DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

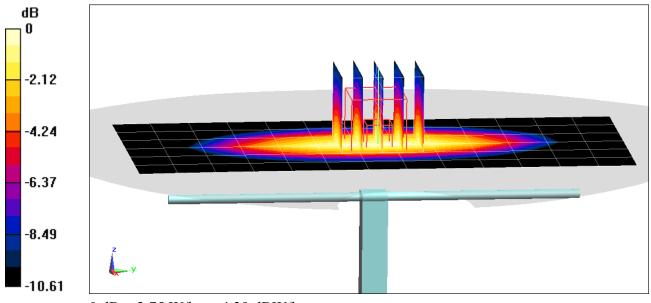
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.969 \text{ S/m}; \ \epsilon_r = 53.152; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 09/20/2020; Ambient Temp: 21.0°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7308; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 7/31/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792


Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.18 W/kgSAR(1 g) = 2.02 W/kgDeviation(1 g) = 1.41%

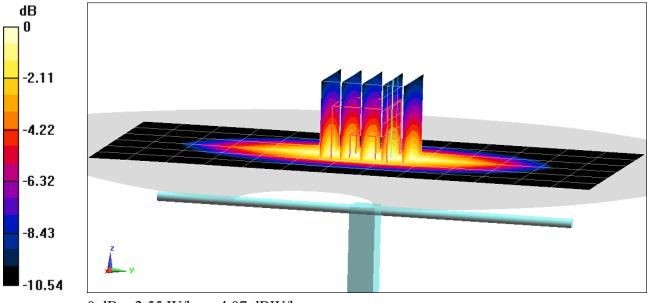
0 dB = 2.75 W/kg = 4.39 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.955 \text{ S/m}; \ \epsilon_r = 53.042; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 09/22/2020; Ambient Temp: 23.7°C; Tissue Temp: 21.2°C

Probe: EX3DV4 - SN7308; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 7/31/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1450; Calibrated: 8/11/2020
Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792


835 MHz System Verification at 23.0 dBm (200 mW)

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

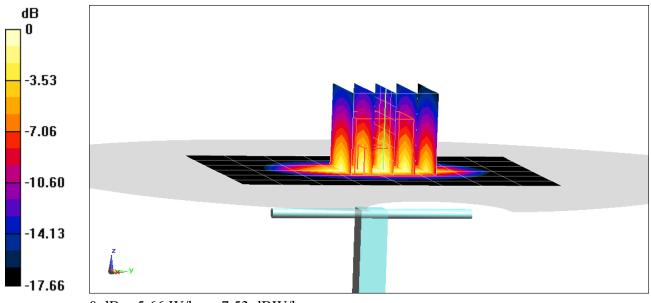
Peak SAR (extrapolated) = 2.97 W/kgSAR(1 g) = 1.87 W/kgDeviation(1 g) = -6.12%

0 dB = 2.55 W/kg = 4.07 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.501 \text{ S/m}; \ \epsilon_r = 51.993; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/08/2020; Ambient Temp: 21.4°C; Tissue Temp: 21.6°C


Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1368; Calibrated: 3/12/2020

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

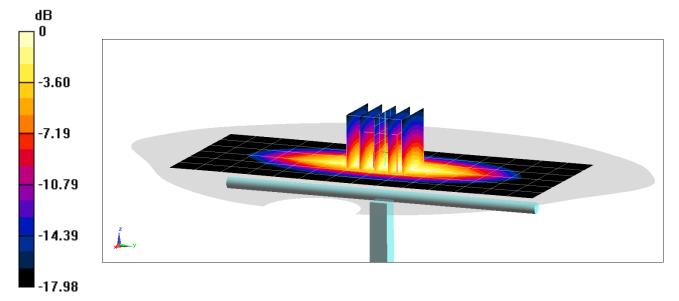
1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.77 W/kg SAR(1 g) = 3.75 W/kg Deviation(1 g) = 3.31%

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.513 \text{ S/m}; \ \epsilon_r = 52.973; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/14/2020; Ambient Temp: 22.1°C; Tissue Temp: 20.9°C


Probe: EX3DV4 - SN7538; ConvF(8.38, 8.38, 8.38) @ 1750 MHz; Calibrated: 5/18/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn728; Calibrated: 5/20/2020 Phantom: Front; Type: OD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.18 W/kg SAR(1 g) = 3.94 W/kg Deviation(1 g) = 5.35%

0 dB = 5.99 W/kg = 7.77 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.508 \text{ S/m}; \ \epsilon_r = 51.697; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

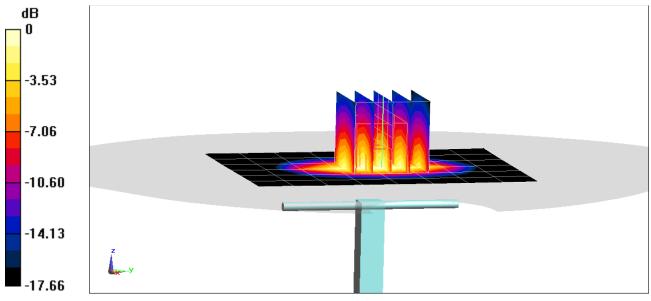
Test Date: 09/23/2020; Ambient Temp: 22.1°C; Tissue Temp: 21.9°C

Probe: EX3DV4 - SN7570; ConvF(8.48, 8.48, 8.48) @ 1750 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1368; Calibrated: 3/12/2020

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1750 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 6.83 W/kg

SAR(1 g) = 3.72 W/kg; SAR(10 g) = 1.96 W/kg

Deviation(1 g) = 2.48%; Deviation(10 g) = 1.55%

0 dB = 5.66 W/kg = 7.53 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.565 \text{ S/m}; \ \epsilon_r = 52.861; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/06/2020; Ambient Temp: 22.0°C; Tissue Temp: 22.9°C

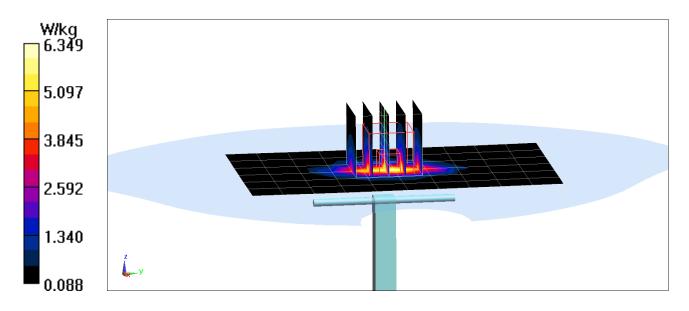
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.55 W/kg

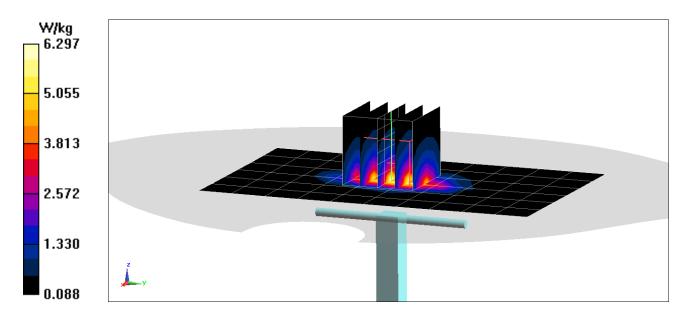
SAR(1 g) = 4.08 W/kg

Deviation(1 g) = 4.08%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.571 \text{ S/m}; \ \epsilon_r = 51.863; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/08/2020; Ambient Temp: 21.3°C; Tissue Temp: 21.8°C


Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 4/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.43 W/kg SAR(1 g) = 4.06 W/kgDeviation(1 g) = 3.05%

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d080

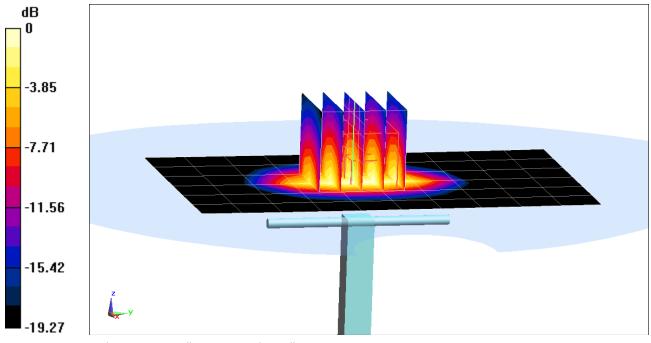
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.562 \text{ S/m}; \ \epsilon_r = 51.79; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/17/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375


Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.80 W/kg

SAR(1 g) = 4.17 W/kg; SAR(10 g) = 2.13 W/kg

Deviation(1 g) = 6.38%; Deviation(10 g) = 3.40%

0 dB = 6.43 W/kg = 8.08 dBW/kg

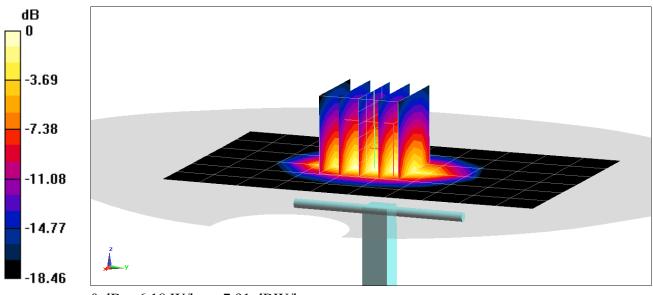
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.579 \text{ S/m}; \ \epsilon_r = 51.554; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/21/2020; Ambient Temp: 22.2°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN7357; ConvF(7.8, 7.8, 7.8) @ 1900 MHz; Calibrated: 4/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/15/2020


Phantom: Twin-SAM V5.0 Right 30; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.27 W/kgSAR(1 g) = 4 W/kg; SAR(10 g) = 2.06 W/kgDeviation(1 g) = 1.52%; Deviation(10 g) = -0.48%

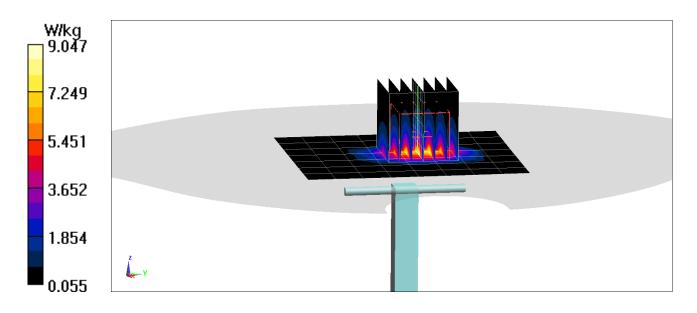
0 dB = 6.18 W/kg = 7.91 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 882

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.03 \text{ S/m}; \ \epsilon_r = 52.446; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/08/2020; Ambient Temp: 22.0°C; Tissue Temp: 22.0°C

Probe: EX3DV4 - SN7402; ConvF(7.73, 7.73, 7.73) @ 2450 MHz; Calibrated: 4/21/2020


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1502; Calibrated: 4/15/2020

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1868

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

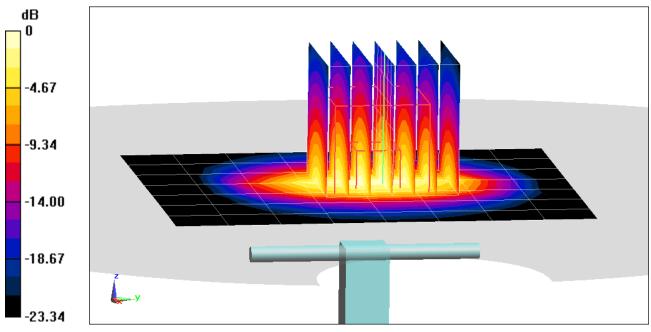
Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.2 W/kg SAR(1 g) = 5.4 W/kg Deviation(1 g) = 4.85%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.034 \text{ S/m}; \ \epsilon_r = 51.063; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/14/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN7308; ConvF(7.41, 7.41, 7.41) @ 2450 MHz; Calibrated: 7/31/2020


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.4 W/kg SAR(1 g) = 5.17 W/kg Deviation(1 g) = 1.57%

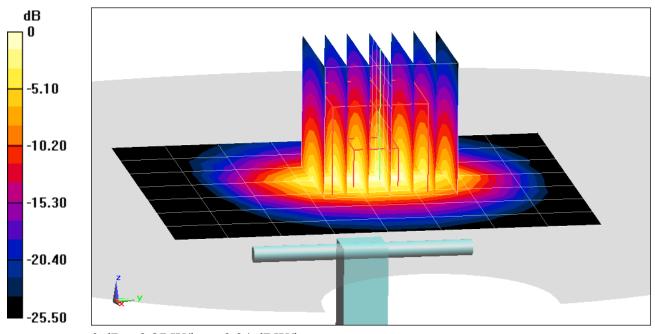
0 dB = 8.93 W/kg = 9.51 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1004

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used:| $f = 2600 \text{ MHz}; \ \sigma = 2.243 \text{ S/m}; \ \epsilon_r = 50.492; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/14/2020; Ambient Temp: 22.7°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN7308; ConvF(7.37, 7.37, 7.37) @ 2600 MHz; Calibrated: 7/31/2020


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1450; Calibrated: 8/11/2020

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

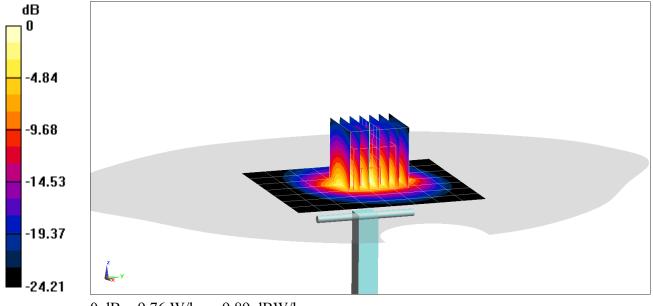
2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.9 W/kg SAR(1 g) = 5.58 W/kg Deviation(1 g) = 1.82%

0 dB = 9.87 W/kg = 9.94 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.205 \text{ S/m}; \ \epsilon_r = 51.009; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 10/01/2020; Ambient Temp: 22.4°C; Tissue Temp: 22.2°C

Probe: EX3DV4 - SN7409; ConvF(7.12, 7.12, 7.12) @ 2600 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/18/2020

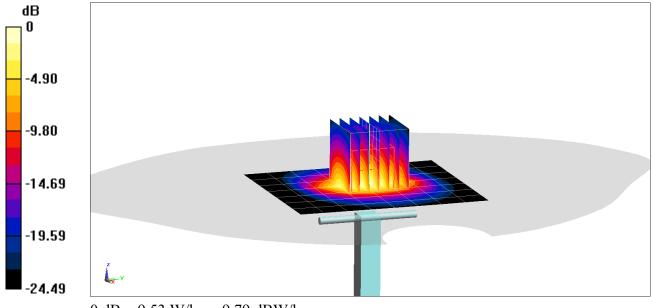
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.5 W/kg SAR(1 g) = 5.54 W/kg Deviation(1 g) = -0.36%

0 dB = 9.76 W/kg = 9.89 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.224 \text{ S/m}; \ \epsilon_r = 51.471; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/28/2020; Ambient Temp: 22.0°C; Tissue Temp: 22.4°C

Probe: EX3DV4 - SN7409; ConvF(7.12, 7.12, 7.12) @ 2600 MHz; Calibrated: 6/23/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/18/2020
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.14 (7483)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.3 W/kg SAR(1 g) = 5.49 W/kg Deviation(1 g) = -1.26%

0 dB = 9.53 W/kg = 9.79 dBW/kg

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: 1059

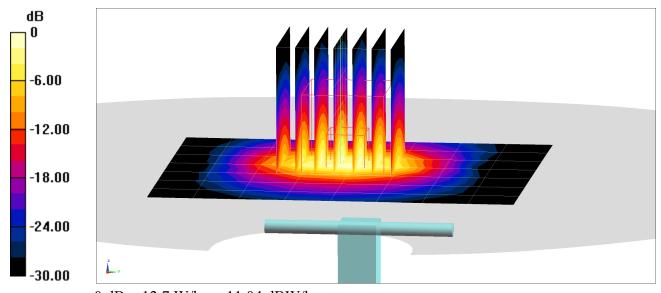
Communication System: UID 0, CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: 3600 Body Medium parameters used: $f = 3500 \text{ MHz}; \ \sigma = 3.39 \text{ S/m}; \ \epsilon_r = 49.918; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/27/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7488; ConvF(7, 7, 7) @ 3500 MHz; Calibrated: 1/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0 (20); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


3500 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 6.57 **W/kg** Deviation(1 g) = 0.92%

0 dB = 12.7 W/kg = 11.04 dBW/kg

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: 1018

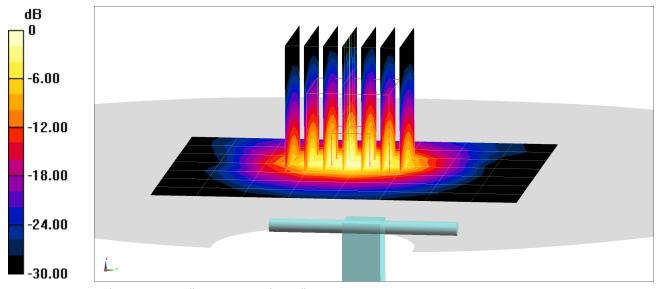
Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 Medium: 3600 Body Medium parameters used: $f = 3700 \text{ MHz}; \ \sigma = 3.605 \text{ S/m}; \ \epsilon_r = 49.623; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09/27/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.3°C

Probe: EX3DV4 - SN7488; ConvF(6.85, 6.85, 6.85) @ 3700 MHz; Calibrated: 1/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0 (20); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


3700 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.2 W/kg

SAR(1 g) = 6.43 W/kg Deviation(1 g) = 0.00%

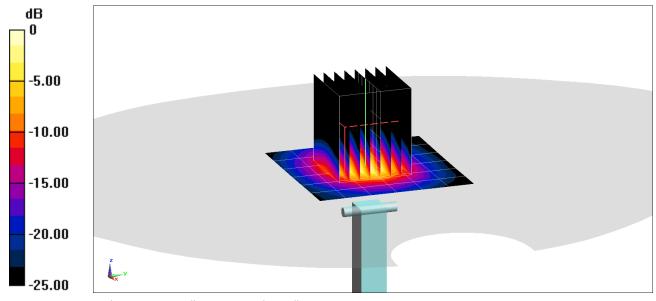
0 dB = 12.8 W/kg = 11.07 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: $f = 5250 \text{ MHz}; \ \sigma = 5.45 \text{ S/m}; \ \epsilon_r = 47.801; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/31/2020; Ambient Temp: 21.1°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7538; ConvF(4.6, 4.6, 4.6) @ 5250 MHz; Calibrated: 5/18/2020


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/15/2020

Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 13.0 W/kg SAR(1 g) = 3.54 W/kg; SAR(10 g) = 0.987 W/kg Deviation(1 g) = -6.35%; Deviation(10 g) = -6.89%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

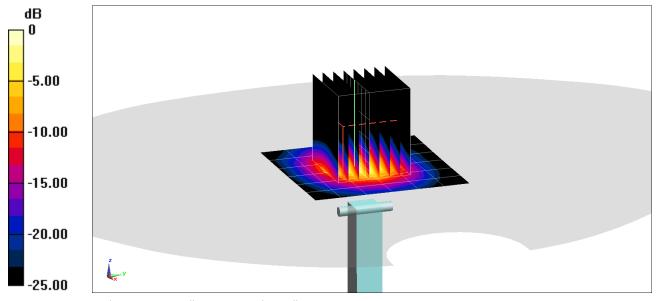
Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5600 MHz; $\sigma = 5.905$ S/m; $\varepsilon_r = 47.207$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/31/2020; Ambient Temp: 21.1°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7538; ConvF(4.09, 4.09, 4.09) @ 5600 MHz; Calibrated: 5/18/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/15/2020

Phantom: Front; Type: QD 000 P40 CD; Serial: 1686


Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.6 W/kgSAR(1 g) = 3.76 W/kg; SAR(10 g) = 1.05 W/kgDeviation(1 g) = -4.20%; Deviation(10 g) = -4.55%

0 dB = 9.44 W/kg = 9.75 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1237

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: $f = 5750 \text{ MHz}; \ \sigma = 6.135 \text{ S/m}; \ \epsilon_r = 46.99; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08/31/2020; Ambient Temp: 21.1°C; Tissue Temp: 21.0°C

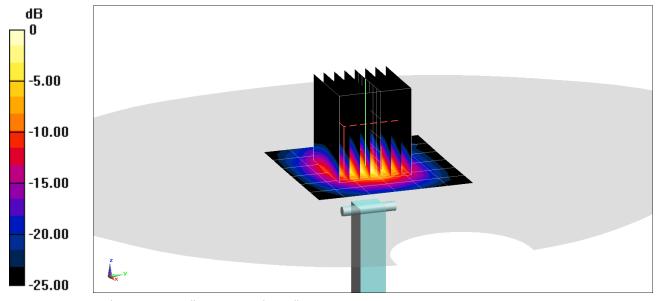
Probe: EX3DV4 - SN7538; ConvF(4.17, 4.17, 4.17) @ 5750 MHz; Calibrated: 5/18/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/15/2020
Phantom: Front: Type: OD 000 P40 CD: Serial: 1686

Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

5750 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 3.6 W/kg

SAR(1 g) = 3.6 W/kg Deviation(1 g) = -5.14%

0 dB = 9.31 W/kg = 9.69 dBW/kg

APPENDIX C:SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ϵ can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}'\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

.2 Mixtures escription: Aqueous solution with	surfactants and inhibitors	
Declarable, or hazardous compon		
CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000	_	
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
dditional information:		
or the wording of the listed risk phra	ases refer to section 16.	
lot mentioned CAS-, EINECS- or re	gistration numbers are to be regarded as Proprietary	/Confidential.
he specific chemical identity and/or	exact percentage concentration of proprietary compo	onents is
vithheld as a trade secret.		

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID: ZNFF100TM	PCTEST* Proud to be part of @ dement SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Test Dates:	DUT Type:		APPENDIX C
08/31/20 - 10/06/20	Portable Handset		Page 1 of 3

© 2020 PCTEST REV 21.4 M 09/11/2019

S p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

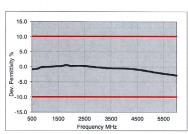
Body Tissue Simulating Liquid (MBBL600-6000V6) Product No. SL AAM U16 BC (Batch: 181029-1) Manufacturer SPEAG

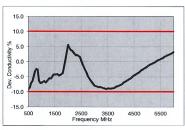
Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the KDB 865664 compliance standard.


Test Condition


Ambient Condition 22°C; 30% humidity

TSL Temperature 22°C Test Date 30-Oct-18 Operator CL
Additional Information
TSL Density

TSL Heat-capacity

Measured			Targe	t	Diff.to Target [%]		
f [MHz]	e'	e"	sigma	eps	sigma	Δ-eps	Δ-sigma
800	55.1	21.3	0.95	55.3	0.97	-0.4	-2.1
825	55.1	20.8	0.96	55.2	0.98	-0.3	-2.0
835	55.1	20.6	0.96	55.1	0.99	0.0	-2.5
850	55.1	20.4	0.96	55.2	0.99	-0.1	-3.0
900	55.0	19.7	0.98	55.0	1.05	0.0	-6.7
1400	54.2	15.6	1.22	54.1	1.28	0.2	-4.7
1450	54.1	15.4	1.24	54.0	1.30	0.2	-4.6
1500	54.1	15.3	1.27	53.9	1.33	0.3	-4.5
1550	54.0	15.1	1.30	53.9	1.36	0.2	-4.4
1600	53.9	15.0	1.33	53.8	1.39	0.2	-4.3
1625	53.9	14.9	1.35	53.8	1.41	0.3	-4.3
1640	53.9	14.9	1.36	53.7	1.42	0.3	-4.2
1650	53.8	14.9	1.36	53.7	1.43	0.2	-4.9
1700	53.8	14.8	1.40	53.6	1.46	0.4	-4.1
1750	53.7	14.7	1.43	53.4	1.49	0.5	-4.0
1800	53.7	14.6	1.46	53.3	1.52	0.8	-3.9
1810	53.7	14.6	1.47	53.3	1.52	0.8	-3.3
1825	53.7	14.6	1.48	53.3	1.52	0.8	-2.6
1850	53.6	14.5	1.50	53.3	1.52	0.6	-1.3
1900	53.5	14.5	1.53	53.3	1.52	0.4	0.7
1950	53.5	14.5	1.57	53.3	1.52	0.4	3.3
2000	53.4	14.4	1.60	53.3	1.52	0.2	5.3
2050	53.4	14.4	1.64	53.2	1.57	0.3	4.5
2100	53.3	14.4	1.68	53.2	1.62	0.2	3.7
2150	53.3	14.4	1.72	53.1	1.66	0.4	3.6
2200	53.2	14.4	1.76	53.0	1.71	0.3	2.9
2250	53.1	14.4	1.81	53.0	1.76	0.2	2.8
2300	53.1	14.4	1.85	52.9	1.81	0.4	2.2
2350	53.0	14.5	1.89	52.8	1.85	0.3	2.2
2400	52.9	14.5	1.94	52.8	1.90	0.2	2.1
2450	52.9	14.5	1.98	52.7	1.95	0.4	1.5
2500	52.8	14.6	2.03	52.6	2.02	0.3	0.5
2550	52.7	14.6	2.07	52.6	2.09	0.2	-1.0
2600	52.6	14.7	2.12	52.5	2.16	0.2	-1.9

3500	51.1	15.5	3.02	51.3	3.31	-0.4	-8.8
3700	50.8	15.7	3.24	51.1	3.55	-0.5	-8.8
5200	48.1	18.2	5.27	49.0	5.30	-1.8	-0.6
5250	48.0	18.3	5.34	49.0	5.36	-1.9	-0.4
5300	47.9	18.4	5.41	48.9	5.42	-2.0	-0.2
5500	47.5	18.6	5.70	48.6	5.65	-2.2	0.8
5600	47.3	18.8	5.84	48.5	5.77	-2.3	1.3
5700	47.1	18.9	5.99	48.3	5.88	-2.5	1.8
5800	47.0	19.0	6.14	48.2	6.00	-2.6	2.3

TSL Dielectric Parameters

Figure C-2 600 - 5800 MHz Body Tissue Equivalent Matter

FCC ID: ZNFF100TM	Product to be part of @ element SAR EVALUATION F	EPORT LG	Approved by: Quality Manager
Test Dates:	DUT Type:		APPENDIX C
08/31/20 - 10/06/20	Portable Handset		Page 2 of 3