

TEST REPORT

FCC LTE B42 Test for TM19FNEUHD2

Certification

APPLICANT

LG Electronics Inc.

REPORT NO.

HCT-RF-2412-FC055

DATE OF ISSUE

December 20, 2024

Tested by Jae Ryang Do

Technical Manager Jong Seok Lee

Accredited by KOLAS, Republic of KOREA

HCT CO., LTD. Bongjai Huh / CEO

F-TP22-03(Rev.06) 1 / 150

HCT CO.,LTD.

2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea Tel. +82 31 645 6300 Fax. +82 31 645 6401

TEST REPORT

REPORT NO. HCT-RF-2412-FC055

DATE OF ISSUE December 20, 2024

Applicant	LG Electronics Inc. 128, Yeoui-daero, Yeongdeungpo-gu, Seoul, Republic of Korea
Product Name Model Name	Telematics TM19FNEUHD2
Date of Test	October 07, 2024 ~ December 10, 2024
FCC ID	BEJTM19FNEUHD2
Location of Test	■ Permanent Testing Lab □ On Site Testing (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea)
FCC Classification:	PCB Licensed Transmitter (PCB)
Test Standard Used	FCC Rule Part(s): § 27
Test Results	PASS

F-TP22-03 (Rev. 06) Page 2 of 150

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	December 20, 2024	Initial Release

Notice

Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

This test report provides test result(s) under the scope accredited by the Korea Laboratory Accreditation Scheme (KOLAS), which signed the ILAC-MRA.

(KOLAS (KS Q ISO/IEC 17025) Accreditation No. KT197)

F-TP22-03 (Rev. 06) Page 3 of 150

CONTENTS

1. GENERAL INFORMATION	5
1.1. MAXIMUM OUTPUT POWER	6
2. INTRODUCTION	
2.1. DESCRIPTION OF EUT	7
2.2. MEASURING INSTRUMENT CALIBRATION	7
2.3. TEST FACILITY	7
3. DESCRIPTION OF TESTS	8
3.1 TEST PROCEDURE	8
3.2 CONDUCTED OUTPUT POWER	9
3.3 RADIATED POWER	. 10
3.4 RADIATED SPURIOUS EMISSIONS	. 11
3.5 PEAK- TO- AVERAGE RATIO	. 12
3.6 OCCUPIED BANDWIDTH	. 14
3.7 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	. 15
3.8 BAND EDGE	. 16
3.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	. 18
3.10 WORST CASE(RADIATED TEST)	. 19
3.11 WORST CASE(CONDUCTED TEST)	. 20
4. LIST OF TEST EQUIPMENT	. 21
5. MEASUREMENT UNCERTAINTY	. 22
6. SUMMARY OF TEST RESULTS	. 23
7. SAMPLE CALCULATION	. 24
8. TEST DATA	. 26
8.1 Conducted Power	. 26
8.2 EQUIVALENT ISOTROPIC RADIATED POWER	. 30
8.3 RADIATED SPURIOUS EMISSIONS	. 34
8.4 PEAK-TO-AVERAGE RATIO	. 38
8.5 OCCUPIED BANDWIDTH	. 39
8.6 CONDUCTED SPURIOUS EMISSIONS	. 40
8.7 BAND EDGE	. 40
8.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	. 41
9. TEST PLOTS	. 45
10. ANNEX A TEST SETUP PHOTO	150

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	LG Electronics Inc.
Address:	128, Yeoui-daero, Yeongdeungpo-gu, Seoul, Republic of Korea
FCC ID:	BEJTM19FNEUHD2
Application Type:	Certification
FCC Classification	PCB Licensed Transmitter (PCB)
FCC Rule Part(s):	§ 27
EUT Type:	Telematics
Model(s):	TM19FNEUHD2
	3452.5 MHz – 3547.5 MHz (LTE – Band42 (5 MHz))
T. F	3455.0 MHz – 3545.0 MHz (LTE – Band42 (10 MHz))
Tx Frequency:	3457.5 MHz – 3542.5 MHz (LTE – Band42 (15 MHz))
	3460.0 MHz – 3540.0 MHz (LTE – Band42 (20 MHz))
Date(s) of Tests:	October 07, 2024 ~ December 10, 2024
Serial number:	Honda MY26 #23
Antenna Information	Please refer to the Antenna Approval Specification document.

F-TP22-03 (Rev. 06) Page 5 of 150

1.1. MAXIMUM OUTPUT POWER

Mode	Tx Frequency	Emission		Conducted Output Power	
(MHz)	(MHz)	Designator	Modulation	Max. Power (W)	Max. Power (dBm)
		4M47G7D	QPSK	0.189	22.76
LTE Dand (2 /E)	3452.5 – 3547.5	4M50W7D	16QAM	0.157	21.95
LTE – Band42 (5)	3432.5 - 3347.5	4M52W7D	64QAM	0.130	21.15
		4M51W7D	256QAM	0.065	18.10
		8M97G7D	QPSK	0.192	22.84
LTC Dowd42 (10)	2455 0 2545 0	9M00W7D	16QAM	0.169	22.27
LTE – Band42 (10)	3455.0 – 3545.0 –	8M98W7D	64QAM	0.133	21.23
		8M99W7D	256QAM	0.065	18.14
LTF Day (42 (45)		13M4G7D	QPSK	0.204	23.10
	3457.5 – 3542.5	13M5W7D	16QAM	0.167	22.24
LTE – Band42 (15)	3437.3 - 3342.3	13M5W7D	64QAM	0.128	21.06
		13M6W7D	256QAM	0.062	17.92
		18M0G7D	QPSK	0.188	22.75
LTE – Band42 (20)	3460.0 – 3540.0	18M0W7D	16QAM	0.161	22.07
	3400.0 - 3340.0	18M0W7D	64QAM	0.132	21.20
		17M9W7D	256QAM	0.064	18.08

F-TP22-03 (Rev. 06) Page 6 of 150

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was a Telematics with GSM/GPRS/EGPRS/UMTS and LTE, Sub 6.

2.2. MEASURING INSTRUMENT CALIBRATION

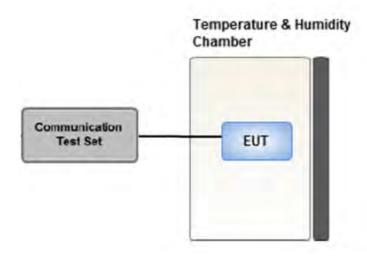
The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, **Seoicheon-ro 578beon-gil**, **Majang-myeon**, **Icheon-si**, **Gyeonggi-do**, **Republic of Korea**.

F-TP22-03 (Rev. 06) Page 7 of 150

3. DESCRIPTION OF TESTS


3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Occupied Bandwidth	- KDB 971168 D01 v03r01 - Section 4.3 - ANSI C63.26-2015 - Section 5.4.4
Band Edge	- KDB 971168 D01 v03r01 - Section 6.0 - ANSI C63.26-2015 - Section 5.7
Spurious and Harmonic Emissions at Antenna Terminal	- KDB 971168 D01 v03r01 - Section 6.0 - ANSI C63.26-2015 - Section 5.7
Conducted Output Power	- KDB 971168 D01 v03r01 - Section 5.2.4 - ANSI C63.26-2015 - Section 5.2.1 & 5.2.4.2
Peak- to- Average Ratio	- KDB 971168 D01 v03r01 - Section 5.7 - ANSI C63.26-2015 - Section 5.2.3.4
Frequency stability	- ANSI C63.26-2015 – Section 5.6
Radiated Power	- ANSI C63.26-2015 - Section 5.2.4.4 - KDB 971168 D01 v03r01 - Section 5.8
Radiated Spurious and Harmonic Emissions	- ANSI C63.26-2015 - Section 5.5.3 - KDB 971168 D01 v03r01 - Section 5.8

F-TP22-03 (Rev. 06) Page 8 of 150

3.2 CONDUCTED OUTPUT POWER

Test setup

Test Overview

When an average power meter is used to perform RF output power measurements, the fundamental condition that measurements be performed only over durations of active transmissions at maximum output power level applies.

Conducted Output Power was tested in accordance with KDB971168 D01 Power Meas License Digital Systems v03r01, Section 5.2.

F-TP22-03 (Rev. 06) Page 9 of 150

3.3 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna.

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1 MHz
- $3.VBW \ge 3 \times RBW$
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

 $P_{d (dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$

Where: Pd is the dipole equivalent power and Pg is the generator output power into the substitution antenna.

- 3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.
 - These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

F-TP22-03 (Rev. 06) Page 10 of 150

3.4 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method.

Test Settings

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

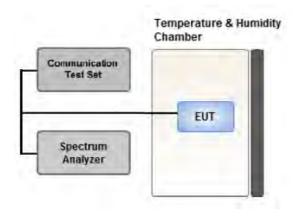
Test Note

- 1. Measurements value show only up to 3 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
 - The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dBi)

Where: Pg is the generator output power into the substitution antenna.


If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

EIRP $_{(dBm)}$ = ERP $_{(dBm)}$ + 2.15

F-TP22-03 (Rev. 06) Page 11 of 150

3.5 PEAK- TO- AVERAGE RATIO

Test setup

① CCDF Procedure for PAPR

Test Settings

- 1. Set resolution/measurement bandwidth \geq signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Set the measurement interval as follows:
 - .- for continuous transmissions, set to 1 ms,
 - .- or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1 %.

2 Alternate Procedure for PAPR

Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as as P_{Pk} .

Use one of the applicable procedures presented 5.2(ANSI C63.26-2015) to measure the total average power and record as P $_{\text{Avg}}$. Determine the P.A.R. from:

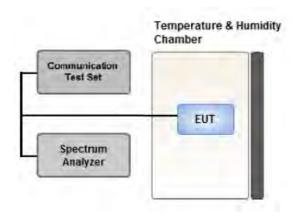
 $P.A.R_{(dB)} = P_{Pk(dBm)} - P_{Avg(dBm)} (P_{Avg} = Average Power + Duty cycle Factor)$

F-TP22-03 (Rev. 06) Page 12 of 150

Test Settings(Peak Power)

The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW $\geq 3 \times$ RBW.

- 1. Set the RBW \geq OBW.
- 2. Set VBW $\geq 3 \times RBW$.
- 3. Set span $\geq 2 \times OBW$.
- 4. Sweep time $\geq 10 \times (\text{number of points in sweep}) \times (\text{transmission symbol period})$.
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the peak amplitude level.


Test Settings(Average Power)

- 1. Set span to $2 \times$ to $3 \times$ the OBW.
- 2. Set RBW \geq OBW.
- 3. Set VBW \geq 3 × RBW.
- 4. Set number of measurement points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- 5. Sweep time:
 - Set $\geq [10 \times (\text{number of points in sweep}) \times (\text{transmission period})]$ for single sweep (automation-compatible) measurement. The transmission period is the (on + off) time.
- 6. Detector = power averaging (rms).
- 7. Set sweep trigger to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. Add [10 log (1/duty cycle)] to the measured maximum power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25 %.

F-TP22-03 (Rev. 06) Page 13 of 150

3.6 OCCUPIED BANDWIDTH.

Test setup

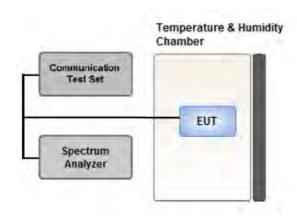
The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth


Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1 5 % of the 99 % occupied bandwidth observed in Step 7

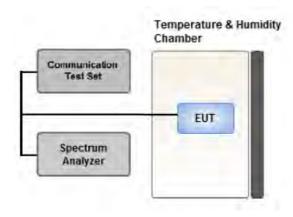
F-TP22-03 (Rev. 06) Page 14 of 150

3.7 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test setup

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


Test Settings

- 1. RBW = 1 MHz
- $2. VBW \ge 3 MHz$
- 3. Detector = Peak
- 4. Trace Mode = Max Hold
- 5. Sweep time = auto
- 6. Number of points in sweep $\geq 2 \times \text{Span} / \text{RBW}$

F-TP22-03 (Rev. 06) Page 15 of 150

3.8 BAND EDGE

Test setup

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Settings

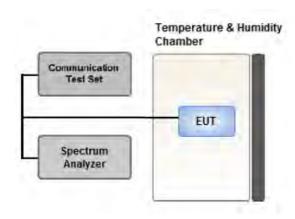
- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1 % of the emission bandwidth
- $4. VBW > 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

F-TP22-03 (Rev. 06) Page 16 of 150

Test Notes

According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. In

the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.


All measurements were done at 2 channels(low and high operational frequency range.) The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

Where Margin < 1 dB the emission level is either corrected by 10 log(1 MHz/ RB) or the emission is integrated over a 1 MHz bandwidth to determine the final result. When using the integration method the integration window is either centered on the emission or, for emissions at the band edge, centered by an offset of 500 kHz from the block edge so that the integration window is the 1 MHz adjacent to the block edge.

F-TP22-03 (Rev. 06) Page 17 of 150

3.9 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30 $^{\circ}$ C to +50 $^{\circ}$ C in 10 $^{\circ}$ C increments using an environmental chamber.

- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from $85\,\%$ to $115\,\%$ of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20 °C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter.
 - Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

F-TP22-03 (Rev. 06) Page 18 of 150

3.10 WORST CASE(RADIATED TEST)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- All modes of operation were investigated and the worst case configuration results are reported.
- All simultaneous transmission scenarios of operation were investigated, and the test results showed no additional significant emissions relative to the least restrictive limit were observed.
- Therefore, only the worst case(stand-alone) results were reported.
- The worst case is reported with the EUT positioning, modulations, and paging service configurations shown in the test data
- Please refer to the table below.

[Worst case]

Test Description	Modulation	RB size	RB offset	Axis
	QPSK,	Con Continu 0.2		٧
Effective Isotropic Radiated Power	16QAM,			
	See Section 8.2		ĭ	
	256QAM			
Radiated Spurious and Harmonic Emissions	QPSK	See Se	ction 8.3	Υ

F-TP22-03 (Rev. 06) Page 19 of 150

3.11 WORST CASE(CONDUCTED TEST)

- All modes of operation were investigated and the worst case configuration results are reported.

[Worst case]

Test Description	Modulation	Bandwidth (MHz)	Frequency	RB size	RB offset
	QPSK, 16QAM,		Mid	Full RB	0
Occupied Bandwidth	64QAM,	5, 10, 15, 20			
	256QAM				
	QPSK,				
Peak-To-Average Ratio	16QAM,	5, 10, 15, 20	Mid	Full RB	0
Teak to Average Radio	64QAM,	3, 10, 13, 20	MIG	rumb	
	256QAM				
		_	Low	1	0
		5	High	1	24
		10	Low	1	0
			High	1	49
		15	Low	1	0
Band Edge	QPSK		High	1	74
		20	Low	1	0
			High	1	99
			Low,		
		5, 10, 15, 20	Mid,	Full RB	0
			High		
Spurious and Harmonic Emissions at			Low,		
Antenna Terminal	QPSK	5, 10, 15, 20	Mid,	1	0
			High		

F-TP22-03 (Rev. 06) Page 20 of 150

4. LIST OF TEST EQUIPMENT

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
RF Switching System	Switch box(1.2 G HPF+LNA)	HCT CO., LTD.,	F1L1	11/11/2025	Annual
RF Switching System	Switch box(3.3 G HPF+LNA)	HCT CO., LTD.,	F1L2	11/11/2025	Annual
RF Switching System	Switch box(LNA)	HCT CO., LTD.,	F1L4	11/11/2025	Annual
RF Switching System	Switch box(6 G HPF+LNA)	HCT CO., LTD.,	F1L7	11/11/2025	Annual
Power Splitter(DC ~ 26.5 GHz)	11667B	Hewlett Packard	5001	04/17/2025	Annual
DC Power Supply	E3632A	Agilent	MY40010147	08/06/2025	Annual
Dipole Antenna	UHAP	Schwarzbeck	01274	03/10/2026	Biennial
Dipole Antenna	UHAP	Schwarzbeck	01288	08/07/2026	Biennial
Chamber	SU-642	ESPEC	93008124	02/19/2025	Annual
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	147	08/17/2025	Biennial
Horn Antenna(1 ~ 18 GHz)	BBHA 9120D	Schwarzbeck	9120D-1298	09/11/2025	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170342	09/20/2026	Biennial
Horn Antenna(15 ~ 40 GHz)	BBHA 9170	Schwarzbeck	BBHA9170124	03/28/2025	Biennial
Signal Analyzer(10 Hz ~ 26.5 GHz)	N9020A	Agilent	MY52090906	04/19/2025	Annual
ATTENUATOR(20 dB)	8493C	Hewlett Packard	17280	04/17/2025	Annual
Spectrum Analyzer(10 Hz ~ 40 GHz)	FSV40	REOHDE & SCHWARZ	100931	08/06/2025	Annual
Base Station	8960 (E5515C)	Agilent	MY48360800	08/05/2025	Annual
Loop Antenna(9 kHz ~ 30 MHz)	FMZB1513	Schwarzbeck	1513-333	03/07/2026	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	895	08/28/2026	Biennial
Trilog Broadband Antenna	VULB9168	Schwarzbeck	1135	08/19/2026	Biennial
Wideband Radio Communication Tester	MT8821C	Anritsu Corp.	6262094331	11/13/2025	Annual
Wideband Radio Communication Tester	MT8820C	Anritsu Corp.	6201026545	11/20/2025	Annual
SIGNAL GENERATOR (100 kHz ~ 40 GHz)	SMB100A	REOHDE & SCHWARZ	177633	07/26/2025	Annual
Signal Analyzer(5 Hz ~ 40.0 GHz)	N9030B	KEYSIGHT	MY55480167	05/17/2025	Annual
FCC LTE Mobile Conducted RF Automation Test Software	-	HCT CO., LTD.,	-	-	-

Note

F-TP22-03 (Rev. 06) Page 21 of 150

^{1.} Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

^{2.} Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.98 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.36 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.70 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.52 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.66 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.58 (Confidence level about 95 %, <i>k</i> =2)

F-TP22-03 (Rev. 06) Page 22 of 150

6. SUMMARY OF TEST RESULTS

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Occupied Bandwidth	§ 2.1049	N/A	PASS
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§ 2.1051, § 27.53(n)(2)	<-13 dBm	PASS
Conducted Output Power	§ 2.1046	N/A	PASS
Peak- to- Average Ratio	§ 27.50(k)(4)	< 13 dB	PASS
Frequency stability / variation of ambient temperature	§ 2.1055, § 27.54	Emission must remain in band	PASS

Note:

1. All conducted tests were tested using 5G Wireless Tester.

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result
Equivalent Isotropic Radiated Power	§ 27.50(k)(3)	< 1 Watts max. EIRP	PASS
Radiated Spurious and	§ 2.1053,	<-13 dBm	PASS
Harmonic Emissions	§ 27.50(n)(2)		

Note:

 ${\bf 1.}\ {\bf Radiated}\ {\bf tests}\ {\bf were}\ {\bf tested}\ {\bf using}\ {\bf 5G}\ {\bf Wireless}\ {\bf Tester}.$

F-TP22-03 (Rev. 06) Page 23 of 150

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain			EF	RP
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBd)	C.L	Pol.	w	dBm
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch.	/ Freq.	Measured	Substitute	Ant. Gain			EIRP		
channel	Freq.(MHz)	Level (dBm)	Level (dBm)	(dBi)	C.L	Pol.	w	dBm	
20175	1,732.50	-15.75	18.45	9.90	1.76	Н	0.456	26.59	

EIRP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

F-TP22-03 (Rev. 06) Page 24 of 150

7.3. Emission Designator

GSM Emission Designator

Emission Designator = 249KGXW

GSM BW = 249 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

QAM Modulation

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev. 06) Page 25 of 150

8. TEST DATA

8.1 Conducted Power

				Max.Av	erage Powe	r (dBm)		
Bandwidth	Modulation	RB Size	RB	42115	42590	43065	Target	Target
			Offset	3452.5 MHz	3500 MHz	3547.5 MHz	MPR (dB)	Power
		1	0	22.50	22.60	22.55	0	23
		1	12	22.76	22.76	22.57	0	23
		1	24	22.71	22.65	22.50	0	23
	QPSK	12	0	21.59	21.62	21.76	1	22
		12	6	21.61	21.59	21.74	1	22
		12	11	21.60	21.55	21.75	1	22
		25	0	21.58	21.54	21.78	1	22
		1	0	21.94	21.73	21.92	1	22
		1	12	21.92	21.73	21.95	1	22
		1	24	21.92	21.66	21.88	1	22
	16QAM	12	0	20.67	20.57	20.82	2	21
		12	6	20.63	20.64	20.86	2	21
		12	11	20.65	20.57	20.88	2	21
5 MH-		25	0	20.65	20.52	20.92	2	21
5 MHz		1	0	20.74	20.79	21.15	2	21
		1	12	20.73	20.84	21.05	2	21
		1	24	20.59	20.83	21.10	2	21
	64QAM	12	0	19.55	19.59	19.91	3	20
		12	6	19.50	19.65	19.93	3	20
		12	11	19.51	19.59	19.87	3	20
		25	0	19.56	19.51	19.86	3	20
		1	0	17.73	17.72	18.01	5	18
		1	12	17.69	17.66	18.10	5	18
		1	24	17.84	17.68	17.91	5	18
	256QAM	12	0	17.68	17.55	17.93	5	18
		12	6	17.68	17.67	17.90	5	18
		12	11	17.70	17.55	17.92	5	18
		25	0	17.68	17.50	17.87	5	18

F-TP22-03 (Rev. 06) Page 26 of 150

				Max.A	erage Power	(dBm)		
Bandwidth	n Modulation	RB Size	RB	42140	42590	43040	Target	Target
			Offset	3455 MHz	3500 MHz	3545 MHz	MPR (dB)	Power
		1	0	22.84	22.76	22.60	0	23
		1	24	22.72	22.61	22.61	0	23
		1	49	22.64	22.54	22.62	0	23
	QPSK	25	0	21.94	21.57	21.78	1	22
		25	12	21.86	21.55	21.82	1	22
		25	24	21.83	21.54	21.85	1	22
		50	0	21.90	21.52	21.83	1	22
		1	0	22.27	21.83	21.74	1	22
		1	24	22.09	21.77	21.93	1	22
		1	49	22.03	21.90	22.00	1	22
	16QAM	25	0	20.92	20.58	20.90	2	21
		25	12	20.96	20.55	20.88	2	21
		25	24	20.85	20.55	20.88	2	21
10 MH-		50	0	20.87	20.53	20.57	2	21
10 MHz		1	0	21.23	20.96	20.62	2	21
		1	24	21.03	20.89	20.70	2	21
		1	49	20.99	20.94	20.79	2	21
	64QAM	25	0	19.97	19.64	19.57	3	20
		25	12	19.95	19.68	19.60	3	20
		25	24	19.87	19.69	19.55	3	20
		50	0	19.87	19.64	20.33	3	20
		1	0	18.14	17.77	17.86	5	18
		1	24	17.95	17.87	17.83	5	18
		1	49	18.01	17.87	17.62	5	18
	256QAM	25	0	17.98	17.71	17.72	5	18
		25	12	17.93	17.73	17.67	5	18
		25	24	17.51	17.68	17.60	5	18
		50	0	17.59	17.71	17.70	5	18

F-TP22-03 (Rev. 06) Page 27 of 150

				Max.Av	erage Powe	r (dBm)		_
Bandwidth	n Modulation	RB Size	RB	42165	42590	43015	Target	Target
			Offset	3457.5 MHz	3500 MHz	3542.5 MHz	MPR (dB)	Power
		1	0	22.68	22.54	22.59	0	23
		1	36	22.54	22.51	23.10	0	23
		1	74	22.61	22.57	23.02	0	23
	QPSK	36	0	21.86	21.54	21.69	1	22
		36	18	21.78	21.61	21.65	1	22
		36	39	21.64	21.66	22.09	1	22
		75	0	21.75	21.59	21.59	1	22
		1	0	22.24	21.76	21.85	1	22
		1	36	21.89	21.89	21.83	1	22
	16QAM	1	74	21.88	22.03	21.59	1	22
		36	0	20.87	20.56	20.71	2	21
		36	18	20.80	20.68	20.69	2	21
		36	39	20.66	20.69	21.14	2	21
15 MIL		75	0	20.79	20.59	20.62	2	21
15 MHz		1	0	21.01	20.78	20.95	2	21
		1	36	21.05	20.93	20.93	2	21
		1	74	20.88	21.06	20.67	2	21
	64QAM	36	0	19.90	19.56	19.76	3	20
		36	18	19.81	19.62	19.68	3	20
		36	39	19.69	19.73	20.15	3	20
		75	0	19.76	19.62	19.65	3	20
		1	0	17.89	17.55	17.87	5	18
		1	36	17.80	17.92	17.86	5	18
		1	74	17.71	17.92	17.60	5	18
	256QAM	36	0	17.85	17.57	17.72	5	18
		36	18	17.78	17.68	17.67	5	18
		36	39	17.65	17.68	17.50	5	18
		75	0	17.76	17.62	17.64	5	18

F-TP22-03 (Rev. 06) Page 28 of 150

				Max.A	erage Power	(dBm)		
Bandwidtl	h Modulation	RB Size	RB	42190	42590	42990	Target	Target
			Offset	3460 MHz	3500 MHz	3540 MHz	MPR (dB)	Power
		1	0	22.67	22.51	22.67	0	23
		1	49	22.54	22.75	22.57	0	23
		1	99	22.52	22.64	22.73	0	23
	QPSK	50	0	21.78	21.53	21.85	1	22
		50	25	21.68	21.61	21.84	1	22
		50	49	21.61	21.65	21.76	1	22
		100	0	21.71	21.60	21.81	1	22
		1	0	22.04	21.74	22.06	1	22
		1	49	21.84	21.89	21.98	1	22
		1	99	21.73	22.07	21.81	1	22
	16QAM	50	0	20.84	20.55	20.93	2	21
		50	25	20.74	20.62	20.86	2	21
		50	49	20.68	20.70	20.74	2	21
20 MH-		100	0	20.77	20.60	20.84	2	21
20 MHz		1	0	20.84	20.57	21.20	2	21
		1	49	20.66	20.86	21.06	2	21
		1	99	20.59	21.02	20.81	2	21
	64QAM	50	0	19.88	19.58	19.92	3	20
		50	25	19.75	19.65	19.87	3	20
		50	49	19.64	19.74	19.79	3	20
		100	0	19.77	19.63	19.86	3	20
		1	0	17.82	17.53	18.02	5	18
		1	49	17.67	17.70	18.08	5	18
		1	99	17.56	18.03	17.78	5	18
	256QAM	50	0	17.90	17.53	17.91	5	18
		50	25	17.79	17.62	17.88	5	18
		50	49	17.70	17.71	17.76	5	18
		100	0	17.75	17.61	17.83	5	18

F-TP22-03 (Rev. 06) Page 29 of 150

8.2 EQUIVALENT ISOTROPIC RADIATED POWER

Freq	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level	Ant. Gain	C.L	Pol	Limit	EIRP		RB	
(MHz)	[SCS (kHz)]		(dBm)	(dBm)	(dBi)			W	W	dBm	Size	Offset
		QPSK	-23.73	13.82	12.50	3.00	Н		0.215	23.32		
24525		16-QAM	-24.53	13.02	12.50	3.00	Н		0.179	22.52		24
3452.5		64-QAM	-25.49	12.06	12.50	3.00	Н		0.143	21.56	1	24
		256-QAM	-28.51	9.04	12.50	3.00	Н		0.071	18.54		
		QPSK	-23.56	15.08	12.40	3.04	Н		0.278	24.44		
05000	LTE B42	16-QAM	-24.35	14.29	12.40	3.04	Н		0.232	23.65		
3500.0	(5 MHz)	64-QAM	-25.36	13.28	12.40	3.04	Н	< 1.00	0.184	22.64	1	0
		256-QAM	-28.35	10.29	12.40	3.04	Н		0.092	19.65		
		QPSK	-24.35	14.79	12.40	3.09	Н		0.257	24.10		
		16-QAM	-25.14	14.00	12.40	3.09	Н		0.214	23.31		
3547.5		64-QAM	-26.11	13.03	12.40	3.09	Н	1	0.171	22.34	1	0
		256-QAM	-29.10	10.04	12.40	3.09	Н		0.086	19.35		

F-TP22-03 (Rev. 06) Page 30 of 150

Freq (MHz)	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level	Ant. Gain (dBi)	C.L	Pol	Limit	EI	RP	RB	
(WIT12)	[SCS (kHz)]		(dBm)	(dBm)	(ubi)			W	W	dBm	Size	Offset
		QPSK	-23.90	13.74	12.49	2.99	Н		0.211	23.25		
2455.0		16-QAM	-24.53	13.11	12.49	2.99	Н		0.183	22.62		40
3455.0		64-QAM	-25.54	12.10	12.49	2.99	Н		0.145	21.61	1	49
		256-QAM	-28.56	9.08	12.49	2.99	Н		0.072	18.59		
		QPSK	-23.58	15.06	12.40	3.04	Н		0.277	24.42		
2500.0	LTE B42	16-QAM	-24.33	14.31	12.40	3.04	Н	1.00	0.233	23.67		
3500.0	(10 MHz)	64-QAM	-25.30	13.34	12.40	3.04	Н	< 1.00	0.186	22.70	1	0
		256-QAM	-28.31	10.33	12.40	3.04	Н		0.093	19.69		
		QPSK	-24.37	14.72	12.40	3.08	Н		0.254	24.05		
2545.0		16-QAM	-25.03	14.06	12.40	3.08	Н	1	0.218	23.39		
3545.0		64-QAM	-26.08	13.01	12.40	3.08	Н		0.171	22.34	1	0
		256-QAM	-29.05	10.04	12.40	3.08	Н		0.086	19.37		

F-TP22-03 (Rev. 06) Page 31 of 150

Freq	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level	Ant. Gain (dBi)	C.L	Pol	Limit	EI	RP		RB	
(MHz)	[SCS (kHz)]		(dBm)	(dBm)	(UDI)			W	W	dBm	Size	Offset	
		QPSK	-23.79	13.95	12.48	2.97	Н		0.222	23.46			
2457.5		16-QAM	-24.53	13.21	12.48	2.97	Н	7	0.187	22.72		7.4	
3457.5		64-QAM	-25.52	12.22	12.48	2.97	Н	-	0.149	21.73	1	74	
		256-QAM	-28.56	9.18	12.48	2.97	Н		0.074	18.69			
		QPSK	-23.65	14.99	12.40	3.04	Н		0.272	24.35			
25000	LTE B42	16-QAM	-24.48	14.16	12.40	3.04	Н		0.225	23.52			
3500.0	(15 MHz)	64-QAM	-25.53	13.11	12.40	3.04	Н	< 1.00	0.177	22.47	1	0	
		256-QAM	-28.57	10.07	12.40	3.04	Н		0.088	19.43			
		QPSK	-24.14	14.90	12.40	3.06	Н		0.265	24.24			
05405		16-QAM	-24.92	14.12	12.40	3.06	Н			23.46			
3542.5		64-QAM	-25.91	13.13	12.40	3.06	Н	†	0.177	22.47	1	0	
		256-QAM	-28.91	10.13	12.40	3.06	Н		1	0.089	19.47		

F-TP22-03 (Rev. 06) Page 32 of 150

Freq (MHz)	Mod/ Bandwidth	Modulation	Measured Level	Substitute Level	Ant. Gain (dBi)	C.L	Pol	Limit	EI	RP		RB
(MITZ)	[SCS (kHz)]		(dBm)	(dBm)	(UDI)			W	W	dBm	Size	Offset
		QPSK	-23.68	14.06	12.48	2.97	Н		0.228	23.57		
2460.0		16-QAM	-24.48	13.26	12.48	2.97	Н		0.189	22.77		00
3460.0		64-QAM	-25.49	12.25	12.48	2.97	Н	7	0.150	21.76	1	99
		256-QAM	-28.53	9.21	12.48	2.97	Н		0.074	18.72		
		QPSK	-23.78	14.86	12.40	3.04	Н		0.264	24.22		
2522.2	LTE B42	16-QAM	-24.49	14.15	12.40	3.04	Н		0.224	23.51		
3500.0	(20 MHz)	64-QAM	-25.51	13.13	12.40	3.04	Н	< 1.00	0.177	22.49	1	0
		256-QAM	-28.59	10.05	12.40	3.04	Н		0.087	19.41		
		QPSK	-24.23	14.81	12.40	3.06	Н		0.260	24.15		
25.40.0		16-QAM	-25.05	13.99	12.40	3.06	Н	-	0.215	23.33		
3540.0		64-QAM	-26.02	13.02	12.40	3.06	Н		0.172	22.36	1	0
		256-QAM	-29.04	10.00	12.40	3.06	Н		0.086	19.34		

F-TP22-03 (Rev. 06) Page 33 of 150

8.3 RADIATED SPURIOUS EMISSIONS

■ MODE: <u>LTE B42</u>

■ MODULATION SIGNAL: <u>5 MHz QPSK</u>

■ DISTANCE: <u>1 meters</u>

Freq	Measured	Measured	Ant. Gain	Substitute		_	Result	Limit	F	RB
(MHz)	Freq (MHz)	Level (dBm)	(dBi)	Level (dBm)	C.L	Pol	(dBm)	(dBm)	Size	Offset
	6 905.00	-38.86	11.95	-43.33	4.40	V	-35.78	-13.00		
42115 (3452.5)	10 357.50	-55.00	10.52	-48.81	5.55	V	-43.84	-13.00	1	24
(3.132.3)	13 810.00	-58.18	12.41	-47.98	6.53	Н	-42.10	-13.00		
	7 000.00	-41.50	11.47	-45.09	4.45	Н	-38.07	-13.00		
42590 (3500.0)	10 500.00	-53.85	10.45	-47.74	5.64	Н	-42.93	-13.00	1	0
(5555.5)	14 000.00	-57.59	11.94	-46.44	6.55	Н	-41.05	-13.00		
	7 095.00	47.47	11.16	44.19	4.48	Н	50.86	-13.00		
43065 (3547.5)	10 642.50	-52.57	10.56	-46.63	5.61	V	-41.68	-13.00	1	0
	14 190.00	-57.18	11.69	-45.03	6.63	V	-39.97	-13.00		

F-TP22-03 (Rev. 06) Page 34 of 150

■ MODE: <u>LTE B42</u>

■ MODULATION SIGNAL: 10 MHz QPSK

■ DISTANCE: <u>1 meters</u>

Freq	Measured	Measured	Ant. Gain	Substitute		_	Result	Limit	F	RB
(MHz)	Freq (MHz)	Level (dBm)	(dBi)	Level (dBm)	C.L	Pol	(dBm)	(dBm)	Size	Offset
	6 910.00	-40.41	11.95	-44.41	4.39	Н	-36.85	-13.00		
42140 (3455.0)	10 365.00	-56.58	10.52	-50.17	5.55	Н	-45.20	-13.00	1	49
(3.133.0)	13 820.00	-57.41	12.41	-47.19	6.55	Н	-41.33	-13.00		
	7 000.00	-42.58	11.47	-46.17	4.45	Н	-39.15	-13.00		
42590 (3500.0)	10 500.00	-56.28	10.45	-50.17	5.64	V	-45.36	-13.00	1	0
(3333.0)	14 000.00	-57.67	11.94	-46.52	6.55	V	-41.13	-13.00		
	7 090.00	-45.06	11.24	-48.65	4.48	V	-41.89	-13.00		
43040 (3545.0)	10 635.00	-54.11	10.56	-48.28	5.62	Н	-43.33	-13.00	1	0
	14 180.00	-57.87	11.69	-45.15	6.56	V	-40.02	-13.00		

F-TP22-03 (Rev. 06) Page 35 of 150

■ MODE: <u>LTE B42</u>

■ MODULATION SIGNAL: <u>15 MHz QPSK</u>

■ DISTANCE: 1 meters

Freq (MHz)	Measured Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	Limit (dBm)	RB	
									Size	Offset
42165 (3457.5)	6 915.00	-40.73	11.95	-44.28	4.39	Н	-36.72	-13.00	1	74
	10 372.50	-56.23	10.52	-49.61	5.55	Н	-44.64	-13.00		
	13 830.00	-57.65	12.41	-47.25	6.55	Н	-41.39	-13.00		
42590 (3500.0)	7 000.00	-41.69	11.47	-45.28	4.45	Н	-38.26	-13.00	1	0
	10 500.00	-55.39	10.45	-49.28	5.64	V	-44.47	-13.00		
	14 000.00	-57.76	11.94	-46.61	6.55	V	-41.22	-13.00		
43015 (3542.5)	7 085.00	-42.76	11.24	-46.25	4.49	Н	-39.49	-13.00	1	0
	10 627.50	-50.77	10.56	-45.04	5.62	V	-40.10	-13.00		
	14 170.00	-57.32	11.69	-44.35	6.52	V	-39.18	-13.00		

F-TP22-03 (Rev. 06) Page 36 of 150

■ MODE: <u>LTE B42</u>

■ MODULATION SIGNAL: 20 MHz QPSK

■ DISTANCE: 1 meters

Freq	Measured Measured	Ant. Gain Subst	Substitute	Substitute		Result	Limit	RB		
(MHz)	Freq (MHz)	Level (dBm)	(dBi)	Level (dBm)	C.L	Pol	(dBm)	(dBm)	Size	Offset
	6 920.00	-40.45	11.95	-43.55	4.39	Н	-35.99	-13.00		
42190 (3460.0)	10 380.00	-56.34	10.52	-49.54	5.56	V	-44.58	-13.00	1	99
(3 100.0)	13 840.00	-57.40	12.41	-46.71	6.53	V	-40.83	-13.00		
	7 000.00	-41.03	11.47	-44.62	4.45	Н	-37.60	-13.00		
42590 (3500.0)	10 500.00	-55.93	10.45	-49.82	5.64	V	-45.01	-13.00	1	0
(3300.0)	14 000.00	-57.63	11.94	-46.48	6.55	Н	-41.09	-13.00		
	7 080.00	-42.92	11.24	-46.31	4.49	V	-39.56	-13.00		
42990 (3540.0)	10 620.00	-55.92	10.56	-49.97	5.65	Н	-45.06	-13.00	1	0
	14 160.00	-57.52	11.69	-44.76	6.51	V	-39.58	-13.00		

F-TP22-03 (Rev. 06) Page 37 of 150

8.4 PEAK-TO-AVERAGE RATIO

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (dB)
			QPSK			5.03
	51411-		16-QAM			5.82
	5MHz		64-QAM			6.40
			256-QAM			6.58
			QPSK			5.01
	40.44		16-QAM	Full RB		5.87
	10MHz		64-QAM			6.38
			256-QAM			6.59
42		3500.0	QPSK		0	5.02
			16-QAM			5.83
	15MHz		64-QAM			6.41
		z	256-QAM			6.48
			QPSK			4.95
			16-QAM			5.80
	20MHz		64-QAM			6.48
			256-QAM			6.46

Note:

1. Plots of the EUT's Peak- to- Average Ratio are shown Page 46 \sim 61.

F-TP22-03 (Rev. 06) Page 38 of 150

8.5 OCCUPIED BANDWIDTH

Band	Band Width	Frequency (MHz)	Modulation	Resource Block Size	Resource Block Offset	Data (MHz)
			QPSK			4.4737
	ENALL-		16-QAM			4.5015
	5MHz		64-QAM			4.5211
			256-QAM			4.5054
			QPSK			8.9711
	10MHz	3500.0	16-QAM	Full RB		9.0043
	TOMIHZ		64-QAM			8.9759
42			256-QAM		0	8.9937
42			QPSK		U	13.448
	15MHz		16-QAM			13.481
	15MHZ		64-QAM			13.497
			256-QAM			13.547
			QPSK			17.976
	20MHz		16-QAM			17.953
	ZUMITZ		64-QAM			17.947
			256-QAM			17.933

Note:

1. Plots of the EUT's Occupied Bandwidth are shown Page 62 ~ 77.

F-TP22-03 (Rev. 06) Page 39 of 150

8.6 CONDUCTED SPURIOUS EMISSIONS

Band	Band Width (MHz)	Frequency (MHz)	Frequency of Maximum Harmonic (GHz)	Factor (dB)	Measurement Maximum Data (dBm)	Result (dBm)	Limit (dBm)	
		3452.500	34.8040	34.189	-68.050	-33.861		
	5	3500.000	36.0000	34.189	-68.370	-34.181		
		3547.500	35.1420	34.189	-68.880	-34.691		
		3455.000	35.7140	34.189	-68.170	-33.981		
	10	3500.000	34.5440	34.189	-68.310	-34.121		
42		3545.000	35.0640	34.189	-69.270	-35.081	12.00	
42		3457.500	35.9480	34.189	-67.790	-33.601	-13.00	
	15	3500.000	35.8700	34.189	-68.790	-34.601		
		3542.500	35.5320	34.189	-69.350	-35.161		
		3460.000	35.6100	34.189	-65.930	-31.741		
	20	3500.000	35.8960	34.189	-67.920	-33.731		
		3540.000	35.0640	34.189	-67.520	-33.331		

Note:

- 1. Plots of the EUT's Conducted Spurious Emissions are shown Page 78 ~ 101.
- $2. \ Conducted \ Spurious \ Emissions \ was \ Tested \ QPSK \ Modulation, \ Resource \ Block \ Size \ 1 \ and \ Resource \ Block \ Offset \ 0$
- 3. Duty Cycle factor already applied on the factor.
 - Duty Cycle factor(dB) = 3.979
 - Factor(dB) = Duty Cycle factor + Cable Loss + Ext. Attenuator + Power Splitter
 - Result(dBm) = Reading + Factor

Frequency Range (GHz)	Factor [dB]
0.03 - 1	31.479
1 - 5	32.091
5 - 10	32.613
10 - 15	33.224
15 - 20	33.490
Above 20	34.189

8.7 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 102 $^{\sim}$ 149.

F-TP22-03 (Rev. 06) Page 40 of 150

8.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

■ BandWidth: <u>5 MHz</u>

■ Voltage(100 %): 13.200 VDC

■ LIMIT: Emission must remain in band

Test. Frequncy	Voltage	Temp.	Frequency	Frequency	Deviation	ppm
(MHz)	(%)	(°C)	(Hz) Error (Hz) (%) 3452 499 977 0.0 0.000 000 3452 499 957 -20.9 -0.000 001 3452 499 965 -12.7 0.000 000 3452 499 972 -5.1 0.000 000 3452 499 955 -22.8 -0.000 001 3452 499 961 -16.4 0.000 000 3452 499 974 -3.1 0.000 000 3452 499 961 -16.3 0.000 000 3452 499 969 -8.8 0.000 000			
	100 %	+20(Ref)	3452 499 977	0.0	0.000 000	0.000
	100 %	-30	3452 499 957	-20.9	-0.000 001	-0.006
	100 %	-20	3452 499 965	-12.7	0.000 000	-0.004
	100 %	-10	3452 499 972	-5.1	0.000 000	-0.001
	100 %	0	3452 499 955	-22.8	-0.000 001	-0.007
3452.500	100 %	+10	3452 499 961	-16.4	0.000 000	-0.005
	100 %	+30	3452 499 974	-3.1	0.000 000	-0.001
	100 %	+40	3452 499 961	-16.3	0.000 000	-0.005
	100 %	+50	3452 499 969	-8.8	0.000 000	-0.003
	115 %	+20	3452 499 962	-15.7	0.000 000	-0.005
	85 %	+20	3452 499 960	-17.5	-0.000 001	-0.005
	100 %	+20(Ref)	3547 499 988	0.0	0.000 000	0.000
	100 %	-30	3547 499 979	-9.4	0.000 000	-0.003
	100 %	-20	3547 499 970	-18.5	-0.000 001	-0.005
	100 %	-10	3547 499 973	-14.8	0.000 000	-0.004
	100 %	0	3547 499 974	-14.1	0.000 000	-0.004
3547.500	100 %	+10	3547 499 981	-6.8	0.000 000	-0.002
	100 %	+30	3547 499 971	-17.1	0.000 000	-0.005
	100 %	+40	3547 499 983	-4.7	0.000 000	-0.001
	100 %	+50	3547 499 978	-9.8	0.000 000	-0.003
	115 %	+20	3547 499 978	-10.5	0.000 000	-0.003
	85 %	+20	3547 499 977	-11.5	0.000 000	-0.003

F-TP22-03 (Rev. 06) Page 41 of 150

■ BandWidth: <u>10 MHz</u>

■ Voltage(100 %): <u>13.200 VDC</u>

■ LIMIT: <u>Emission must remain in band</u>

Test. Frequncy	Voltage	Temp.	Frequency	Frequency	Deviation	nnm	
(MHz)	(%)	(°C)	(Hz)	Error (Hz)	(%)	ppm	
()	100 %	+20(Ref)	3454 999 959	0.0	0.000 000	0.000	
	100 %	-30	3454 999 931	-27.7	-0.000 001	-0.008	
	100 %	-20	3454 999 921	-38.2	-0.000 001	-0.011	
	100 %	-10	3454 999 936	-22.7	-0.000 001	-0.007	
	100 %	0	3454 999 923	-35.9	-0.000 001	-0.010	
3455.000	100 %	+10	3454 999 935	-23.8	-0.000 001	-0.007	
	100 %	+30	3454 999 922	-37.2	-0.000 001	-0.011	
	100 %	+40	3454 999 933	-26.0	-0.000 001	-0.008	
	100 %	+50	3454 999 924	-35.0	-0.000 001	-0.010	
	115 %	+20	3454 999 928	-31.0	-0.000 001	-0.009	
	85 %	+20	3454 999 935	-24.0	-0.000 001	-0.007	
	100 %	+20(Ref)	3544 999 979	0.0	0.000 000	0.000	
	100 %	-30	3544 999 967	-12.3	0.000 000	-0.003	
	100 %	-20	3544 999 962	-17.2	0.000 000	-0.005	
	100 %	-10	3544 999 956	-23.1	-0.000 001	-0.007	
	100 %	0	3544 999 966	-13.4	0.000 000	-0.004	
3545.000	100 %	+10	3544 999 963	-16.3	0.000 000	-0.005	
	100 %	+30	3544 999 973	-6.5	0.000 000	-0.002	
	100 %	+40	3544 999 969	-10.8	0.000 000	-0.003	
	100 %	+50	3544 999 970	-9.8	0.000 000	-0.003	
	115 %	+20	3544 999 971	-8.4	0.000 000	-0.002	
	85 %	+20	3544 999 969	-10.5	0.000 000	-0.003	

F-TP22-03 (Rev. 06) Page 42 of 150

■ BandWidth: <u>15 MHz</u>

■ Voltage(100 %): <u>13.200 VDC</u>

■ LIMIT: <u>Emission must remain in band</u>

Test. Frequncy	Voltage	Temp.	Frequency	Frequency	Deviation	ppm
(MHz)	(%)	(°C)	(Hz)	Error (Hz)	(%)	
	100 %	+20(Ref)	3457 499 985	0.0	0.000 000	0.000
	100 %	-30	3457 499 980	-5.5	0.000 000	-0.002
	100 %	-20	3457 499 966	-19.6	-0.000 001	-0.006
	100 %	-10	3457 499 977	-7.8	0.000 000	-0.002
	100 %	0	3457 499 970	-15.5	0.000 000	-0.004
3457.500	100 %	+10	3457 499 967	-18.0	-0.000 001	-0.005
	100 %	+30	3457 499 965	-20.3	-0.000 001	-0.006
	100 %	+40	3457 499 969	-15.8	0.000 000	-0.005
	100 %	+50	3457 499 980	-4.7	0.000 000	-0.001
	115 %	+20	3457 499 981	-3.8	0.000 000	-0.001
	85 %	+20	3457 499 973	-11.7	0.000 000	-0.003
	100 %	+20(Ref)	3542 499 978	0.0	0.000 000	0.000
	100 %	-30	3542 499 969	-8.5	0.000 000	-0.002
	100 %	-20	3542 499 970	-7.5	0.000 000	-0.002
	100 %	-10	3542 499 963	-14.6	0.000 000	-0.004
	100 %	0	3542 499 957	-20.8	-0.000 001	-0.006
3542.500	100 %	+10	3542 499 965	-12.4	0.000 000	-0.004
	100 %	+30	3542 499 958	-19.3	-0.000 001	-0.005
	100 %	+40	3542 499 962	-15.3	0.000 000	-0.004
	100 %	+50	3542 499 968	-9.5	0.000 000	-0.003
	115 %	+20	3542 499 969	-8.8	0.000 000	-0.002
	85 %	+20	3542 499 967	-10.8	0.000 000	-0.003

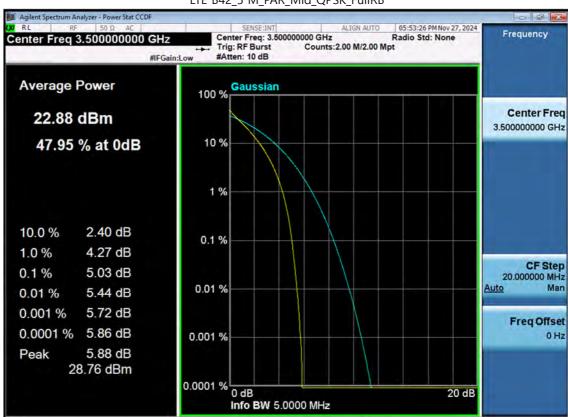
F-TP22-03 (Rev. 06) Page 43 of 150

■ BandWidth: <u>20 MHz</u>

■ Voltage(100 %): <u>13.200 VDC</u>

■ LIMIT: <u>Emission must remain in band</u>

Test. Frequncy	Voltage	Temp.	Frequency	Frequency	Deviation	ppm
(MHz)	(%)	(°C)	(Hz)	Frequency Deviation Error (Hz) (%) 0.0 0.000 000 -11.5 0.000 000 -12.3 0.000 000 -13.5 0.000 000 -20.7 -0.000 001 -17.9 -0.000 001 -13.2 0.000 000 -21.3 -0.000 001 -8.7 0.000 000 -7.4 0.000 000 -11.0 0.000 000 -8.6 0.000 000 -20.7 -0.000 001 -10.1 0.000 000 -16.9 0.000 000		
	100 %	+20(Ref)	3459 999 996	0.0	0.000 000	0.000
	100 %	-30	3459 999 984	-11.5	0.000 000	-0.003
	100 %	-20	3459 999 984	-12.3	0.000 000	-0.004
	100 %	-10	3459 999 982	-13.5	0.000 000	-0.004
	100 %	0	3459 999 975	-20.7	-0.000 001	-0.006
3460.000	100 %	+10	3459 999 978	-17.9	-0.000 001	-0.005
	100 %	+30	3459 999 983	-13.2	0.000 000	-0.004
	100 %	+40	3459 999 975	-21.3	-0.000 001	-0.006
	100 %	+50	3459 999 987	-8.7	0.000 000	-0.003
	115 %	+20	3459 999 988	-7.4	0.000 000	-0.002
	85 %	+20	3459 999 985	-11.0	0.000 000	-0.003
	100 %	+20(Ref)	3539 999 986	0.0	0.000 000	0.000
	100 %	-30	3539 999 978	-8.6	0.000 000	-0.002
	100 %	-20	3539 999 965	-20.7	-0.000 001	-0.006
	100 %	-10	3539 999 976	-10.1	0.000 000	-0.003
	100 %	0	3539 999 969	-16.9	0.000 000	-0.005
3540.000	100 %	+10	3539 999 981	-5.6	0.000 000	-0.002
	100 %	+30	3539 999 973	-12.9	0.000 000	-0.004
	100 %	+40	3539 999 964	-22.1	-0.000 001	-0.006
	100 %	+50	3539 999 974	-12.2	0.000 000	-0.003
	115 %	+20	3539 999 975	-10.9	0.000 000	-0.003
	85 %	+20	3539 999 972	-14.2	0.000 000	-0.004


F-TP22-03 (Rev. 06) Page 44 of 150

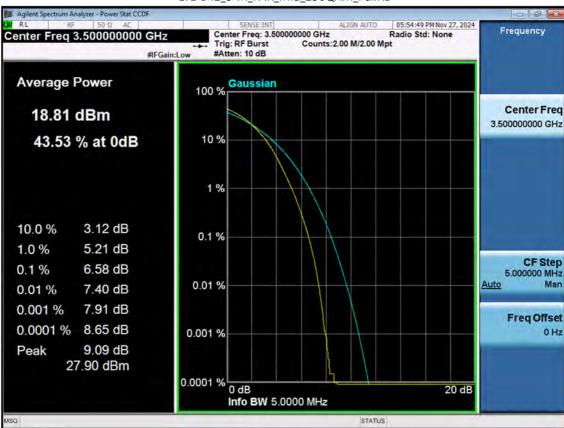
9. TEST PLOTS

F-TP22-03 (Rev. 06) Page 45 of 150

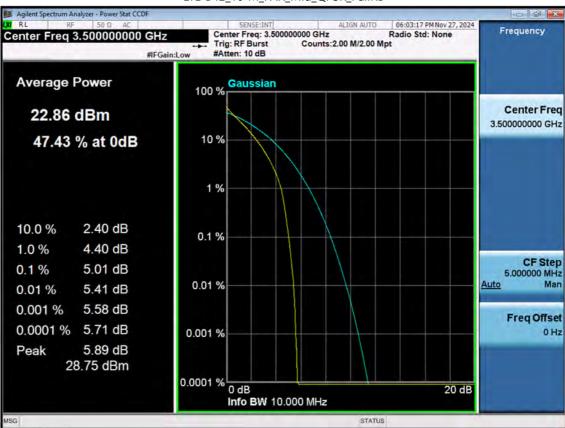
STATUS

LTE B42_5 M_PAR_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 46 of 150

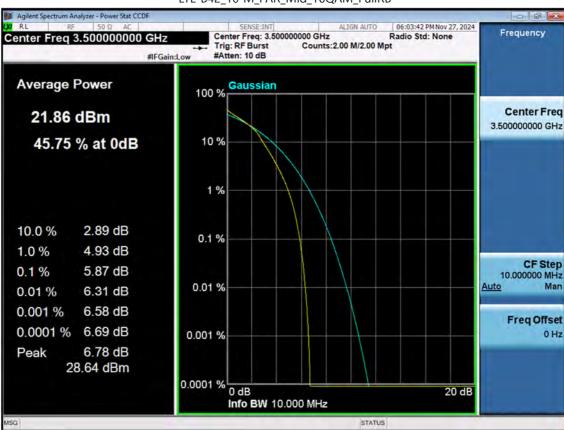

F-TP22-03 (Rev. 06) Page 47 of 150

F-TP22-03 (Rev. 06) Page 48 of 150



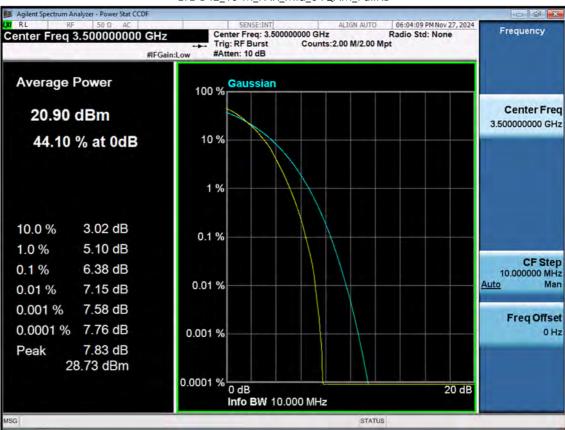
LTE B42_5 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 49 of 150



LTE B42_10 M_PAR_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 50 of 150

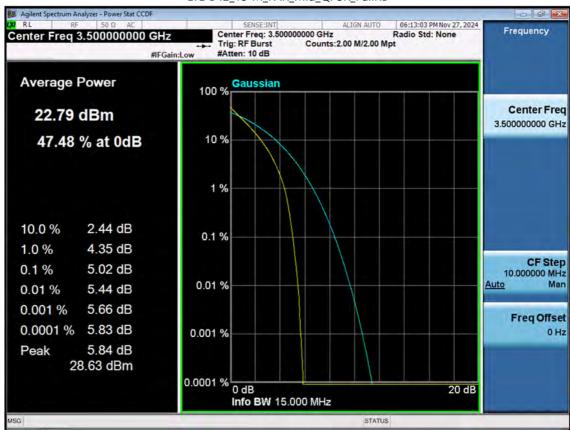


LTE B42_10 M_PAR_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 51 of 150

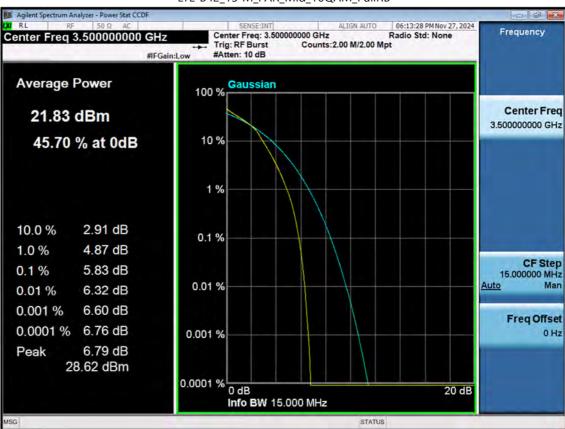
LTE B42_10 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 52 of 150



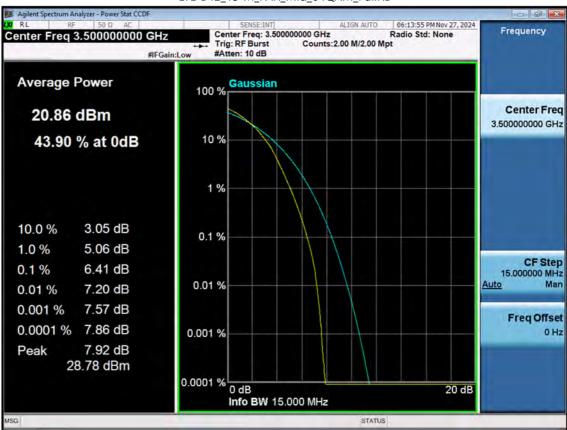
LTE B42_10 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 53 of 150



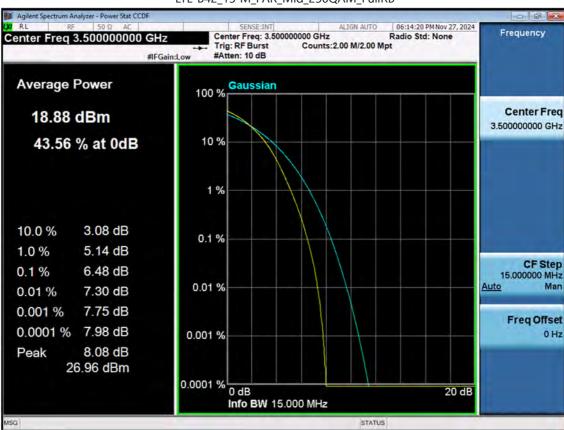
LTE B42_15 M_PAR_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 54 of 150



LTE B42_15 M_PAR_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 55 of 150



LTE B42_15 M_PAR_Mid_64QAM_FullRB

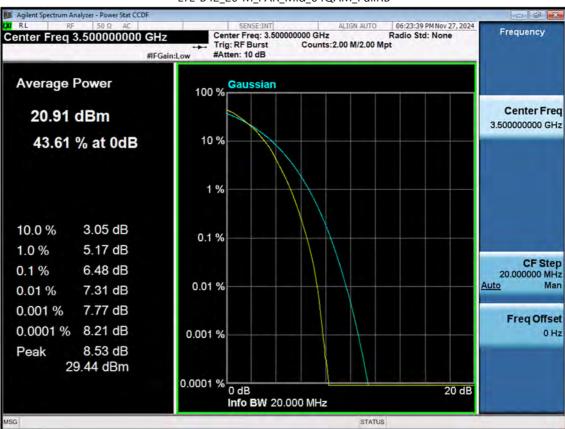
F-TP22-03 (Rev. 06) Page 56 of 150

LTE B42_15 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 57 of 150

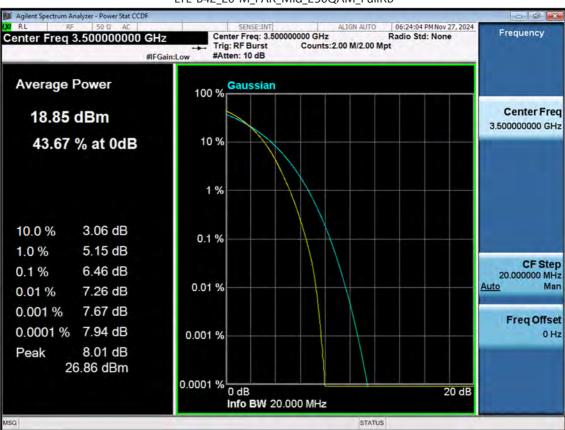
LTE B42_20 M_PAR_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 58 of 150



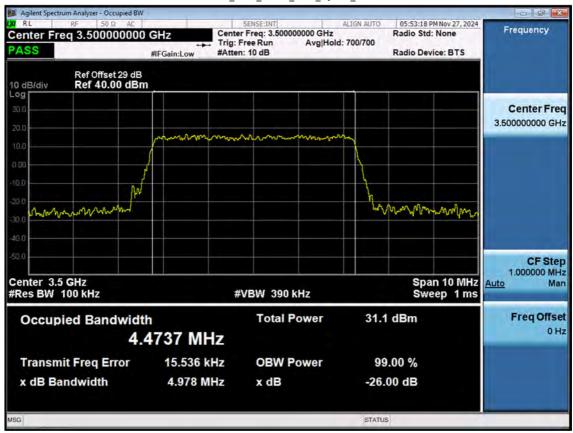
LTE B42_20 M_PAR_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 59 of 150



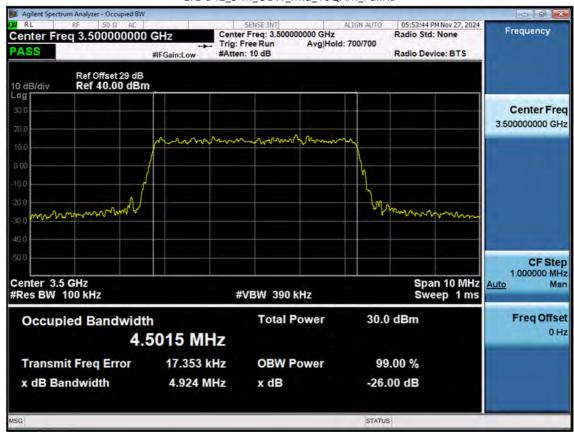
LTE B42_20 M_PAR_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 60 of 150



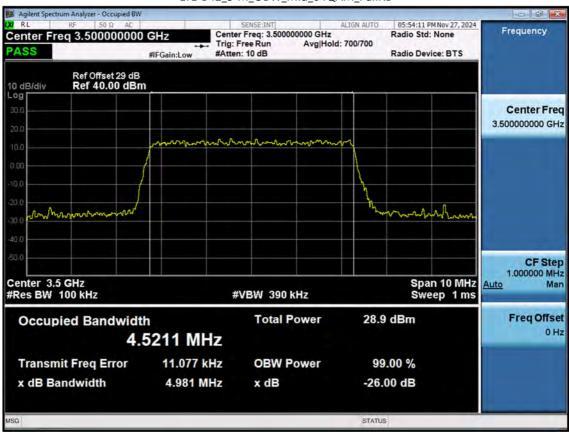
LTE B42_20 M_PAR_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 61 of 150



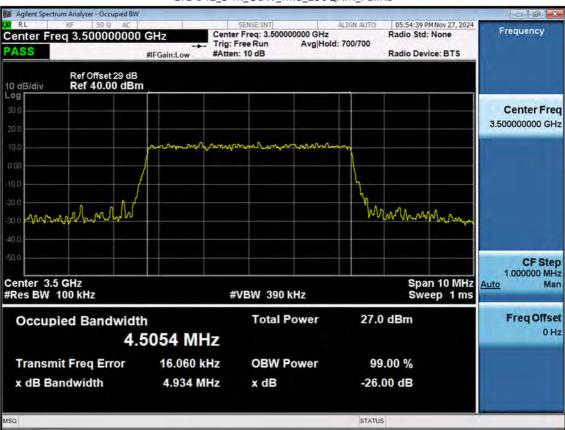
LTE B42_5 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 62 of 150



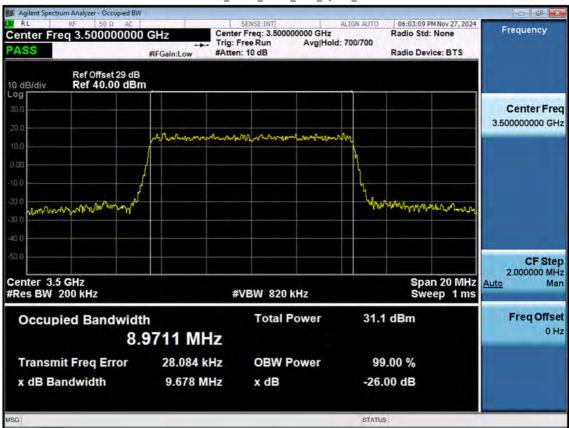
LTE B42_5 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 63 of 150



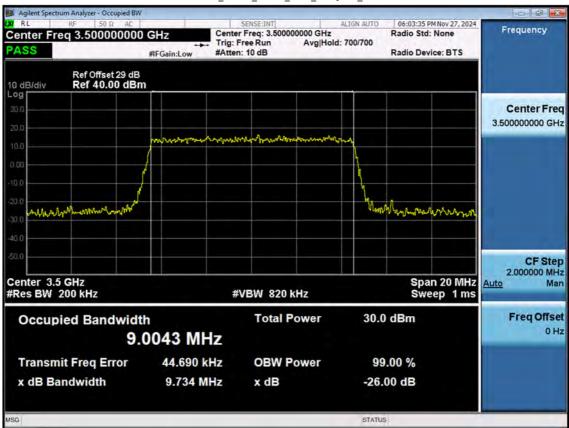
LTE B42_5 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 64 of 150



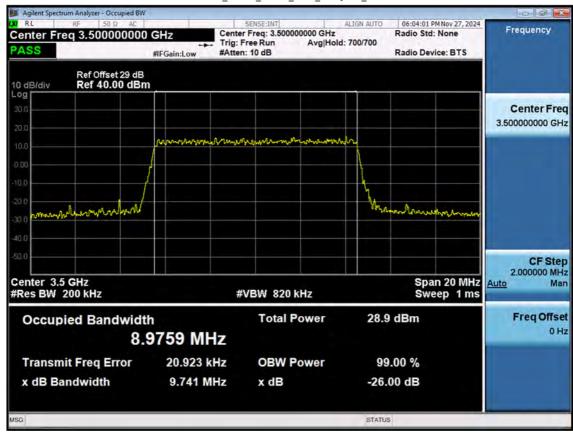
LTE B42_5 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 65 of 150



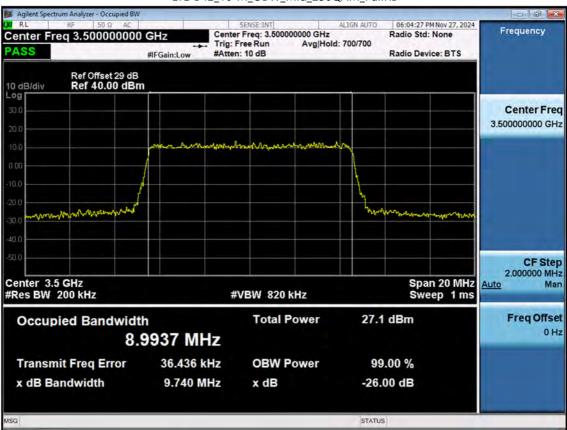
LTE B42_10 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 66 of 150



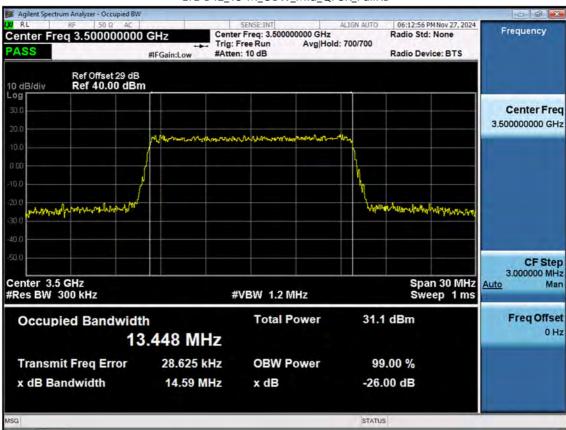
LTE B42_10 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 67 of 150



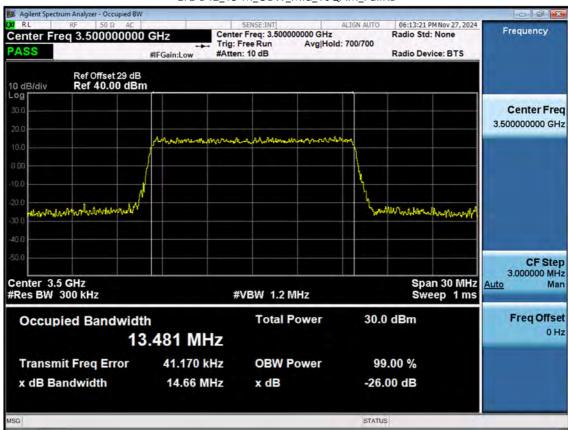
LTE B42_10 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 68 of 150



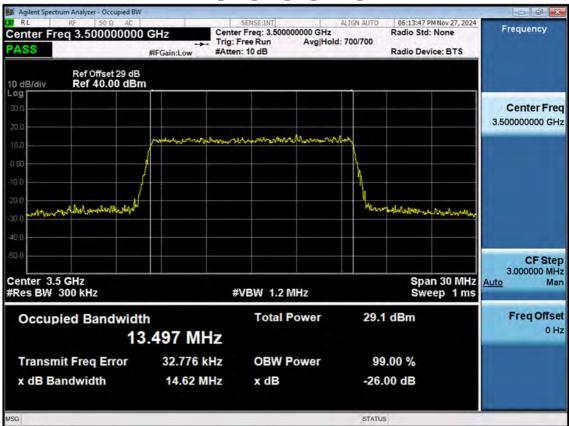
LTE B42_10 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 69 of 150



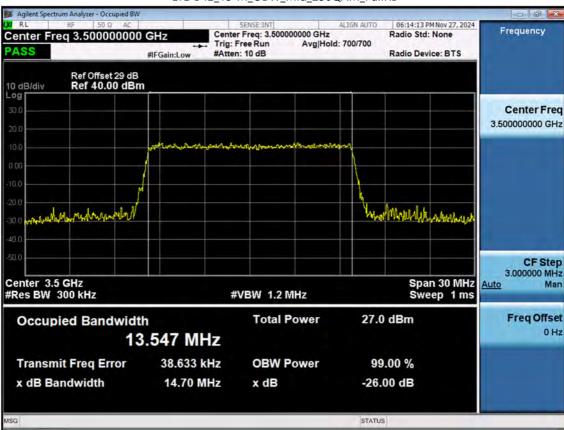
LTE B42_15 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 70 of 150



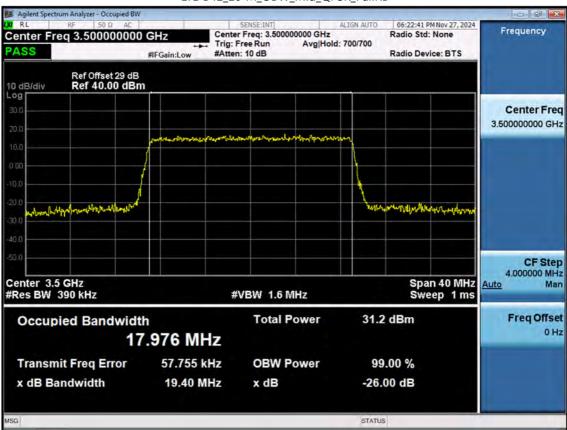
LTE B42_15 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 71 of 150



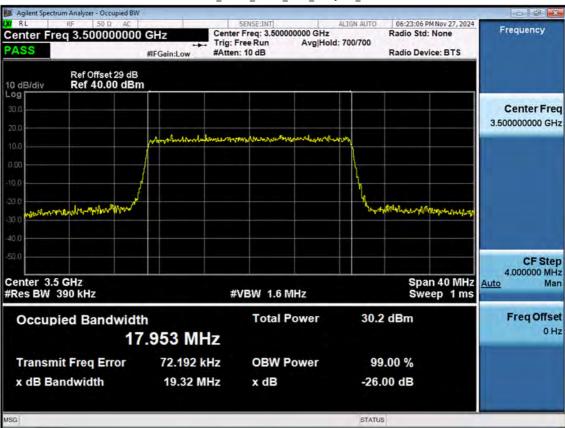
LTE B42_15 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 72 of 150



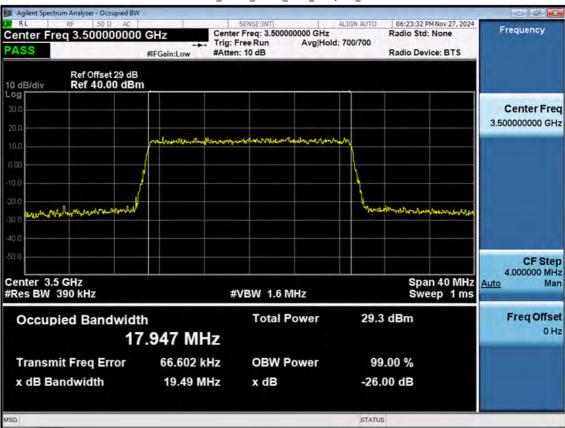
LTE B42_15 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 73 of 150



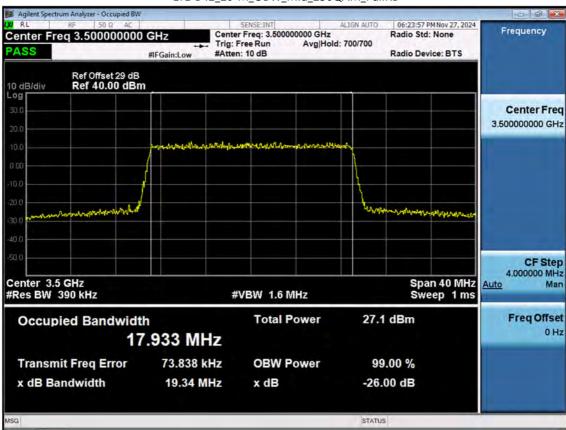
LTE B42_20 M_OBW_Mid_QPSK_FullRB

F-TP22-03 (Rev. 06) Page 74 of 150



LTE B42_20 M_OBW_Mid_16QAM_FullRB

F-TP22-03 (Rev. 06) Page 75 of 150



LTE B42_20 M_OBW_Mid_64QAM_FullRB

F-TP22-03 (Rev. 06) Page 76 of 150

LTE B42_20 M_OBW_Mid_256QAM_FullRB

F-TP22-03 (Rev. 06) Page 77 of 150

LTE B42_5 M_Conducted Spurious(30 M-10 G)_Low_QPSK_1RB

F-TP22-03 (Rev. 06) Page 78 of 150

LTE B42_5 M_Conducted Spurious(30 M-10 G)_Mid_QPSK_1RB

F-TP22-03 (Rev. 06) Page 79 of 150

LTE B42_5 M_Conducted Spurious(30 M-10 G)_High_QPSK_1RB

F-TP22-03 (Rev. 06) Page 80 of 150

LTE B42_10 M_Conducted Spurious(30 M-10 G)_Low_QPSK_1RB

F-TP22-03 (Rev. 06) Page 81 of 150

LTE B42_10 M_Conducted Spurious(30 M-10 G)_Mid_QPSK_1RB

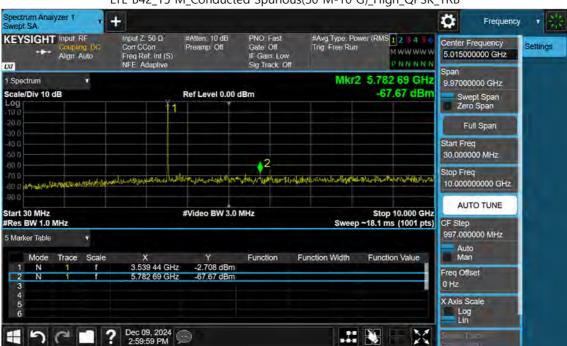
F-TP22-03 (Rev. 06) Page 82 of 150

LTE B42_10 M_Conducted Spurious(30 M-10 G)_High_QPSK_1RB

F-TP22-03 (Rev. 06) Page 83 of 150

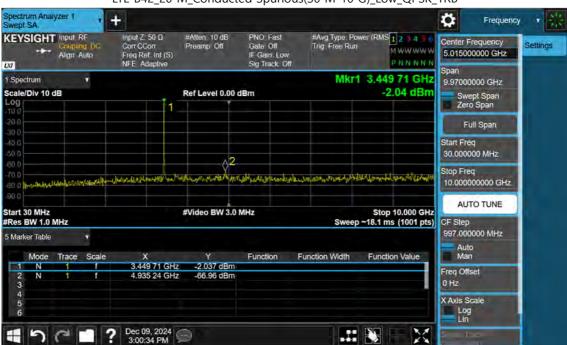
LTE B42_15 M_Conducted Spurious(30 M-10 G)_Low_QPSK_1RB

F-TP22-03 (Rev. 06) Page 84 of 150



LTE B42_15 M_Conducted Spurious(30 M-10 G)_Mid_QPSK_1RB

F-TP22-03 (Rev. 06) Page 85 of 150



LTE B42_15 M_Conducted Spurious(30 M-10 G)_High_QPSK_1RB

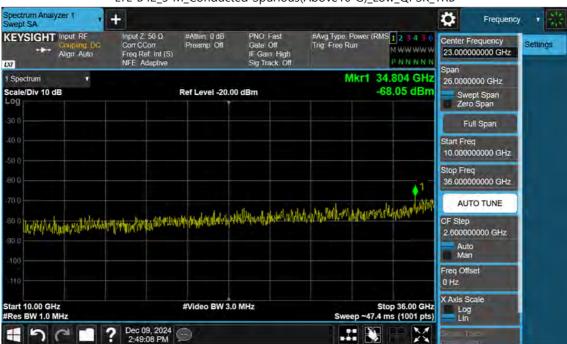
F-TP22-03 (Rev. 06) Page 86 of 150

LTE B42_20 M_Conducted Spurious(30 M-10 G)_Low_QPSK_1RB

F-TP22-03 (Rev. 06) Page 87 of 150

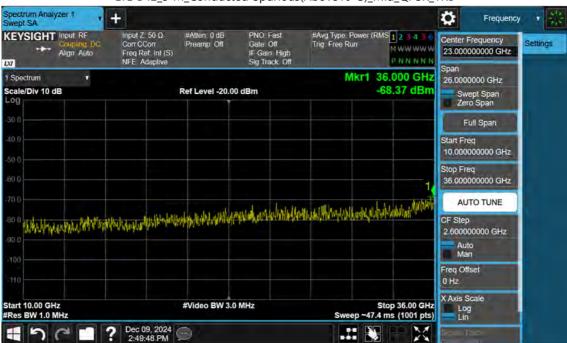
LTE B42_20 M_Conducted Spurious(30 M-10 G)_Mid_QPSK_1RB

F-TP22-03 (Rev. 06) Page 88 of 150



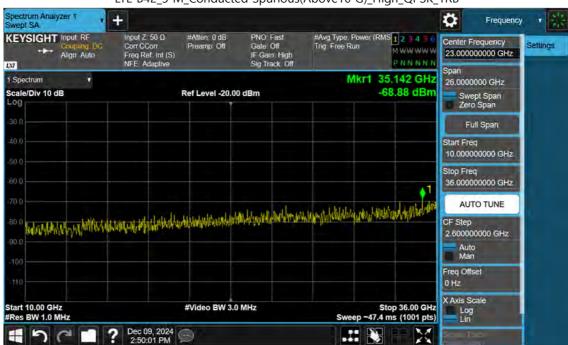
LTE B42_20 M_Conducted Spurious(30 M-10 G)_High_QPSK_1RB

F-TP22-03 (Rev. 06) Page 89 of 150



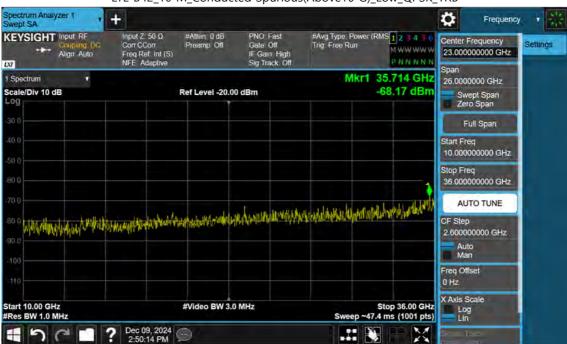
LTE B42_5 M_Conducted Spurious(Above10 G)_Low_QPSK_1RB

F-TP22-03 (Rev. 06) Page 90 of 150



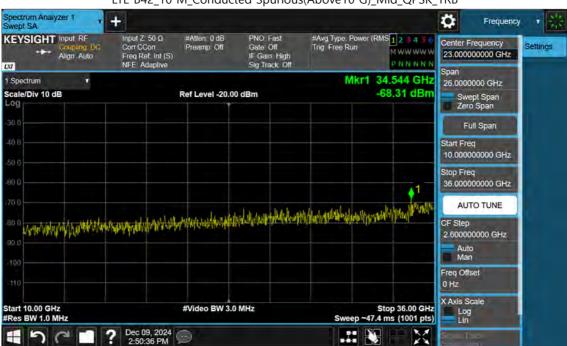
LTE B42_5 M_Conducted Spurious(Above10 G)_Mid_QPSK_1RB

F-TP22-03 (Rev. 06) Page 91 of 150



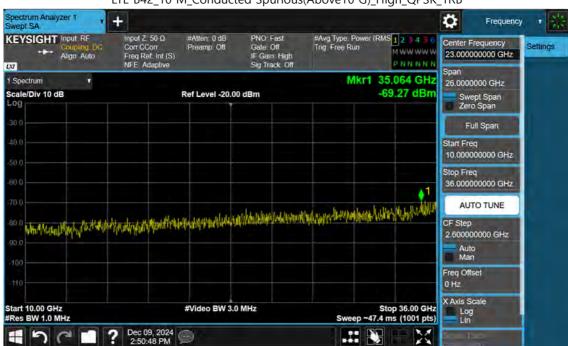
LTE B42_5 M_Conducted Spurious(Above10 G)_High_QPSK_1RB

F-TP22-03 (Rev. 06) Page 92 of 150



LTE B42_10 M_Conducted Spurious(Above10 G)_Low_QPSK_1RB

F-TP22-03 (Rev. 06) Page 93 of 150



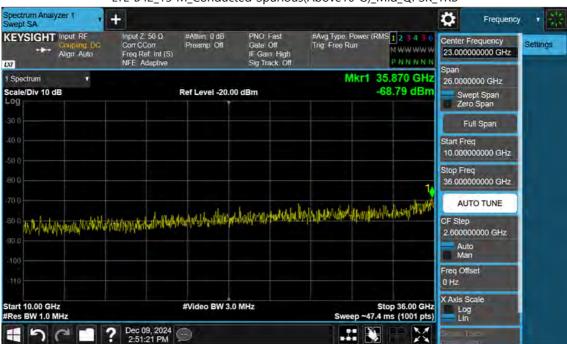
LTE B42_10 M_Conducted Spurious(Above10 G)_Mid_QPSK_1RB

F-TP22-03 (Rev. 06) Page 94 of 150



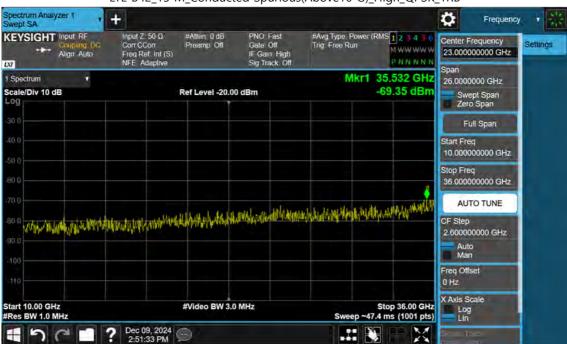
LTE B42_10 M_Conducted Spurious(Above10 G)_High_QPSK_1RB

F-TP22-03 (Rev. 06) Page 95 of 150



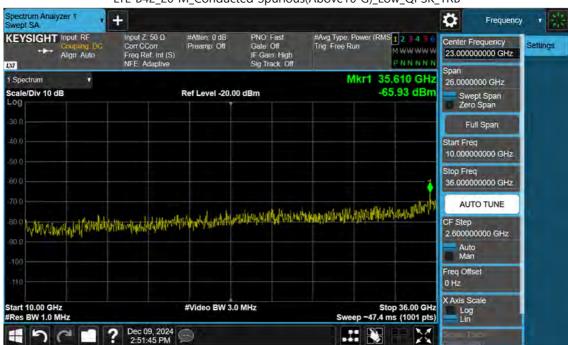
LTE B42_15 M_Conducted Spurious(Above10 G)_Low_QPSK_1RB

F-TP22-03 (Rev. 06) Page 96 of 150



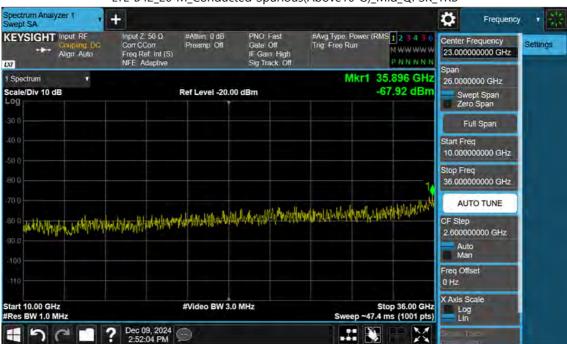
LTE B42_15 M_Conducted Spurious(Above10 G)_Mid_QPSK_1RB

F-TP22-03 (Rev. 06) Page 97 of 150



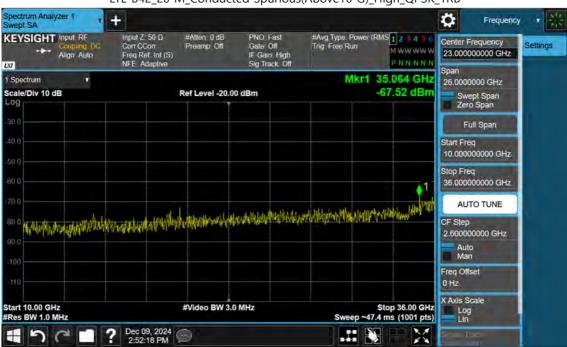
LTE B42_15 M_Conducted Spurious(Above10 G)_High_QPSK_1RB

F-TP22-03 (Rev. 06) Page 98 of 150



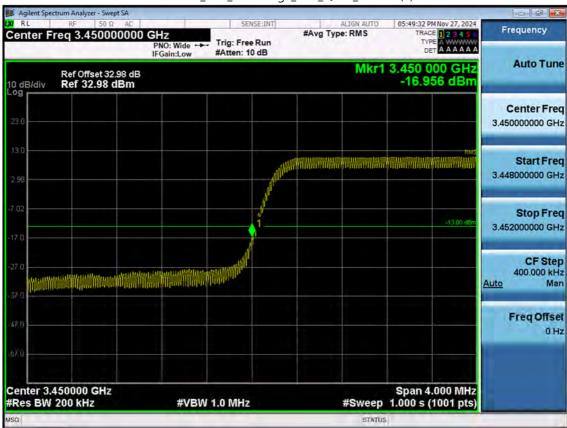
LTE B42_20 M_Conducted Spurious(Above10 G)_Low_QPSK_1RB

F-TP22-03 (Rev. 06) Page 99 of 150



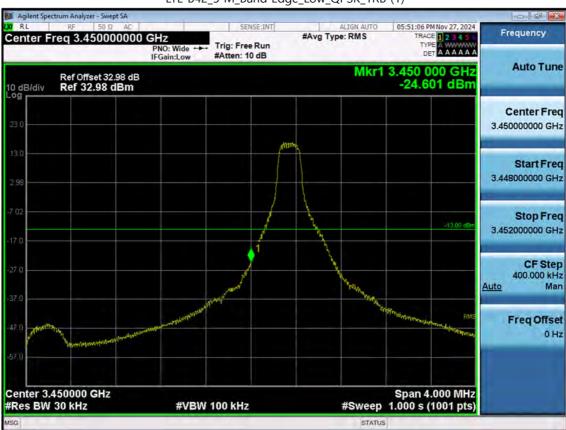
LTE B42_20 M_Conducted Spurious(Above10 G)_Mid_QPSK_1RB

F-TP22-03 (Rev. 06) Page 100 of 150



LTE B42_20 M_Conducted Spurious(Above10 G)_High_QPSK_1RB

F-TP22-03 (Rev. 06) Page 101 of 150



LTE B42_5 M_Band Edge_Low_QPSK_Full RB (1)

F-TP22-03 (Rev. 06) Page 102 of 150

LTE B42_5 M_Band Edge_Low_QPSK_1RB (1)

F-TP22-03 (Rev. 06) Page 103 of 150

LTE B42_5 M_Band Edge_Low_QPSK_Full RB (2)

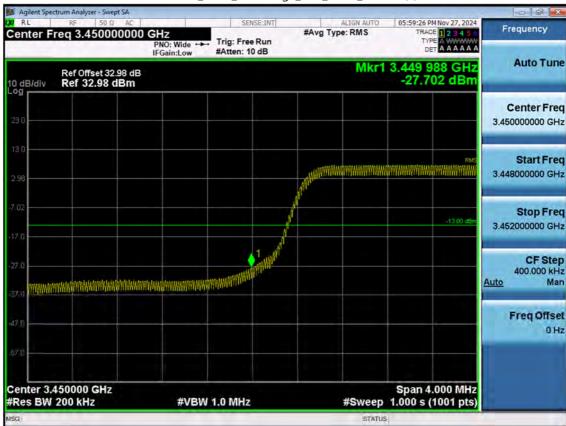
F-TP22-03 (Rev. 06) Page 104 of 150

LTE B42_5 M_Band Edge_Low_QPSK_1RB (2)

F-TP22-03 (Rev. 06) Page 105 of 150

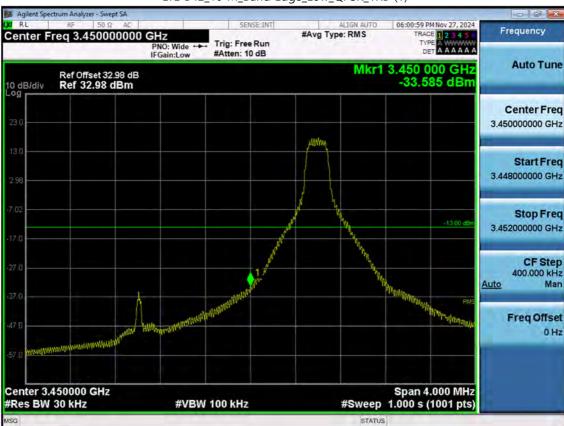
LTE B42_5 M_Band Edge_Low_QPSK_Full RB (3)

F-TP22-03 (Rev. 06) Page 106 of 150



LTE B42_5 M_Band Edge_Low_QPSK_1RB (3)

F-TP22-03 (Rev. 06) Page 107 of 150



LTE B42_10 M_Band Edge_Low_QPSK_Full RB (1)

F-TP22-03 (Rev. 06) Page 108 of 150

LTE B42_10 M_Band Edge_Low_QPSK_1RB (1)

F-TP22-03 (Rev. 06) Page 109 of 150



LTE B42_10 M_Band Edge_Low_QPSK_Full RB (2)

F-TP22-03 (Rev. 06) Page 110 of 150

LTE B42_10 M_Band Edge_Low_QPSK_1RB (2)

F-TP22-03 (Rev. 06) Page 111 of 150

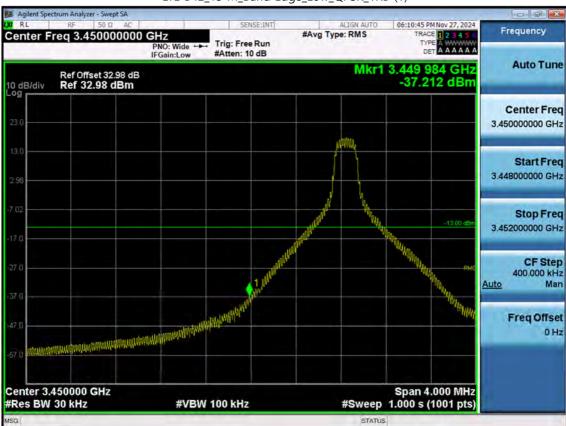
LTE B42_10 M_Band Edge_Low_QPSK_Full RB (3)

F-TP22-03 (Rev. 06) Page 112 of 150



LTE B42_10 M_Band Edge_Low_QPSK_1RB (3)

F-TP22-03 (Rev. 06) Page 113 of 150



LTE B42_15 M_Band Edge_Low_QPSK_Full RB (1)

F-TP22-03 (Rev. 06) Page 114 of 150

LTE B42_15 M_Band Edge_Low_QPSK_1RB (1)

F-TP22-03 (Rev. 06) Page 115 of 150



LTE B42_15 M_Band Edge_Low_QPSK_Full RB (2)

F-TP22-03 (Rev. 06) Page 116 of 150



LTE B42_15 M_Band Edge_Low_QPSK_1RB (2)

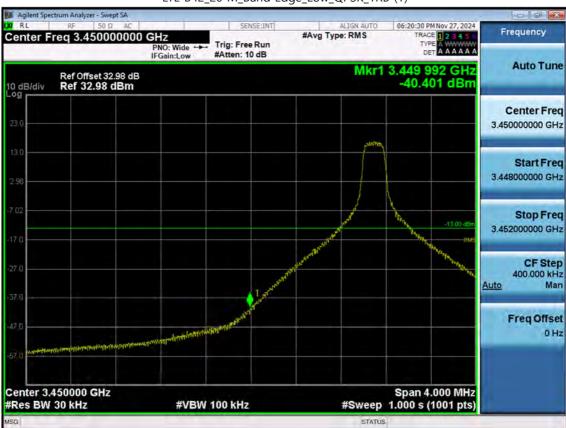
F-TP22-03 (Rev. 06) Page 117 of 150

LTE B42_15 M_Band Edge_Low_QPSK_Full RB (3)

F-TP22-03 (Rev. 06) Page 118 of 150

LTE B42_15 M_Band Edge_Low_QPSK_1RB (3)

F-TP22-03 (Rev. 06) Page 119 of 150



LTE B42_20 M_Band Edge_Low_QPSK_Full RB (1)

F-TP22-03 (Rev. 06) Page 120 of 150

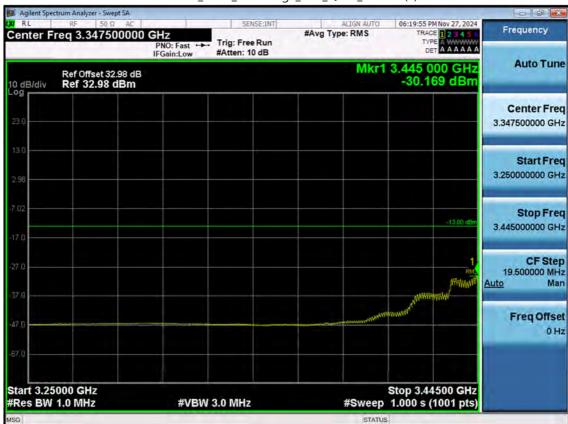


LTE B42_20 M_Band Edge_Low_QPSK_1RB (1)

F-TP22-03 (Rev. 06) Page 121 of 150

LTE B42_20 M_Band Edge_Low_QPSK_Full RB (2)

F-TP22-03 (Rev. 06) Page 122 of 150



LTE B42_20 M_Band Edge_Low_QPSK_1RB (2)

F-TP22-03 (Rev. 06) Page 123 of 150

LTE B42_20 M_Band Edge_Low_QPSK_Full RB (3)

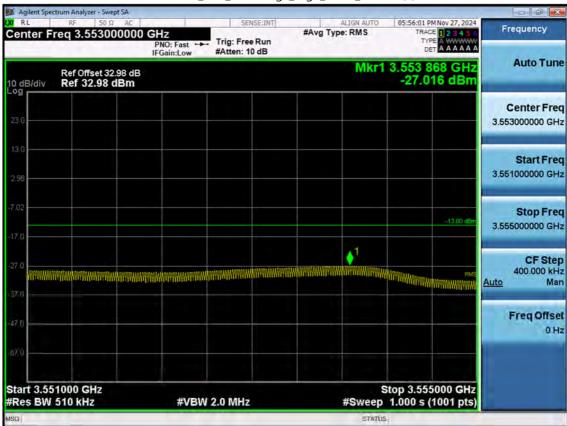
F-TP22-03 (Rev. 06) Page 124 of 150

LTE B42_20 M_Band Edge_Low_QPSK_1RB (3)

F-TP22-03 (Rev. 06) Page 125 of 150

LTE B42_5 M_Band Edge_High_QPSK_Full RB (1)

F-TP22-03 (Rev. 06) Page 126 of 150

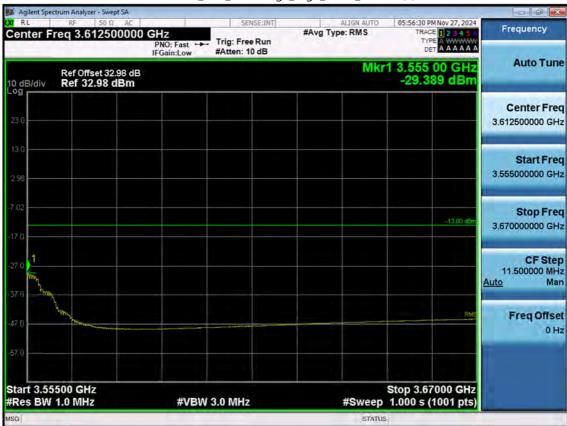


LTE B42_5 M_Band Edge_High_QPSK_1RB (1)

F-TP22-03 (Rev. 06) Page 127 of 150

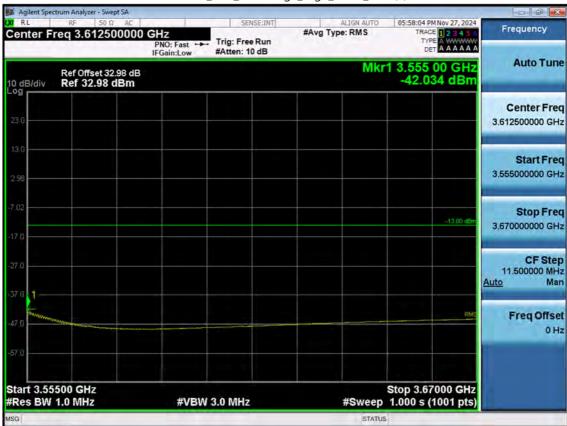
LTE B42_5 M_Band Edge_High_QPSK_Full RB (2)

F-TP22-03 (Rev. 06) Page 128 of 150



LTE B42_5 M_Band Edge_High_QPSK_1RB (2)

F-TP22-03 (Rev. 06) Page 129 of 150

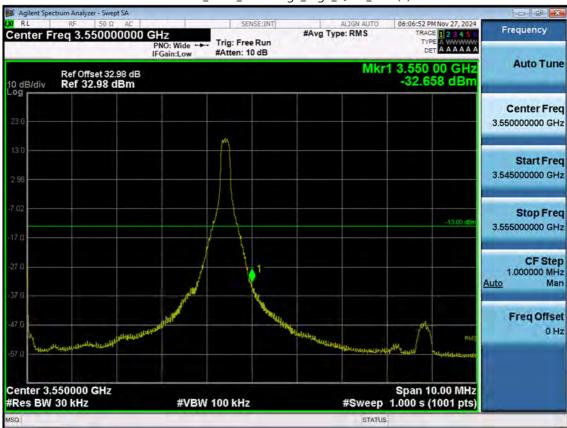


LTE B42_5 M_Band Edge_High_QPSK_Full RB (3)

F-TP22-03 (Rev. 06) Page 130 of 150

LTE B42_5 M_Band Edge_High_QPSK_1RB (3)

F-TP22-03 (Rev. 06) Page 131 of 150



LTE B42_10 M_Band Edge_High_QPSK_Full RB (1)

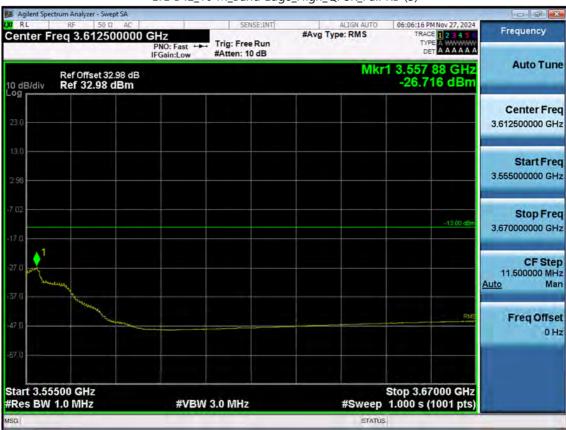
F-TP22-03 (Rev. 06) Page 132 of 150

LTE B42_10 M_Band Edge_High_QPSK_1RB (1)

F-TP22-03 (Rev. 06) Page 133 of 150

LTE B42_10 M_Band Edge_High_QPSK_Full RB (2)

F-TP22-03 (Rev. 06) Page 134 of 150



LTE B42_10 M_Band Edge_High_QPSK_1RB (2)

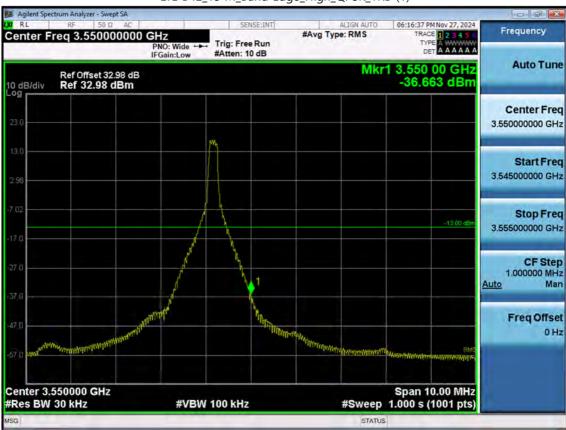
F-TP22-03 (Rev. 06) Page 135 of 150

LTE B42_10 M_Band Edge_High_QPSK_Full RB (3)

F-TP22-03 (Rev. 06) Page 136 of 150

LTE B42_10 M_Band Edge_High_QPSK_1RB (3)

F-TP22-03 (Rev. 06) Page 137 of 150



LTE B42_15 M_Band Edge_High_QPSK_Full RB (1)

F-TP22-03 (Rev. 06) Page 138 of 150

LTE B42_15 M_Band Edge_High_QPSK_1RB (1)

F-TP22-03 (Rev. 06) Page 139 of 150

LTE B42_15 M_Band Edge_High_QPSK_Full RB (2)

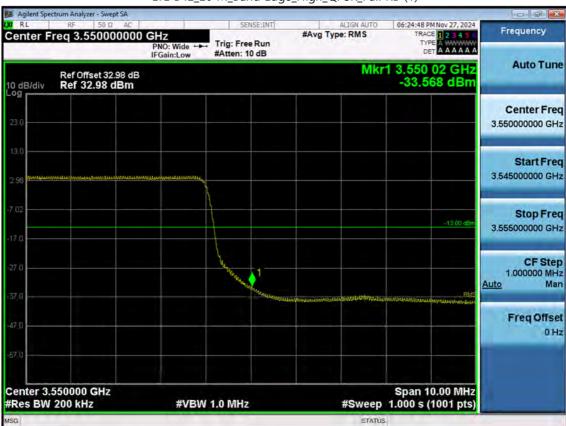
F-TP22-03 (Rev. 06) Page 140 of 150

LTE B42_15 M_Band Edge_High_QPSK_1RB (2)

F-TP22-03 (Rev. 06) Page 141 of 150

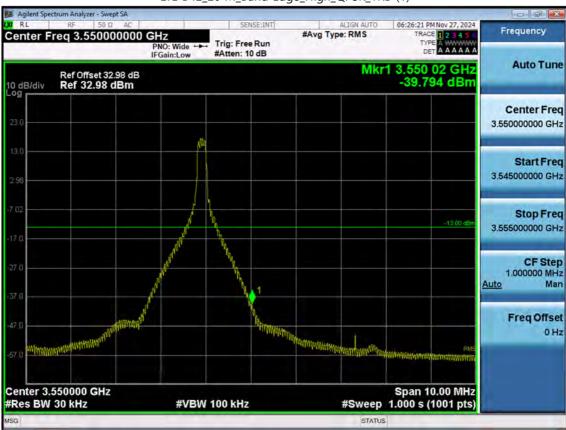
LTE B42_15 M_Band Edge_High_QPSK_Full RB (3)

F-TP22-03 (Rev. 06) Page 142 of 150



LTE B42_15 M_Band Edge_High_QPSK_1RB (3)

F-TP22-03 (Rev. 06) Page 143 of 150



LTE B42_20 M_Band Edge_High_QPSK_Full RB (1)

F-TP22-03 (Rev. 06) Page 144 of 150

LTE B42_20 M_Band Edge_High_QPSK_1RB (1)

F-TP22-03 (Rev. 06) Page 145 of 150

LTE B42_20 M_Band Edge_High_QPSK_Full RB (2)

F-TP22-03 (Rev. 06) Page 146 of 150

LTE B42_20 M_Band Edge_High_QPSK_1RB (2)

F-TP22-03 (Rev. 06) Page 147 of 150

LTE B42_20 M_Band Edge_High_QPSK_Full RB (3)

F-TP22-03 (Rev. 06) Page 148 of 150

LTE B42_20 M_Band Edge_High_QPSK_1RB (3)

F-TP22-03 (Rev. 06) Page 149 of 150

10. ANNEX A_TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2412-FC055-P

F-TP22-03 (Rev. 06) Page 150 of 150