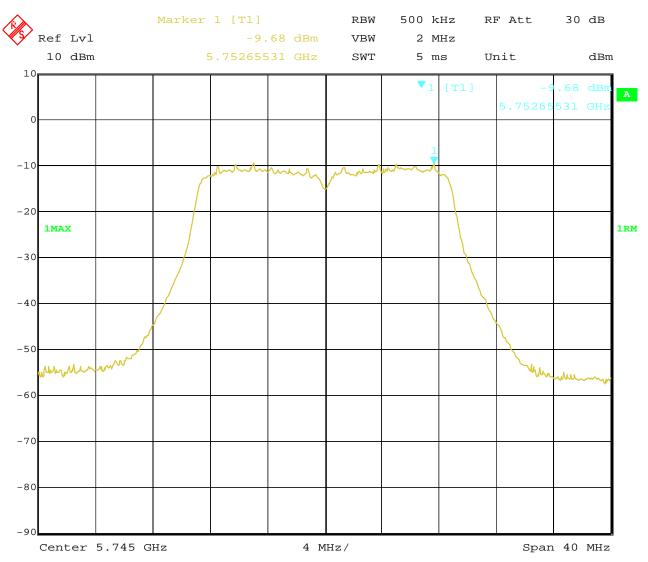
Date: 2022-05-16



#### 3.802.11n at mcs0 of CH48



Date: 24.APR.2022 17:15:35


Page 140 of 169

Report No.: TW2203419-03E

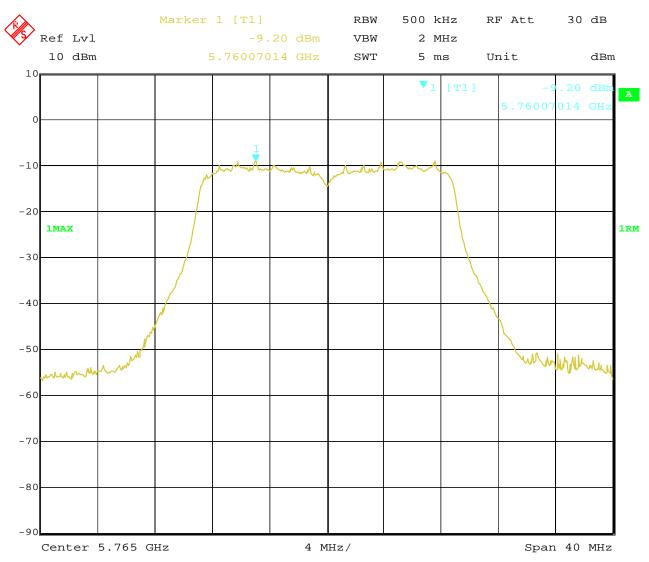
Date: 2022-05-16



#### 4.802.11n at mcs0 of CH149



Date: 24.APR.2022 22:17:08


Page 141 of 169

Report No.: TW2203419-03E

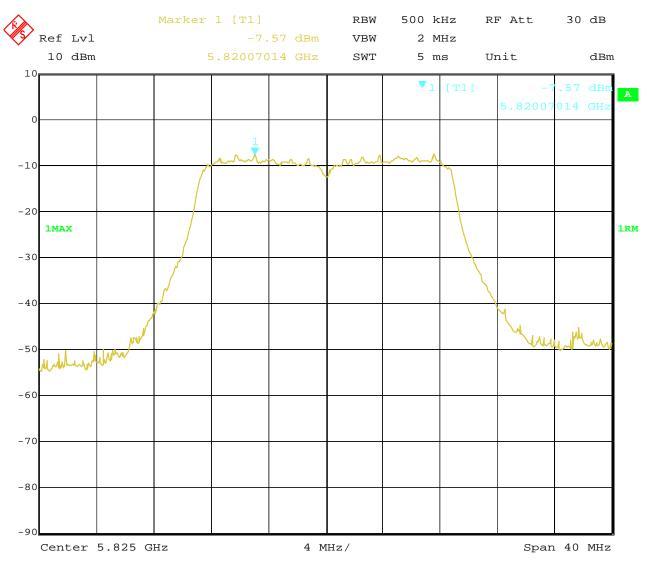
Date: 2022-05-16



#### 5.802.11n at mcs0 of CH153



Date: 24.APR.2022 22:15:28


Page 142 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



#### 6.802.11n at mcs0 of CH161



Date: 24.APR.2022 22:14:07

Page 143 of 169

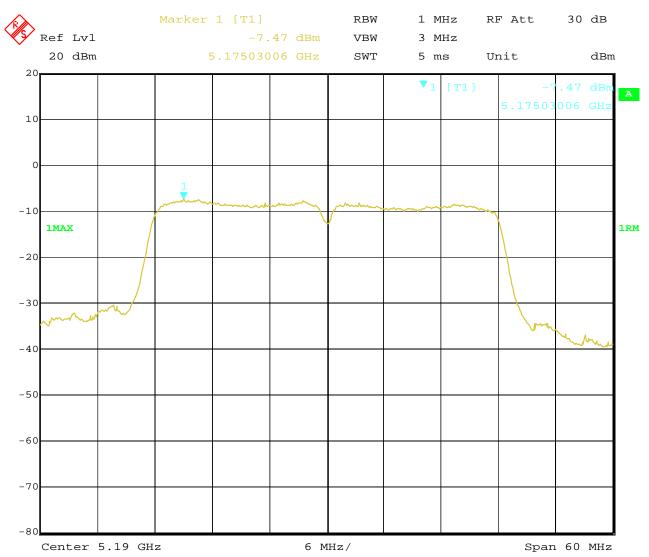
Report No.: TW2203419-03E

Date: 2022-05-16



| EUT      |           | Outdoor LoraWAN Gateway | Model        | DSGW-010C    |  |
|----------|-----------|-------------------------|--------------|--------------|--|
| Mode     |           | 802.11n HT40 mcs0       | Test Voltage | DC48V        |  |
| Temperat | ture      | 24 deg. C,              | Humidity     | 56% RH       |  |
| Channel  | Frequency | Power Spectral          | Limit        | Pass/ Fail   |  |
|          | (MHz)     | Density(dBm/MHz)        | (dBm/MHz)    |              |  |
| 38       | 5190      | -7.47                   | 11           | 11           |  |
| 46       | 5230      | -10.40                  | 11           | 11           |  |
| Channel  | Frequency | Power Spectral          | Limit        | Limit        |  |
|          | (MHz)     | Density(dBm/500kHz)     | (dBm/500kH   | (dBm/500kHz) |  |
| 151      | 5755      | -11.99                  | 30           | 30           |  |
| 159      | 5795      | -10.62                  | 30           | 30           |  |

Page 144 of 169


Report No.: TW2203419-03E

Date: 2022-05-16

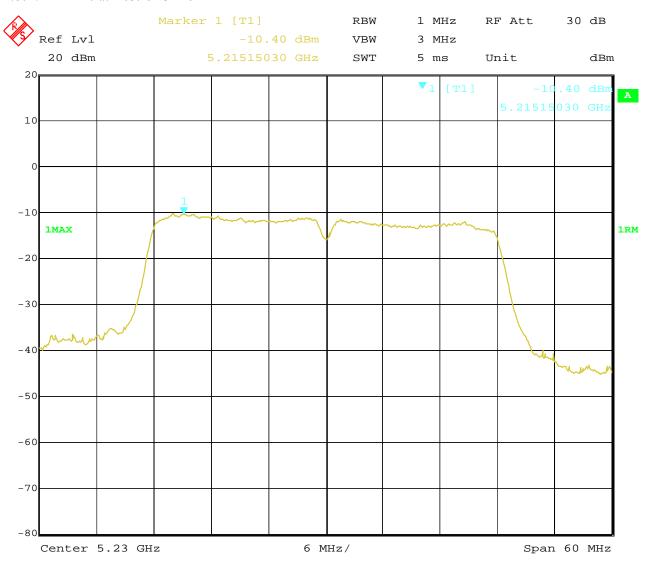


#### **Test Plots**

### 1.802.11n HT40 at mcs0 of CH38



Date: 24.APR.2022 17:21:14


Page 145 of 169

Report No.: TW2203419-03E

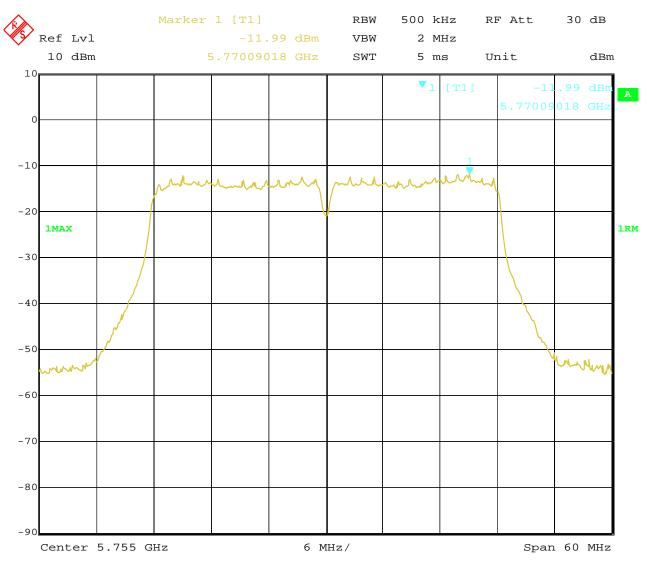
Date: 2022-05-16



#### 2.802.11n HT40 at mcs0 of CH46



Date: 24.APR.2022 17:24:24


Page 146 of 169

Report No.: TW2203419-03E

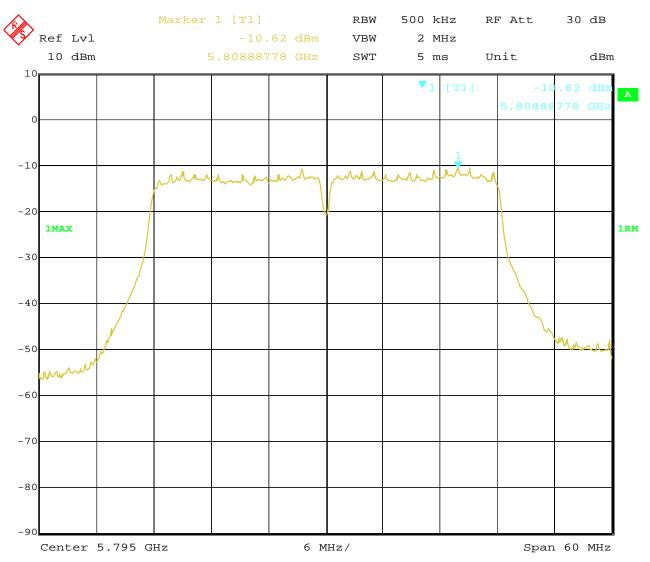
Date: 2022-05-16



#### 3.802.11n HT40 at mcs0 of CH151



Date: 24.APR.2022 22:06:51


Page 147 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



#### 4.802.11n HT40 at mcs0 of CH159



Date: 24.APR.2022 22:04:50

Page 148 of 169

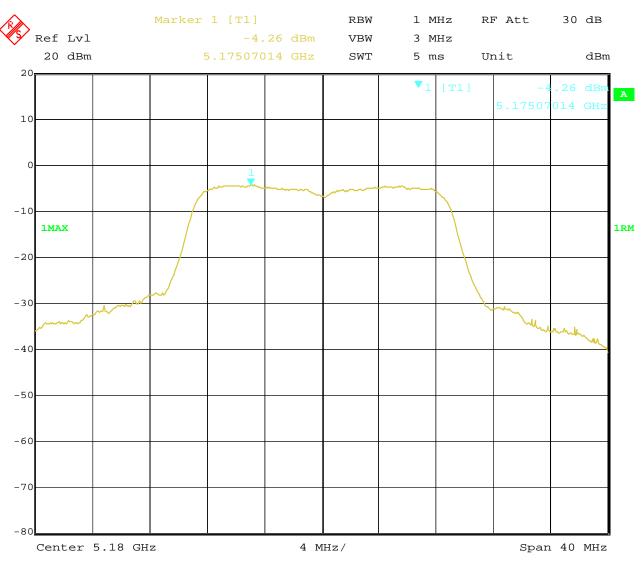
Report No.: TW2203419-03E

Date: 2022-05-16



| EUT         |           | Outdoor LoraWAN Gateway |                     | Model        | DSGW-010C      | DSGW-010C |     |         |
|-------------|-----------|-------------------------|---------------------|--------------|----------------|-----------|-----|---------|
| Mode        |           |                         | 802.11ac VHT20      | Test Voltage | DC48V          |           |     |         |
| Temperature |           |                         | 24 deg. C,          | Humidity     | 56% RH         |           |     |         |
| Channel     | Free      | quency                  | Power Spectral      | Limit        | Pas            | s/ Fail   |     |         |
|             | (MHz)     |                         | Density(dBm/MHz)    | (dBm/MHz)    |                |           |     |         |
| 36          | 5         | 180                     | -4.26               | 11           | F              | ass       |     |         |
| 40          | 5         | 200                     | -4.76               | 11           | F              | ass       |     |         |
| 48          | 5240      |                         | -8.74               | 11           | F              | ass       |     |         |
| Channel     | Frequency |                         | Frequency           |              | Power Spectral | Limit     | Pas | s/ Fail |
|             | (MHz)     |                         | Density(dBm/500kHz) | (dBm/500kHz) |                |           |     |         |
| 149         | 5745      |                         | 5745 -9.67          |              | 30             | F         | ass |         |
| 153         | 5         | 765                     | -9.22               | 30           | F              | ass       |     |         |
| 161         | 5825      |                         | -7.79               | 30           | F              | ass       |     |         |

Page 149 of 169


Report No.: TW2203419-03E

Date: 2022-05-16

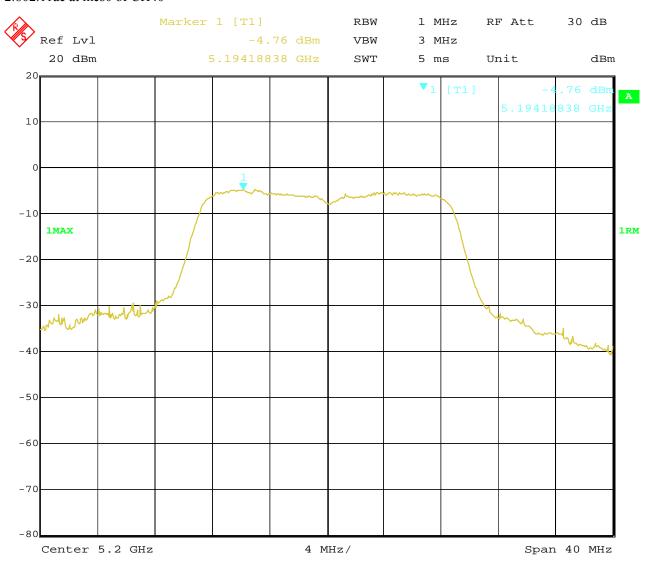


#### **Test Plots**

1.802.11ac at mcs0 of CH36



Date: 24.APR.2022 17:00:43


Page 150 of 169

Report No.: TW2203419-03E

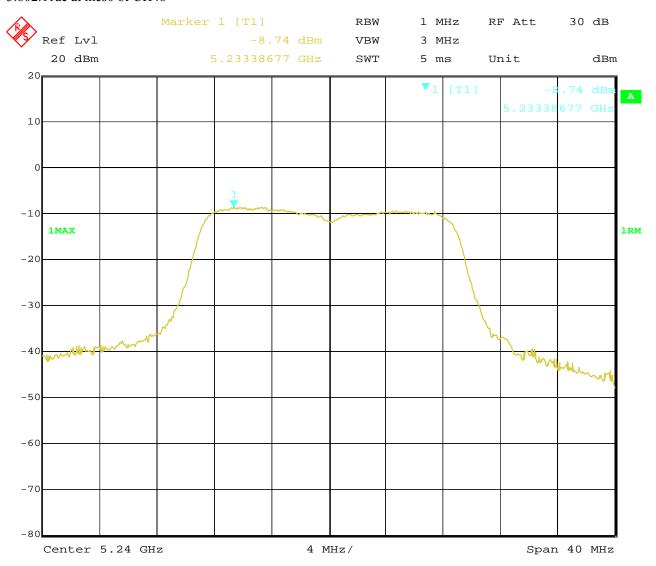
Date: 2022-05-16



#### 2.802.11ac at mcs0 of CH40



24.APR.2022 16:52:45 Date:


Page 151 of 169

Report No.: TW2203419-03E

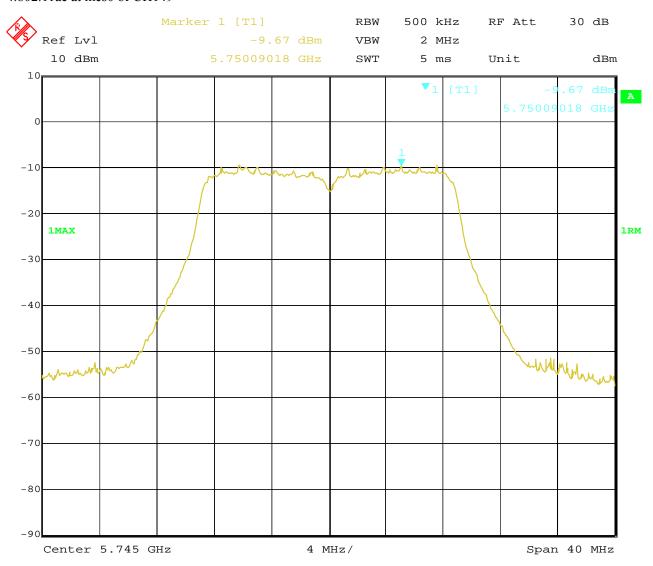
Date: 2022-05-16



#### 3.802.11ac at mcs0 of CH48



Date: 24.APR.2022 16:49:52


Page 152 of 169

Report No.: TW2203419-03E

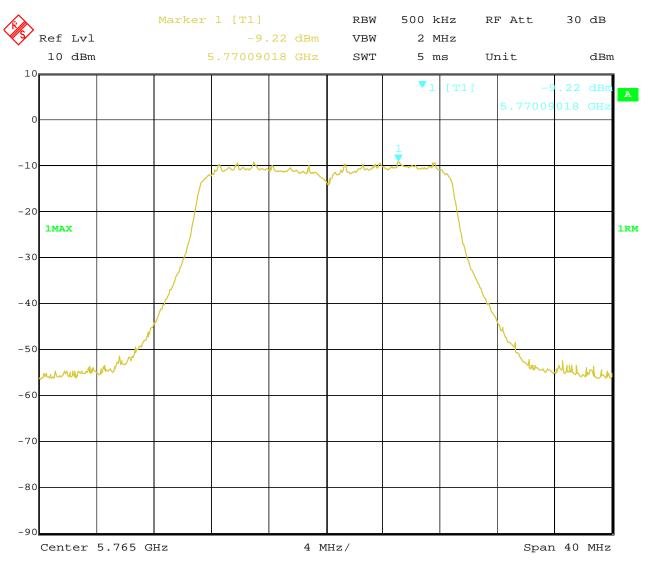
Date: 2022-05-16



#### 4.802.11ac at mcs0 of CH149



Date: 24.APR.2022 22:18:48


Page 153 of 169

Report No.: TW2203419-03E

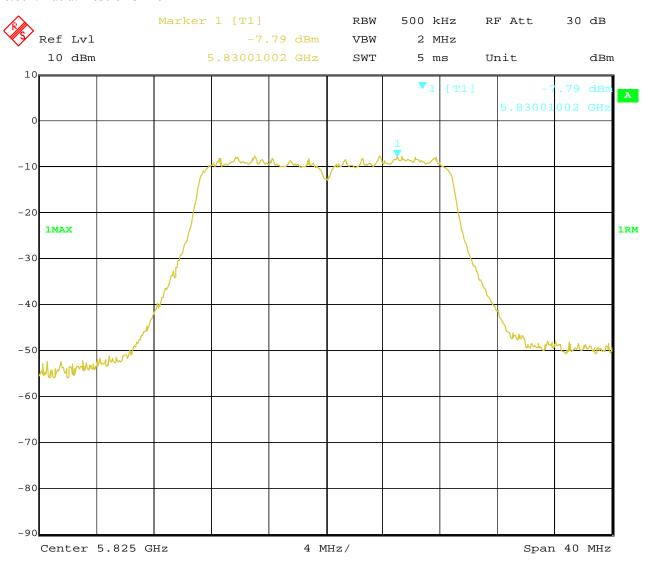
Date: 2022-05-16



#### 5.802.11ac at mcs0 of CH153



Date: 24.APR.2022 22:20:55


Page 154 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



#### 6.802.11ac at mcs0 of CH161



Date: 24.APR.2022 22:22:19

Page 155 of 169

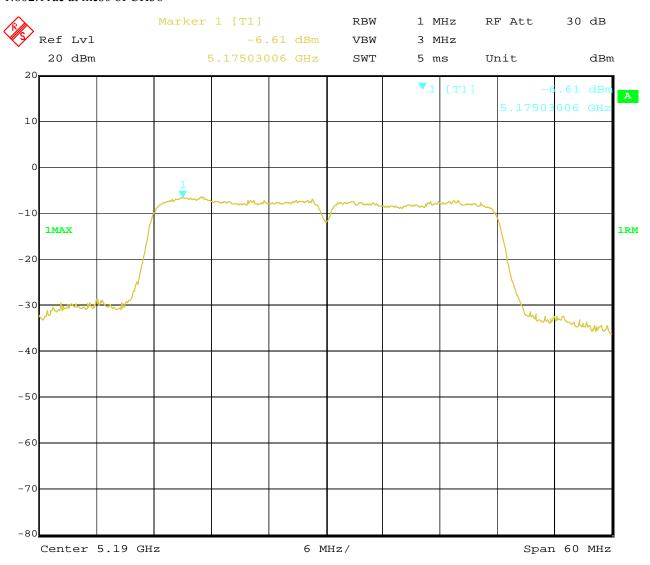
Report No.: TW2203419-03E

Date: 2022-05-16



| EUT      |                                        | Outdoor LoraWAN Gateway | Model        | DSGW-010C  |            |
|----------|----------------------------------------|-------------------------|--------------|------------|------------|
| Mode     |                                        | 802.11ac VHT40          | Test Voltage | DC48V      |            |
| Temperat | ture                                   | 24 deg. C,              | Humidity     | 56% RH     |            |
| Channel  | Frequency                              | Power Spectral          | Limit        |            | Pass/ Fail |
|          | (MHz)                                  | Density(dBm/MHz)        | (dBm/MHz     | <b>z</b> ) |            |
| 38       | 5190                                   | -6.61                   | 11           |            | Pass       |
| 46       | 5230                                   | -9.38                   | 11           |            | Pass       |
| Channel  | Frequency                              | Power Spectral          | Limit        |            | Pass/ Fail |
|          | (MHz) Density(dBm/500kHz) (dBm/500kHz) |                         | (dBm/500kH   | Hz)        |            |
| 151      | 5755                                   | -12.01                  | 30           |            | Pass       |
| 159      | 5795                                   | -10.67                  | 30           |            | Pass       |

Page 156 of 169


Report No.: TW2203419-03E

Date: 2022-05-16

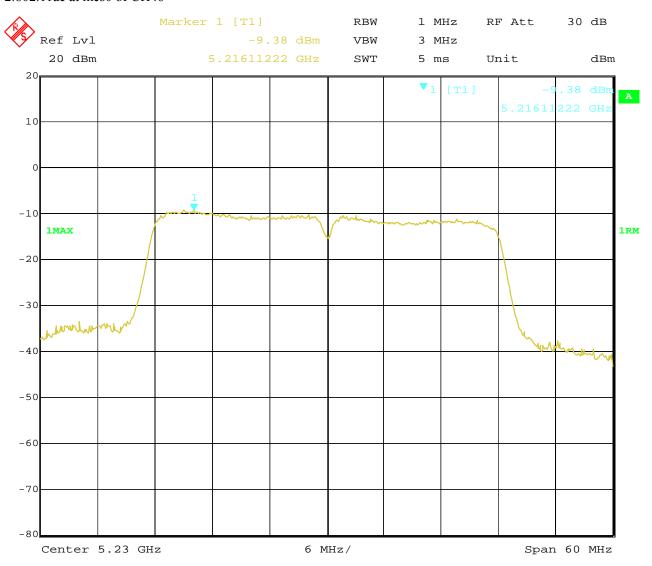


#### **Test Plots**

### 1.802.11ac at mcs0 of CH38



Date: 24.APR.2022 17:28:56


Page 157 of 169

Report No.: TW2203419-03E

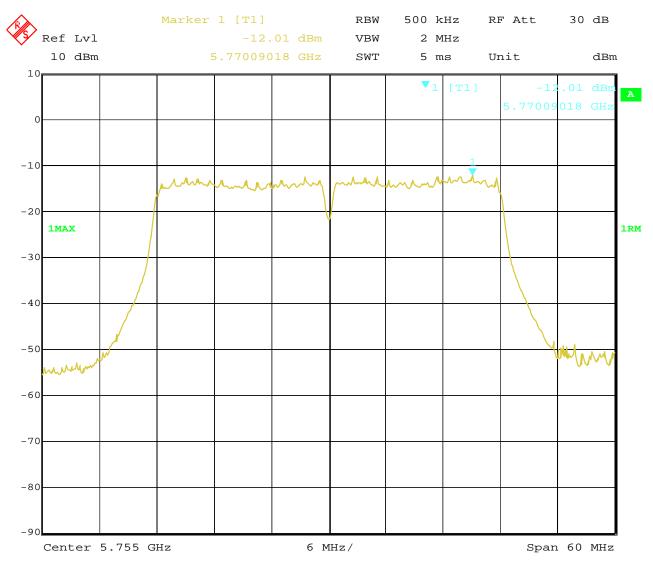
Date: 2022-05-16



#### 2.802.11ac at mcs0 of CH46



Date: 24.APR.2022 17:25:33


Page 158 of 169

Report No.: TW2203419-03E

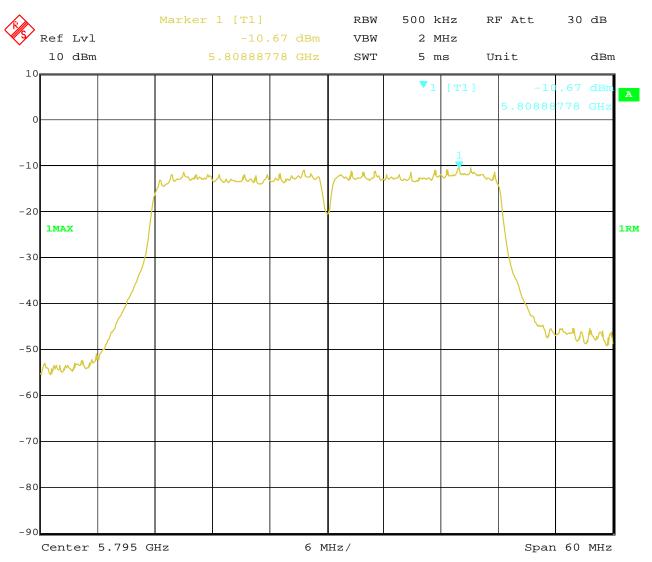
Date: 2022-05-16



#### 3.802.11ac at mcs0 of CH151



Date: 24.APR.2022 21:58:41


Page 159 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



#### 4.802.11ac at mcs0 of CH159



Date: 24.APR.2022 22:02:23

Page 160 of 169

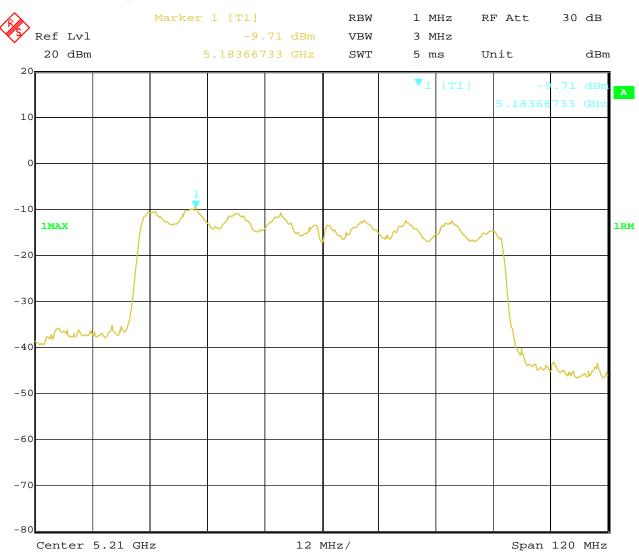
Report No.: TW2203419-03E

Date: 2022-05-16



| EUT      |           | Outdoor LoraWAN Gateway | Model        | DSGW-010C |            |
|----------|-----------|-------------------------|--------------|-----------|------------|
| Mode     |           | 802.11ac VHT80          | Test Voltage | DC48V     |            |
| Temperat | ture      | 24 deg. C,              | Humidity     | 56% RH    |            |
| Channel  | Frequency | Power Spectral          | L            | imit      | Pass/ Fail |
|          | (MHz)     | Density(dBm/MHz)        | (dBm         | n/MHz)    |            |
| 42       | 5210      | -9.71                   | 11           |           | Pass       |
| Channel  | Frequency | Power Spectral          | Limit        |           | Pass/ Fail |
|          | (MHz)     | Density(dBm/500kHz)     | (dBm/500kHz) |           |            |
| 155      | 5775      | -12.67                  |              | 30        | Pass       |

Page 161 of 169


Report No.: TW2203419-03E

Date: 2022-05-16

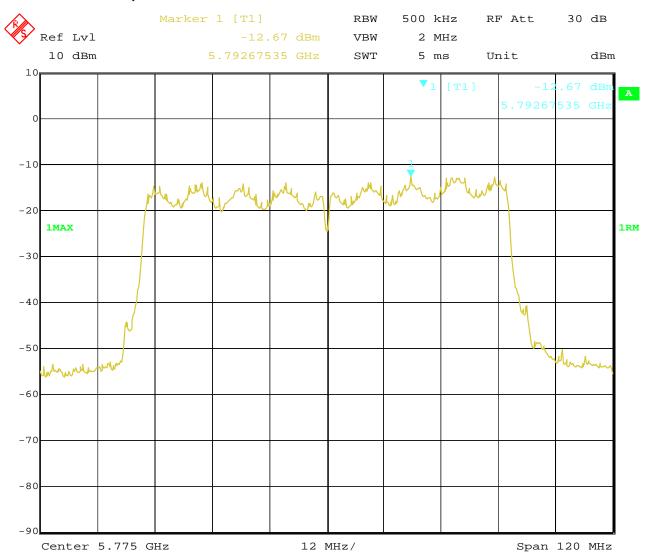


#### **Test Plots**

# 1.802.11ac at mcs0Mbps of CH42



Date: 24.APR.2022 17:32:19


Page 162 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



## 2.802.11ac at mcs0Mbps of CH155



Date: 24.APR.2022 21:39:54 Report No.: TW2203419-03E

Date: 2022-05-16



Page 163 of 169

# 10.0 Frequency Stability

# 10.1 Limits of Frequency Stability Measurement

The frequency tolerance of the carrier signal shall be maintained within  $\pm$ 0.02% of the operating frequency over a temperature variation of  $\pm$ 30 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees

# 10.2 Test Procedure

- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. Turn the EUT on and couple its output to a spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- 6. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

Report No.: TW2203419-03E

Date: 2022-05-16



### 11.3 Test Result

# **Channel 36 (5180MHz)**

# Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |
|----------------------|-----------------------------|
| 48V                  | 5180.0385                   |
| 43.2V                | 5180.0369                   |
| 52.8V                | 5180.0377                   |
| Max. Deviation (MHz) | 0.0385                      |
| Max. Deviation (ppm) | 7.43                        |

Rated working voltage: DC48V

# Temperature vs. Frequency Stability

| Temperature ( $^{\circ}$ C) | Measurement Frequency (MHz) |
|-----------------------------|-----------------------------|
| -30                         | 5180.0378                   |
| -20                         | 5180.0359                   |
| -10                         | 5180.0362                   |
| 0                           | 5180.0360                   |
| 10                          | 5180.0372                   |
| 20                          | 5180.0356                   |
| 30                          | 5180.0357                   |
| 40                          | 5180.0372                   |
| 50                          | 5180.0364                   |
| Max. Deviation (MHz)        | 0.0378                      |
| Max. Deviation (ppm)        | 7.34                        |

Page 165 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



# **Channel 149 (5745MHz)**

## Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |
|----------------------|-----------------------------|
| 48V                  | 5745.0459                   |
| 43.2V                | 5745.0426                   |
| 52.8V                | 5745.0435                   |
| Max. Deviation (MHz) | 0.0459                      |
| Max. Deviation (ppm) | 7.99                        |

Rated working voltage: DC48V

# Temperature vs. Frequency Stability

| Temperature (°C)     | Measurement Frequency (MHz) |
|----------------------|-----------------------------|
| -30                  | 5745.0431                   |
| -20                  | 5745.0419                   |
| -10                  | 5745.0450                   |
| 0                    | 5745.0428                   |
| 10                   | 5745.0443                   |
| 20                   | 5745.0428                   |
| 30                   | 5745.0415                   |
| 40                   | 5745.0437                   |
| 50                   | 5745.0441                   |
| Max. Deviation (MHz) | 0.0450                      |
| Max. Deviation (ppm) | 7.83                        |

Report No.: TW2203419-03E

Date: 2022-05-16



Page 166 of 169

# 11.0 Antenna Requirement

# 11.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitter antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the mount in dB that the directional gain of the antenna exceeds 6 dBi.

#### 11.2 Antenna Connected construction

External Antenna with Reverse polarity N connector used. The gain of the antennas is 0.20dBi (Declared by the manufacturer)

Report No.: TW2203419-03E Page 167 of 169

Date: 2022-05-16



#### 12.0 FCC ID Label

# FCC ID: 2AUXBDSGW-010C

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation

The label must not be a stick-on paper label. The label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

#### **Mark Location:**



Page 168 of 169

Report No.: TW2203419-03E

Date: 2022-05-16



#### 13.0 Photo of testing

Conducted Emission Test Setup:



Report No.: TW2203419-03E

Date: 2022-05-16



## Radiated Emission Test Setup



# **Photos of EUT**

Please see test report TW2203419-01E

# -- End of the report--

The report refers only to the sample tested and does not apply to the bulk.

This report is issued in confidence to the client and it will be strictly treated as such by the SHENZHEN TIMEWAY TESTING LABORATORIES. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it . or a certified copy there of prepared by the SHENZHEN TIMEWAY TESTING LABORATORIES. to his customer. Supplier or others persons directly concerned. SHENZHEN TIMEWAY TESTING LABORATORIES. will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the propert. discussion of correspondence with any third party concerning the contents of the report.

In the event of the improper use of the report. The SHENZHEN TIMEWAY TESTING LABORATORIES. reserves the rights to withdraw it and to

adopt any other remedies which may be appropriate.