Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL at 3900 MHz | Impedance, transformed to feed point | 45.6 Ω - 5.1 Ω | | |--------------------------------------|-----------------|--| | Return Loss | - 23.1 dB | | # Antenna Parameters with Head TSL at 4000 MHz | Impedance, transformed to feed point | 51.9 Ω - 2.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.5 dB | | #### Antenna Parameters with Head TSL at 4100 MHz | Impedance, transformed to feed point | 58.1 Ω - 0.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.4 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.107 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| #### **DASY5 Validation Report for Head TSL** Date: 14.06.2024 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1024 Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; $\sigma = 3.27$ S/m; $\varepsilon_r = 38.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 4000 MHz; $\sigma = 3.36$ S/m; $\varepsilon_r = 38.0$; $\rho = 1000$ kg/m³ Medium parameters used: f = 4100 MHz; $\sigma = 3.45$ S/m; $\varepsilon_r = 37.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(7.32, 7.32, 7.32) @ 3900 MHz, ConvF(7.39, 7.39, 7.39) @ 4000 MHz; Calibrated: 07.03.2024, ConvF(6.86, 6.86, 6.86) @ 4100 MHz; Calibrated: 07.03.2024 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 22.05.2024 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.20 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 19.9 W/kg SAR(1 g) = 6.98 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.9% Maximum value of SAR (measured) = 13.6 W/kg #### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4000MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.25 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 6.85 W/kg; SAR(10 g) = 2.40 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.9% Maximum value of SAR (measured) = 13.3 W/kg # Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.30 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 19.7 W/kg SAR(1 g) = 6.94 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.9% Maximum value of SAR (measured) = 13.6 W/kg 0 dB = 13.6 W/kg = 11.34 dBW/kg # Impedance Measurement Plot for Head TSL # **4200 MHz Dipole Calibration Certificate** # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL Certificate No. D4200V2-1010_Jun24 | Object | D4200V2 - SN:10 | 010 | | |---|---|--|--| | Calibration procedure(s) | QA CAL-22.v7
Calibration Proce | dure for SAR Validation Sources | between 3-10 GHz | | Calibration date: | June 14, 2024 | | | | | | onal standards, which realize the physical unit | | | he measurements and the uncerta | ainties with confidence pr | obability are given on the following pages and | d are part of the certificate. | | Il calibrations have been conducte | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70%. | | | | | | | alibration Equipment used (M&TE | critical for calibration) | | | | | | | | | rimary Standards | lın# | Cal Date (Certificate No.) | Scheduled Calibration | | | ID#
SN: 104778 | Cal Date (Certificate No.)
26-Mar-24 (No. 217-04036/04037) | Scheduled Calibration Mar-25 | | ower meter NRP2 | ID#
SN: 104778
SN: 103244 | 26-Mar-24 (No. 217-04036/04037) | Scheduled Calibration Mar-25 Mar-25 | | ower meter NRP2
ower sensor NRP-Z91 | SN: 104778 | 26-Mar-24 (No. 217-04036/04037)
26-Mar-24 (No. 217-04036) | Mar-25 | | ower meter NRP2
lower sensor NRP-Z91
lower sensor NRP-Z91 | SN: 104778
SN: 103244 | 26-Mar-24 (No. 217-04036/04037) | Mar-25
Mar-25 | | ower meter NRP2
ower sensor NRP-Z91
ower sensor NRP-Z91
deference 20 dB Attenuator | SN: 104778
SN: 103244
SN: 103245 | 26-Mar-24 (No. 217-04036/04037)
26-Mar-24 (No. 217-04036)
26-Mar-24 (No. 217-04037) | Mar-25
Mar-25
Mar-25 | | ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k) | 26-Mar-24 (No. 217-04036/04037)
26-Mar-24 (No. 217-04036)
26-Mar-24 (No. 217-04037)
26-Mar-24 (No. 217-04046) | Mar-25
Mar-25
Mar-25
Mar-25 | | Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 26-Mar-24 (No. 217-04036/04037)
26-Mar-24 (No. 217-04036)
26-Mar-24 (No. 217-04037)
26-Mar-24 (No. 217-04046)
26-Mar-24 (No. 217-04047) | Mar-25
Mar-25
Mar-25
Mar-25
Mar-25 | | Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503 | 26-Mar-24 (No. 217-04036/04037)
26-Mar-24 (No. 217-04036)
26-Mar-24 (No. 217-04037)
26-Mar-24 (No. 217-04046)
26-Mar-24 (No. 217-04047)
07-Mar-24 (No. EX3-3503_Mar24)
22-May-24 (No. DAE4-601_May24) | Mar-25
Mar-25
Mar-25
Mar-25
Mar-25
Mar-25 | | ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination deference Probe EX3DV4 AE4 econdary Standards | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 26-Mar-24 (No. 217-04036/04037)
26-Mar-24 (No. 217-04036)
26-Mar-24 (No. 217-04037)
26-Mar-24 (No. 217-04046)
26-Mar-24 (No. 217-04047)
07-Mar-24 (No. EX3-3503_Mar24) | Mar-25
Mar-25
Mar-25
Mar-25
Mar-25
Mar-26
May-25 | | ower meter NRP2 ower sensor NRP-Z91 ower sensor NRP-Z91 deference 20 dB Attenuator ype-N mismatch combination deference Probe EX3DV4 AE4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 26-Mar-24 (No. 217-04036/04037)
26-Mar-24 (No. 217-04036)
26-Mar-24 (No. 217-04037)
26-Mar-24 (No. 217-04046)
26-Mar-24 (No. 217-04047)
07-Mar-24 (No. EX3-3503_Mar24)
22-May-24 (No. DAE4-601_May24)
Check Date (in house) | Mar-25
Mar-25
Mar-25
Mar-25
Mar-25
Mar-25
May-25 | | Power meter NRP2 Power sensor NRP-Z91 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601 | 26-Mar-24 (No. 217-04036/04037)
26-Mar-24 (No. 217-04036)
26-Mar-24 (No. 217-04037)
26-Mar-24 (No. 217-04046)
26-Mar-24 (No. 217-04047)
07-Mar-24 (No. EX3-3503_Mar24)
22-May-24 (No. DAE4-601_May24)
Check Date (in house)
30-Oct-14 (in house check Oct-22) | Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 May-25 Scheduled Check In house check: Oct-24 In house check: Oct-24 | | Power meter NRP2 Power sensor NRP-Z91 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 26-Mar-24 (No. 217-04036/04037)
26-Mar-24 (No. 217-04036)
26-Mar-24 (No. 217-04037)
26-Mar-24 (No. 217-04046)
26-Mar-24 (No. 217-04047)
07-Mar-24 (No. EX3-3503_Mar24)
22-May-24 (No. DAE4-601_May24)
Check Date (in house)
30-Oct-14 (in house check Oct-22)
07-Oct-15 (in house check Oct-22) | Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 May-25 Scheduled Check In house check: Oct-24 In house check: Oct-24 | | Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315 | 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 07-Mar-24 (No. EX3-3503_Mar24) 22-May-24 (No. DAE4-601_May24) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) | Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 May-25 Scheduled Check In house check: Oct-24 | | Primary Standards Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04046) 26-Mar-24 (No. 217-04047) 07-Mar-24 (No. EX3-3503_Mar24) 22-May-24 (No. DAE4-601_May24) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) | Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 May-25 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 | | Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: BH9394 (20k) SN: 310982 / 06327 SN: 3503 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41093315 SN: 100972 SN: US41080477 Name | 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04047) 26-Mar-24 (No. 217-04047) 07-Mar-24 (No. EX3-3503_Mar24) 22-May-24 (No. DAE4-601_May24) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) | Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 May-25 Scheduled Check In house check: Oct-24 | | Power meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Regenerator R&S SMT-06 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477 | 26-Mar-24 (No. 217-04036/04037) 26-Mar-24 (No. 217-04036) 26-Mar-24 (No. 217-04037) 26-Mar-24 (No. 217-04047) 26-Mar-24 (No. 217-04047) 07-Mar-24 (No. EX3-3503_Mar24) 22-May-24 (No. DAE4-601_May24) Check Date (in house) 30-Oct-14 (in house check Oct-22) 07-Oct-15 (in house check Oct-22) 15-Jun-15 (in house check Oct-22) 31-Mar-14 (in house check Oct-22) | Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 Mar-25 May-25 Scheduled Check In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 In house check: Oct-24 | This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | ASY system configuration, as far as no | t given on page 1. | 0122112 | |--|--|----------------------------------| | DASY Version | DASY52 | V52.10.4 | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 4200 MHz ± 1 MHz
4300 MHz ± 1 MHz
4400 MHz ± 1 MHz | | # Head TSL parameters at 4200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.1 | 3.63 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.5 ± 6 % | 3.53 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 4200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.63 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 66.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.26 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.7 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 4300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.0 | 3.73 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.4 ± 6 % | 3.63 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 4300 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.79 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 4400 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.9 | 3.84 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.2 ± 6 % | 3.72 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 4400 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.2 W/kg ± 19.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL at 4200 MHz | Impedance, transformed to feed point | 45.8 Ω - 6.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.6 dB | # Antenna Parameters with Head TSL at 4300 MHz | Impedance, transformed to feed point | 50.1 Ω - 2.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 33.9 dB | | #### Antenna Parameters with Head TSL at 4400 MHz | Impedance, transformed to feed point | 49.8 Ω - 3.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.6 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.107 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| ## **DASY5 Validation Report for Head TSL** Date: 14.06.2024 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 4200 MHz; Type: D4200V2; Serial: D4200V2 - SN:1010 Communication System: UID 0 - CW; Frequency: 4200 MHz, Frequency: 4300 MHz, Frequency: 4400 MHz Medium parameters used: f = 4200 MHz; $\sigma = 3.53$ S/m; $\epsilon_r = 37.5$; $\rho = 1000$ kg/m³ Medium parameters used: f = 4300 MHz; $\sigma = 3.63$ S/m; $\epsilon_r = 37.4$; $\rho = 1000$ kg/m³ Medium parameters used: f = 4400 MHz; $\sigma = 3.72$ S/m; $\epsilon_r = 37.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(6.7, 6.7, 6.7) @ 4200 MHz, ConvF(6.69, 6.69, 6.69) @ 4300 MHz, ConvF(6.69, 6.69, 6.69) @ 4400 MHz; Calibrated: 07.03.2024 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 22.05.2024 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4200MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.47 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 18.1 W/kg #### SAR(1 g) = 6.63 W/kg; SAR(10 g) = 2.26 W/kg Smallest distance from peaks to all points 3 dB below = 7.9 mm Ratio of SAR at M2 to SAR at M1 = 75.4% Maximum value of SAR (measured) = 12.9 W/kg #### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4300MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.30 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 19.3 W/kg #### SAR(1 g) = 6.79 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.9 mm Ratio of SAR at M2 to SAR at M1 = 74.5% Maximum value of SAR (measured) = 13.3 W/kg Certificate No: D4200V2-1010_Jun24 # Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4400MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.46 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.2 W/kg SAR(1 g) = 6.56 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.9 mm Ratio of SAR at M2 to SAR at M1 = 73.7% Maximum value of SAR (measured) = 13.2 W/kg 0 dB = 13.3 W/kg = 11.25 dBW/kg # Impedance Measurement Plot for Head TSL # **5GHz Dipole Calibration Certificate** # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierd C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL Beijing Certificate No. D5GHzV2-1060_Jun24 # **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1060 Calibration procedure(s) **QA CAL-22.v7** Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: June 12, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 26-Mar-24 (No. 217-04036/04037) | Mar-25 | | Power sensor NRP-Z91 | SN: 103244 | 26-Mar-24 (No. 217-04036) | Mar-25 | | Power sensor NRP-Z91 | SN: 103245 | 26-Mar-24 (No. 217-04037) | Mar-25 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 26-Mar-24 (No. 217-04046) | Mar-25 | | Type-N mismatch combination | SN: 310982 / 06327 | 26-Mar-24 (No. 217-04047) | Mar-25 | | Reference Probe EX3DV4 | SN: 3503 | 07-Mar-24 (No. EX3-3503_Mar24) | Mar-25 | | DAE4 | SN: 601 | 22-May-24 (No. DAE4-601_May24) | May-25 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Paulo Pina | Laboratory Technician | | | | | | Ferra | | Approved by: | Sven Kühn | Technical Manager | 1/1/1/ | | , | | 1.4 | . N. Adle | Issued: June 13, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1060_Jun24 Page 1 of 13 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook # Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY52 | V52.10.4 | |--|--| | Advanced Extrapolation | | | Modular Flat Phantom V5.0 | | | 10 mm | with Spacer | | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | 5200 MHz ± 1 MHz
5250 MHz ± 1 MHz
5300 MHz ± 1 MHz | | | 5500 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | | | Advanced Extrapolation Modular Flat Phantom V5.0 10 mm dx, dy = 4.0 mm, dz = 1.4 mm 5200 MHz ± 1 MHz 5250 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.4 ± 6 % | 4.55 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.64 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 76.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.8 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.3 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | **** | ## SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.4 W/kg ± 19.5 % (k=2) | Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.2 ± 6 % | 4.64 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.94 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.8 ± 6 % | 4.86 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 $\mathrm{cm^3}$ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.6 ± 6 % | 4.97 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.17 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.4 ± 6 % | 5.14 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.99 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 5.19 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.88 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.2 W/kg ± 19.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 47.5 Ω - 4.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.0 dB | | #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 46.5 Ω - 3.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.5 dB | | #### Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 46.3 Ω - 1.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.9 dB | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 49.5 Ω - 2.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 32.7 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.0 Ω + 1.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 29.5 dB | | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 51.5 Ω - 0.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 35.8 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 51.0 Ω - 2.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 31.9 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | 1.202 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D5GHzV2-1060_Jun24 # **DASY5 Validation Report for Head TSL** Date: 12.06.2024 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1060 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5250 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.55 S/m; ϵ_r = 36.4; ρ = 1000 kg/m³ Medium parameters used: f = 5250 MHz; σ = 4.6 S/m; ϵ_r = 36.3; ρ = 1000 kg/m³ Medium parameters used: f = 5300 MHz; σ = 4.64 S/m; ϵ_r = 36.2; ρ = 1000 kg/m³ Medium parameters used: f = 5500 MHz; σ = 4.86 S/m; ϵ_r = 35.8; ρ = 1000 kg/m³ Medium parameters used: f = 5600 MHz; σ = 4.97 S/m; ϵ_r = 35.6; ρ = 1000 kg/m³ Medium parameters used: f = 5750 MHz; σ = 5.14 S/m; ϵ_r = 35.4; ρ = 1000 kg/m³ Medium parameters used: f = 5800 MHz; σ = 5.19 S/m; ϵ_r = 35.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.63, 5.63, 5.63) @ 5200 MHz, ConvF(5.39, 5.39, 5.39) @ 5250 MHz, ConvF(5.38, 5.38, 5.38) @ 5300 MHz, ConvF(5.04, 5.04, 5.04) @ 5500 MHz, ConvF(5, 5, 5) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz, ConvF(4.86, 4.86, 4.86) @ 5800 MHz; Calibrated: 07.03.2024 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 22.05.2024 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.67 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 7.64 W/kg; SAR(10 g) = 2.18 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.1% Maximum value of SAR (measured) = 17.7 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.05 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 70.1% Maximum value of SAR (measured) = 18.0 W/kg Certificate No: D5GHzV2-1060_Jun24 # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.66 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 28.3 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.9% Maximum value of SAR (measured) = 18.5 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.28 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.37 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 66.4% Maximum value of SAR (measured) = 20.0 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.70 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.7 W/kg SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 67.1% Maximum value of SAR (measured) = 19.6 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.11 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.6% Maximum value of SAR (measured) = 19.3 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.18 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 7.88 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.1% Maximum value of SAR (measured) = 19.3 W/kg 0 dB = 20.0 W/kg = 13.02 dBW/kg # Impedance Measurement Plot for Head TSL (5200, 5250, 5300, 5500 MHz) # Impedance Measurement Plot for Head TSL (5600, 5750, 5800 MHz) # **ANNEX I** Accreditation Certificate # **Accredited Laboratory** A2LA has accredited # TELECOMMUNICATION TECHNOLOGY LABS, CAICT Beijing, People's Republic of China for technical competence in the field of ## **Electrical Testing** This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017). Presented this 23rd day of July 2024. Mr. Trace McInturff, Vice President, Accreditation Services For the Accreditation Council Certificate Number 7049,01 Valid to July 31, 2026 For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.