

Starkey Laboratories, Inc.

G Series AI RIC 312

FCC 15.247:2025 RSS-247 Issue 3:2023 RSS-Gen Issue 5:2018+A1:2019+A2:2021

Bluetooth Low Energy (DTS) Radio

Report: STAK0364.1 Rev. 0, Issue Date: May 12, 2025

This report must not be used to claim product certification, approval, or endorsement by A2LA or any agency of the U.S. Government. This Report shall not be reproduced, except in full without written approval of the laboratory.

TABLE OF CONTENTS

Section

Page Number

Certificate of Test	.3
Revision History	.5
Accreditations	.6
Facilities	.7
Measurement Uncertainty	.8
Test Setup Block Diagrams	.9
Product Description	.12
Power Settings and Antenna Information	.13
Configurations	.14
Modifications	.15
Occupied Bandwidth (99%)	.16
Duty Cycle	.20
DTS Bandwidth (6 dB)	.24
Output Power	.28
Equivalent Isotropic Radiated Power	.32
Power Spectral Density	.34
Band Edge Compliance	.38
Spurious Conducted Emissions	.41
Radiated Band Edge Emissions	.47
Spurious Radiated Emissions	.50
End of Report	.57

CERTIFICATE OF TEST

Last Date of Test: March 31, 2025 Starkey Laboratories, Inc. EUT: G Series AI RIC 312

Radio Equipment Testing

Standards

Specification	Method
FCC 15.247:2025	
RSS-247 Issue 3:2023	ANSI C63.10:2020
RSS-Gen Issue 5:2018+A1:2019+A2:2021	

Guidance

FCC KDB 558074 v05r02:2019	
Notice 2021 - CEB0001	

Results

Test Description	Result	FCC Section(s)	RSS Section(s)	ANSI C63.10 Section(s)	Comments
Powerline Conducted Emissions	N/A	15.207	RSS-Gen 8.8	6.2	Not required for a battery powered EUT.
Occupied Bandwidth (99%)	Pass	KDB 558074 - 2.1	RSS-Gen 6.7	6.9.3	
Duty Cycle	Pass	KDB 558074 - 6.0	RSS-Gen 3.2	11.6	
DTS Bandwidth (6 dB)	Pass	15.247(a)(2), KDB 558074 - 8.2	RSS-247 5.2(a)	11.8.2	
Output Power	utput Power Pass KI		RSS-247 5.4(d, f), RSS-Gen 6.12	11.9.1.1	
Equivalent Isotropic Radiated Power	Pass	15.247(b)(3), KDB 558074 - 8.3.1	RSS-247 5.4(d, f), RSS-Gen 6.12	11.9.1.1	
Power Spectral Density Pass		15.247(e), KDB 558074 - 8.4	RSS-247 5.2(b)	11.10.2	
Band Edge Compliance	Pass	15.247(d), KDB 558074 - 8.5	RSS-247 5.5	11.11	
Spurious Conducted Emissions	Pass	15.247(d), KDB 558074 - 8.5	RSS-247 5.5	11.11	
Radiated Band Edge Emissions	Pass	15.247(d), KDB 558074 - 8.6, 8.7	RSS-247 5.5, RSS-Gen 6.13, 8.10	11.12.1, 11.13.2, 6.6	
Spurious Radiated Emissions	Pass	15.247(d), KDB 558074 - 8.6, 8.7	RSS-247 5.5, RSS-Gen 6.13, 8.10	11.12.1, 11.13.2, 6.4, 6.5, 6.6	

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

CERTIFICATE OF TEST

Deviations From Test Standards

None

Approved By:

Jeff Alcoke, Senior EMC Test Engineer Signed for and on behalf of Element

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information. As indicated in the Statement of Work sent with the quotation, Element's standard process is to always use the latest published version of the test methods even when earlier versions are cited in the test specification. Issuance of a purchase order was de facto acceptance of this approach. Otherwise, the client would have advised Element in writing of the specific version of the test methods they wanted applied to the subject testing.

REVISION HISTORY

Revision Number	Description	Date (yyyy-mm-dd)	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Each laboratory is accredited by A2LA to ISO / IEC 17025, and as a product certifier to ISO / IEC 17065 which allows Element to certify transmitters to FCC and IC specifications.

FDA - Recognized by the FDA as an Accreditation Scheme for Conformity Assessment (ASCA)-accredited testing laboratory for basic safety and essential performance.

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB) and as a CAB for the acceptance of test data.

European Union

European Commission - Recognized as an EU Notified Body validated for the EMCD and RED Directives.

United Kingdom

BEIS – Recognized by the UK as an Approved Body under the UK Radio Equipment and UK EMC Regulations.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIT / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

SCOPE								
For details on the Scopes of our Accreditations, please visit:								
<u>California</u>	<u>Minnesota</u>	<u>Oregon</u>	Washington					

FACILITIES

	Location	Labs (1)	Address	A2LA (2)	ISED (3)	BSMI (4)	VCCI (5)	CAB (6)	FDA (7)
	California	OC01-17	41 Tesla Irvine, CA 92618 (949) 861-8918	3310.04	2834B	SL2-IN-E-1154R	A-0029	US0158	TL-55
⊠	Minnesota	MN01-11	9349 W Broadway Ave. Brooklyn Park, MN 55445 (612) 638-5136	3310.05	2834E	SL2-IN-E-1152R	A-0109	US0175	TL-57
	Oregon	EV01-12	6775 NE Evergreen Pkwy #400 Hillsboro, OR 97124 (503) 844-4066	3310.02	2834D	SL2-IN-E-1017	A-0108	US0017	TL-56
	Washington	NC01-05	19201 120th Ave NE Bothell, WA 98011 (425) 984-6600	3310.06	2834F	SL2-IN-E-1153R	A-0110	US0157	TL-67
	Offsite	N/A	See Product Description	N/A	N/A	N/A	N/A	N/A	N/A
~									

Testing was performed at the following location(s)

See data sheets for specific labs

(1) (2) (3) (4) (5) (6) (7)

The lab designations denote individual rooms within each location. (OC01, OC02, OC03, etc.) A2LA Certificate No. ISED Company No. BSMI No. VCCI Site Filing No. CAB Identifier. Recognized Phase I CAB for ISED, ACMA, BSMI, IDA, KCC/RRA, MOC, NCC, OFCA FDA ASCA No.

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation reported is based on statistical analysis that was performed by the laboratory. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (k=2) can be found in the table below. A lab specific value may also be found in the applicable test description section. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable) and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Various Measurements

Test	All Labs (+/-)
Frequency Accuracy (%)	0.0007
Amplitude Accuracy (dB)	1.2
Conducted Power (dB)	1.2
Radiated Power via Substitution (dB)	0.7
Temperature (degrees C)	0.7
Humidity (% RH)	2.5
Voltage (AC) (%)	1
Voltage (DC) (%)	0.7
Near-field Measurement of E-Field (dB)	1.89
Near-field Measurement of H-Field (dB)	2.65

Field Strength Measurements (dB)

Range	MN09
	(+/-)
30MHz-1GHz 3m	4.6
1GHz-6GHz	5.1
6GHz-40GHz	5.3

TEST SETUP BLOCK DIAGRAMS

Measurement Bandwidths

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)		
0.01 - 0.15	1.0	0.2	0.2		
0.15 - 30.0	10.0	9.0	9.0		
30.0 - 1000	100.0	120.0	120.0		
Above 1000	1000.0	N/A	1000.0		

Unless otherwise stated, measurements were made using the bandwidths and detectors specified. No video filter was used.

Antenna Port Conducted Measurements

Measured Value		Measured Level		Reference Level Offset
71.2	=	42.6	+	28.6

Near Field Test Fixture Measurements

71.2

=

42.6

+

28.6

TEST SETUP BLOCK DIAGRAMS

Emissions Measurements

Sample Calculation (logarithmic units)

Radiated Emissions:

				Factor								
Measured Level (Amplitude)		Antenna Factor		Cable Factor		Amplifier Gain		Distance Adjustment Factor		External Attenuation		Field Strength
42.6	+	28.6	+	3.1	-	40.8	+	0.0	+	0.0	=	33.5

Conducted Emissions:

Radiated Power (ERP/EIRP) – Substitution Method:

Measured Level into Substitution Antenna (Amplitude dBm)		Substitution Antenna Factor (dBi)		EIRP to ERP (if applicable)		Measured power (dBm ERP/EIRP)
10.0	+	6.0	-	2.15	=	13.9/16.0

TEST SETUP BLOCK DIAGRAMS

Bore Sighting (>1GHz)

The diameter of the illumination area is the dimension of the line tangent to the EUT formed by 3 dB beamwidth of the measurement antenna at the measurement distance. At a 3 meter test distance, the diameter of the illumination area was 3.8 meters at 1 GHz and greater than 2.1 meters up to 6 GHz. Above 1 GHz, when required by the measurement standard, the antenna is pointed for both azimuth and elevation to maintain the receive antenna within the cone of radiation from the EUT. The specified measurement detectors were used for comparison of the emissions to the peak and average specification limits.

PRODUCT DESCRIPTION

Client and Equipment under Test (EUT) Information

Company Name:	Starkey Laboratories, Inc.
Address:	6600 Washington Ave S
City, State, Zip:	Eden Prairie, MN 55344-3404
Test Requested By:	Bill Mitchell
EUT:	G Series AI RIC 312
First Date of Test:	March 27, 2025
Last Date of Test:	March 31, 2025
Receipt Date of Samples:	March 28, 2025
Equipment Design Stage:	Prototype
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Hearing aid with a BLE radio.

Testing Objective:

To demonstrate compliance of the Bluetooth radio to FCC 15.247/RSS-247 requirements.

POWER SETTINGS AND ANTENNAS

The power settings, antenna gain value(s) and cable loss (if applicable) used for the testing contained in this report were provided by the customer and will affect the validity of the results. Element assumes no responsibility for the accuracy of this information. The power settings below reflect the maximum power that the EUT is allowed to transmit at during normal operation.

ANTENNA GAIN (dBi)

Туре	Provided by:	Frequency Range (MHz)	Gain (dBi)
Folded Bowtie	Starkey	2400-2483.5	-6

The EUT was tested using the power settings provided by the manufacturer which were based upon:

□ Test software settings

 \boxtimes Rated power settings

Software / firmware used for testing: 8.5.0.2

SETTINGS FOR ALL TESTS IN THIS REPORT

Modulation Types / Data Rates	Туре	Channel	Position	Frequency (MHz)	Power Setting (dBm)
		37	Low Channel	2402	6
DLE GFOR TIMOPS,	DTS	18	Mid Channel	2442	6
		39	High Channel	2480	6

Configuration STAK0364-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
G Series AI RIC 312	Starkey Laboratories, Inc.	G Series AI RIC 312	250579964

Configuration STAK0364-3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
G Series AI RIC 312	Starkey Laboratories, Inc.	G Series AI RIC 312	250579966

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Spurious	Tested as	No EMI suppression	EUT remained at
1	2025-03-27	Radiated	delivered to	devices were added or	Element following the
		Emissions	test Station.	modified during this test.	test.
		Radiated	Tested as	No EMI suppression	EUT remained at
2	2025-03-28	Band Edge	delivered to	devices were added or	Element following the
		Emissions	test Station.	modified during this test.	test.
			Tested as	No EMI suppression	EUT remained at
3	2025-03-31	Duty Cycle	delivered to	devices were added or	Element following the
			test Station.	modified during this test.	test.
		DTS	Tested as	No EMI suppression	EUT remained at
4	2025-03-31	Bandwidth (6	delivered to	devices were added or	Element following the
		dB)	test Station.	modified during this test.	test.
		Equivalent	Tested as	No EMI suppression	FLIT remained at
5	2025-03-31	Isotropic	delivered to	devices were added or	Element following the
Ũ	2020 00 01	Radiated	test Station	modified during this test	test
		Power			
			Tested as	No EMI suppression	EUT remained at
6	2025-03-31	Output Power	delivered to	devices were added or	Element following the
			test Station.	modified during this test.	test.
		Occupied	Tested as	No EMI suppression	EUT remained at
7	2025-03-31	Bandwidth	delivered to	devices were added or	Element following the
		(99%)	test Station.	modified during this test.	test.
		Power	Tested as	No EMI suppression	EUT remained at
8	2025-03-31	Spectral	delivered to	devices were added or	Element following the
		Density	test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	EUT remained at
9	2025-03-31	Conducted	delivered to	devices were added or	Element following the
		Emissions	test Station.	modified during this test.	test.
		Band Edge	Tested as	No EMI suppression	Scheduled testing
	2025-03-31	Compliance	delivered to	devices were added or	was completed
		Compliance	test Station.	modified during this test.	mae completed.

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The 99% occupied bandwidth was measured with the EUT configured for continuous modulated operation.

Per ANSI C63.10:2013, 6.9.3, the spectrum analyzer was configured as follows:

The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

The resolution bandwidth (RBW) of the spectrum analyzer was set to the range of 1% to 5% of the occupied bandwidth (OBW) and video bandwidth (VBW) bandwidth was set to at least 3 times the resolution bandwidth. The analyzer sweep time was set to auto to prevent video filtering or averaging. A sample detector was used unless the device was not able to be operated in a continuous transmit mode, in which case a peak detector was used.

The spectrum analyzer occupied bandwidth measurement function was used to sum the power of the transmission in linear terms to obtain the 99% bandwidth.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Attenuator	S.M. Electronics	SA26B-20	RFW	2025-02-03	2026-02-03
Generator - Signal	Agilent	N5183A	TIK	2025-02-13	2028-02-13
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22

EUT:	G Series AI RIC 312	Work Order:	STAK0364
Serial Number:	250579966	Date:	2025-03-31
Customer:	Starkey Laboratories, Inc.	Temperature:	21.8°C
Attendees:	John Quach	Relative Humidity:	27.6%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mbar
Tested By:	Christopher Heintzelman	Job Site:	MN11
Power:	Battery	Configuration:	STAK0364-3

COMMENTS

Power setting 6 dBm. Reference level offset includes measurement cable, attenuator, and DC block.

DEVIATIONS FROM TEST STANDARD

None

CONCLUSION

N/A

Clithe Henten

Tested By

TEST RESULTS

	Value	Limit	Result
BLE/GFSK 1 Mbps			
Low Channel, 2402 MHz	1.071 MHz	N/A	N/A
Mid Channel, 2442 MHz	1.073 MHz	N/A	N/A
High Channel, 2480 MHz	1.074 MHz	N/A	N/A
BLE/GFSK 2 Mbps	1		
Low Channel, 2402 MHz	2.157 MHz	N/A	N/A
Mid Channel, 2442 MHz	2.152 MHz	N/A	N/A
High Channel, 2480 MHz	2.158 MHz	N/A	N/A

BLE/GFSK 1 Mbps High Channel, 2480 MHz

BLE/GFSK 2 Mbps Low Channel, 2402 MHz

BLE/GFSK 2 Mbps Mid Channel, 2442 MHz

BLE/GFSK 2 Mbps High Channel, 2480 MHz

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a RF Power Sensor capable of 1 million samples per second, which only measures across the high time of the burst of the carrier. The measured level was offset by the cable loss, attenuator, and DC block that was used between the power sensor and EUT. This offset was determined prior to testing using a signal generator and spectrum analyzer.

The observed duty cycle was measured with the EUT set to the channels and modes called out in the data sheets.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Attenuator	S.M. Electronics	SA26B-20	RFW	2025-02-03	2026-02-03
Meter - Power	ETS Lindgren	7002-008	SRA	2025-02-18	2026-02-18
Generator - Signal	Agilent	N5183A	TIK	2025-02-13	2028-02-13
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22

EUT:	G Series AI RIC 312	Work Order:	STAK0364
Serial Number:	250579966	Date:	2025-03-31
Customer:	Starkey Laboratories, Inc.	Temperature:	21.8°C
Attendees:	John Quach	Relative Humidity:	28.1%
Customer Project:	None	Bar. Pressure (PMSL):	1017 mbar
Tested By:	Christopher Heintzelman	Job Site:	MN11
Power:	Battery	Configuration:	STAK0364-3

COMMENTS

Power setting 6 dBm. Reference level offset includes measurement cable, attenuator, and DC block.

DEVIATIONS FROM TEST STANDARD

None

CONCLUSION

N/A

Clithe Houten Tested By

TEST RESULTS

	Duty Cycle (%)	Limit (dBm)	Results
Normal Test Conditions			
BLE/GFSK 1 Mbps Low Channel, 2402 MHz	22.641	N/A	N/A
BLE/GFSK 1 Mbps Mid Channel, 2442 MHz	22.883	N/A	N/A
BLE/GFSK 1 Mbps High Channel, 2480 MHz	22.334	N/A	N/A
BLE/GFSK 2 Mbps Low Channel, 2402 MHz	16.254	N/A	N/A
BLE/GFSK 2 Mbps Mid Channel, 2442 MHz	16.273	N/A	N/A
BLE/GFSK 2 Mbps High Channel, 2480 MHz	16.427	N/A	N/A

Normal Test Conditions BLE/GFSK 1 Mbps High Channel, 2480 MHz

BLE/GFSK 1 Mbps Mid Channel, 2442 MHz

Normal Test Conditions BLE/GFSK 2 Mbps Low Channel, 2402 MHz

BLE/GFSK 2 Mbps Mid Channel, 2442 MHz

Normal Test Conditions BLE/GFSK 2 Mbps High Channel, 2480 MHz

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The EUT was set to the channels and modes listed in the datasheet.

The 6dB DTS bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Attenuator	S.M. Electronics	SA26B-20	RFW	2025-02-03	2026-02-03
Generator - Signal	Agilent	N5183A	TIK	2025-02-13	2028-02-13
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22

EUT:	G Series AI RIC 312	Work Order:	STAK0364
Serial Number:	250579966	Date:	2025-03-31
Customer:	Starkey Laboratories, Inc.	Temperature:	21.8°C
Attendees:	John Quach	Relative Humidity:	27.6%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mbar
Tested By:	Christopher Heintzelman	Job Site:	MN11
Power:	Battery	Configuration:	STAK0364-3

COMMENTS

Power setting 6 dBm. Reference level offset includes measurement cable, attenuator, and DC block.

DEVIATIONS FROM TEST STANDARD

None

CONCLUSION

Pass

CliAm Harton Tested By

TEST RESULTS

			Limit	
		Value	(≥)	Result
BLE/GFSK 1 Mbps				
Low Ch	annel, 2402 MHz	744.462 kHz	500 kHz	Pass
Mid Ch	annel, 2442 MHz	741.514 kHz	500 kHz	Pass
High Ch	annel, 2480 MHz	737.601 kHz	500 kHz	Pass
BLE/GFSK 2 Mbps				
Low Ch	annel, 2402 MHz	1.269 MHz	500 kHz	Pass
Mid Ch	annel, 2442 MHz	1.268 MHz	500 kHz	Pass
High Ch	annel, 2480 MHz	1.272 MHz	500 kHz	Pass

BLE/GFSK 1 Mbps High Channel, 2480 MHz

BLE/GFSK 2 Mbps Low Channel, 2402 MHz

BLE/GFSK 2 Mbps Mid Channel, 2442 MHz

BLE/GFSK 2 Mbps High Channel, 2480 MHz

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Attenuator	S.M. Electronics	SA26B-20	RFW	2025-02-03	2026-02-03
Generator - Signal	Agilent	N5183A	TIK	2025-02-13	2028-02-13
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22

EUT:	G Series AI RIC 312	Work Order:	STAK0364
Serial Number:	250579966	Date:	2025-03-31
Customer:	Starkey Laboratories, Inc.	Temperature:	21.8°C
Attendees:	John Quach	Relative Humidity:	27.8%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mbar
Tested By:	Christopher Heintzelman	Job Site:	MN11
Power:	Battery	Configuration:	STAK0364-3

COMMENTS

Power setting 6 dBm. Reference level offset includes measurement cable, attenuator, and DC block.

DEVIATIONS FROM TEST STANDARD

None

CONCLUSION

Pass

CliAm Henten Tested By

TEST RESULTS

	Out Pwr (dBm)	Limit (dBm)	Result
BLE/GFSK 1 Mbps			
Low Channel, 240	2 MHz 4.677	30	Pass
Mid Channel, 244	2 MHz 1.842	30	Pass
High Channel, 248	0 MHz 2.897	30	Pass
BLE/GFSK 2 Mbps			
Low Channel, 240	2 MHz 4.556	30	Pass
Mid Channel, 244	2 MHz 1.22	30	Pass
High Channel, 248	0 MHz 2.545	30	Pass

BLE/GFSK 1 Mbps Low Channel, 2402 MHz

BLE/GFSK 1 Mbps Mid Channel, 2442 MHz

BLE/GFSK 1 Mbps High Channel, 2480 MHz

BLE/GFSK 2 Mbps Low Channel, 2402 MHz

BLE/GFSK 2 Mbps Mid Channel, 2442 MHz

BLE/GFSK 2 Mbps High Channel, 2480 MHz

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The transmit frequency was set to the required channels in each band. The transmit power was set to its default maximum.

Prior to measuring peak transmit power the DTS bandwidth (B) was measured.

The method found in ANSI C63.10:2013 Section 11.9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

Equivalent Isotropic Radiated Power (EIRP) = Max Measured Power + Antenna gain (dBi)

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Attenuator	S.M. Electronics	SA26B-20	RFW	2025-02-03	2026-02-03
Generator - Signal	Agilent	N5183A	TIK	2025-02-13	2028-02-13
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22

EQUIVALENT ISOTROPIC RADIATED POWER (EIRP)

EUT:	G Series AI RIC 312	Work Order:	STAK0364
Serial Number:	250579966	Date:	2025-03-31
Customer:	Starkey Laboratories, Inc.	Temperature:	21.8°C
Attendees:	John Quach	Relative Humidity:	27.8%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mbar
Tested By:	Christopher Heintzelman	Job Site:	MN11
Power:	Battery	Configuration:	STAK0364-2

COMMENTS

Power setting 6 dBm. Reference level offset includes measurement cable, attenuator, and DC block.

DEVIATIONS FROM TEST STANDARD

None

CONCLUSION

Pass

Clitter Henten

Tested By

TEST RESULTS

		Out Pwr (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP Limit (dBm)	Result
BLE/GFSK 1 Mbps						
	Low Channel, 2402 MHz	4.677	-6	-1.323	36	Pass
	Mid Channel, 2442 MHz	1.842	-6	-4.158	36	Pass
	High Channel, 2480 MHz	2.897	-6	-3.103	36	Pass
BLE/GFSK 2 Mbps						
	Low Channel, 2402 MHz	4.556	-6	-1.444	36	Pass
	Mid Channel, 2442 MHz	1.22	-6	-4.78	36	Pass
	High Channel, 2480 MHz	2.545	-6	-3.455	36	Pass

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The maximum power spectral density measurements was measured using the channels and modes as called out on the following data sheets.

Per the procedure outlined in ANSI C63.10 the peak power spectral density was measured in a 3 kHz RBW.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Attenuator	S.M. Electronics	SA26B-20	RFW	2025-02-03	2026-02-03
Meter - Power	ETS Lindgren	7002-008	SRA	2025-02-18	2026-02-18
Generator - Signal	Agilent	N5183A	TIK	2025-02-13	2028-02-13
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22

EUT:	G Series AI RIC 312	Work Order:	STAK0364
Serial Number:	250579966	Date:	2025-03-31
Customer:	Starkey Laboratories, Inc.	Temperature:	21.8°C
Attendees:	John Quach	Relative Humidity:	28%
Customer Project:	None	Bar. Pressure (PMSL):	1017 mbar
Tested By:	Christopher Heintzelman	Job Site:	MN11
Power:	Battery	Configuration:	STAK0364-3

COMMENTS

Power setting 6 dBm. Reference level offset includes measurement cable, attenuator, and DC block.

DEVIATIONS FROM TEST STANDARD

None

CONCLUSION

Pass

CliAm Henten Tested By

TEST RESULTS

	Value dBm/3kHz	Limit ≤ (dBm/3kHz)	Results
BLE/GFSK 1 Mbps			
Low Channel, 2402 MH	lz -11.077	8	Pass
Mid Channel, 2442 M⊦	lz -13.459	8	Pass
High Channel, 2480 M⊢	lz -12.381	8	Pass
BLE/GFSK 2 Mbps			
Low Channel, 2402 MH	lz -13.397	8	Pass
Mid Channel, 2442 MH	lz -16.539	8	Pass
High Channel, 2480 M⊦	lz -15.298	8	Pass

BLE/GFSK 1 Mbps Low Channel, 2402 MHz

BLE/GFSK 1 Mbps Mid Channel, 2442 MHz

BLE/GFSK 1 Mbps High Channel, 2480 MHz

BLE/GFSK 2 Mbps Low Channel, 2402 MHz

BLE/GFSK 2 Mbps Mid Channel, 2442 MHz

BLE/GFSK 2 Mbps High Channel, 2480 MHz

BAND EDGE COMPLIANCE

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge. The analyzer screen captures for this test show an example of the emission mask for the test mode also used during the radiated spurious emissions at the restricted band edges test.

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Attenuator	S.M. Electronics	SA26B-20	RFW	2025-02-03	2026-02-03
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22
Generator - Signal	Agilent	N5183A	TIK	2025-02-13	2028-02-13

TEST EQUIPMENT

BAND EDGE COMPLIANCE

EUT:	G Series AI RIC 312	Work Order:	STAK0364
Serial Number:	250579966	Date:	2025-03-31
Customer:	Starkey Laboratories, Inc.	Temperature:	21.8°C
Attendees:	John Quach	Relative Humidity:	28%
Customer Project:	None	Bar. Pressure (PMSL):	1017 mbar
Tested By:	Christopher Heintzelman	Job Site:	MN11
Power:	Battery	Configuration:	STAK0364-3

COMMENTS

Power setting 6 dBm. Reference level offset includes measurement cable, attenuator, and DC block.

DEVIATIONS FROM TEST STANDARD

None

CONCLUSION

Pass

CliAm Henten Tested By

TEST RESULTS

	Value (dBc)	Limit ≤ (dBc)	Result
BLE/GFSK 1 Mbps			
Low Channel, 2402 MHz	-34.28	-20	Pass
High Channel, 2480 MHz	-46.76	-20	Pass
BLE/GFSK 2 Mbps			
Low Channel, 2402 MHz	-27.8	-20	Pass
High Channel, 2480 MHz	-40.74	-20	Pass

BAND EDGE COMPLIANCE

BLE/GFSK 1 Mbps Low Channel, 2402 MHz

BLE/GFSK 1 Mbps High Channel, 2480 MHz

BLE/GFSK 2 Mbps Low Channel, 2402 MHz

BLE/GFSK 2 Mbps High Channel, 2480 MHz

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer.

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the fundamental was measured with a 100 kHz resolution bandwidth and the highest value was recorded. The rest of the spectrum was then measured with a 100 kHz resolution bandwidth and the highest value was found. The difference between the value found on the fundamental and the rest of the spectrum was compared against the limit to determine compliance.

The reference level offset for the fundamental screen capture was based on a measured value of the loss between the spectrum analyzer and the EUT which was verified at the time of test. The remaining screen capture(s) use an internal transducer factor on the analyzer to correct the displayed trace based on the cable loss over frequency. The reference level offset for the additional screen capture(s) is then based on the expected attenuator value and any other losses.

Fundamental Offset = Ref Lvl Offset showing measured composite factor of all losses

Remaining Screen capture(s) Offset = "Internal" cable loss factor not shown on screen capture + Ref LvI Offset showing expected attenuator value and any other losses

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Cable	Micro-Coax	UFD150A-1-0720-200200	MNL	2024-08-28	2025-08-28
Block - DC	Fairview Microwave	SD3379	ANH	2024-08-28	2025-08-28
Attenuator	S.M. Electronics	SA26B-20	RFW	2025-02-03	2026-02-03
Generator - Signal	Agilent	N5183A	TIK	2025-02-13	2028-02-13
Analyzer - Spectrum Analyzer	Keysight	N9010A	AFM	2024-05-22	2025-05-22

EUT:	G Series AI RIC 312	Work Order:	STAK0364
Serial Number:	250579966	Date:	2025-03-31
Customer:	Starkey Laboratories, Inc.	Temperature:	21.8°C
Attendees:	John Quach	Relative Humidity:	27.9%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mbar
Tested By:	Christopher Heintzelman	Job Site:	MN11
Power:	Battery	Configuration:	STAK0364-3

COMMENTS

Power setting 6 dBm. Reference level offset includes measurement cable, attenuator, and DC block.

DEVIATIONS FROM TEST STANDARD

None

CONCLUSION

Pass

Clithe Henten

Tested By

TEST RESULTS

		Frequency Range	Measured Freq (MHz)	Max Value (dBc)	Limit ≤ (dBc)	Result
BLE/GFSK 1 Mbps						
	Low Channel, 2402 MHz	Fundamental	2402	N/A	N/A	N/A
		30 MHz - 12.5 GHz	1858.41	-45.04	-20	Pass
		12.5 GHz - 25 GHz	24995.42	-41.25	-20	Pass
	Mid Channel, 2442 MHz	Fundamental	2442	N/A	N/A	N/A
		30 MHz - 12.5 GHz	1858.41	-38.91	-20	Pass
		12.5 GHz - 25 GHz	24865.71	-38.47	-20	Pass
	High Channel, 2480 MHz	Fundamental	2480	N/A	N/A	N/A
		30 MHz - 12.5 GHz	7439.53	-49.74	-20	Pass
		12.5 GHz - 25 GHz	24884.02	-39.55	-20	Pass
BLE/GFSK 2 Mbps						1
	Low Channel, 2402 MHz	Fundamental	2401.99	N/A	N/A	N/A
		30 MHz - 12.5 GHz	1856.88	-40.86	-20	Pass
		12.5 GHz - 25 GHz	24536.08	-40.27	-20	Pass
	Mid Channel, 2442 MHz	Fundamental	2441.99	N/A	N/A	N/A
		30 MHz - 12.5 GHz	1858.41	-38.24	-20	Pass
		12.5 GHz - 25 GHz	24822.98	-36.79	-20	Pass
	High Channel, 2480 MHz	Fundamental	2479.99	N/A	N/A	N/A
		30 MHz - 12.5 GHz	1856.88	-43.88	-20	Pass
		12.5 GHz - 25 GHz	24949.64	-38.69	-20	Pass

BLE/GFSK 1 Mbps Low Channel, 2402 MHz

BLE/GFSK 1 Mbps Low Channel, 2402 MHz

BLE/GFSK 1 Mbps Low Channel, 2402 MHz

BLE/GFSK 1 Mbps Mid Channel, 2442 MHz

BLE/GFSK 1 Mbps Mid Channel, 2442 MHz

BLE/GFSK 1 Mbps Mid Channel, 2442 MHz

BLE/GFSK 1 Mbps High Channel, 2480 MHz

BLE/GFSK 1 Mbps High Channel, 2480 MHz

BLE/GFSK 2 Mbps Low Channel, 2402 MHz

BLE/GFSK 2 Mbps Low Channel, 2402 MHz

BLE/GFSK 2 Mbps Low Channel, 2402 MHz

BLE/GFSK 2 Mbps Mid Channel, 2442 MHz BLE/GFSK 2 Mbps Mid Channel, 2442 MHz

BLE/GFSK 2 Mbps Mid Channel, 2442 MHz

Report Spectrum Analyzer - Bernert Material Technology
Spectrum
All Or OT
12:24-9 HW 12:12:05

PRC: Wiles
Trg: Free Rum EAtter: 10 dB
Start 10 dB
Mkr 12:479

Or Global
Trg: Free Rum EAtter: 10 dB
Mkr 12:479
By 29:04

Or Global
Trg: Free Rum EAtter: 10 dB
Mkr 12:479
By 29:04

Or Global
Trg: Free Rum EAtter: 10 dB
Mkr 12:479
By 29:04

Or Global
Trg: Free Rum EAtter: 10 dB
Mkr 12:479
By 29:04

Or Global
Trg: Free Rum EAtter: 10 dB
Mkr 12:479
By 29:04

Or Global
Trg: Free Rum EAtter: 10 dB
Mkr 12:479
By 29:04

Or Global
Trg: Free Rum EAtter: 10 dB
Mkr 12:479
By 29:04

Or Global
Trg: Free Rum EAtter: 10 dB
Mkr 12:479
By 29:04

Or Global
Trg: Free Rum EAtter: 10 dB
Trg: Free Rum EAtter: 10 dB
Mkr 12:479

Or Global
Trg: Free Rum EAtter: 10 dB

Or Global
Trg: Free Rum EAtter: 10 dB

Or Global
Trg: Free Rum EAtter: 10 dB
Trg: Free Rum EAtter: 10 dB
Trg: Free Rum EAtter: 10 dB
Trg:

BLE/GFSK 2 Mbps High Channel, 2480 MHz

BLE/GFSK 2 Mbps High Channel, 2480 MHz

BLE/GFSK 2 Mbps High Channel, 2480 MHz

Radiated Spurious Emissions Restricted Band Edge

TEST DESCRIPTION

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

The emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and attenuation were used (if needed) for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

PK = Peak Detector AV = RMS Detector

Measurements within 2 MHz of the allowable band may have been taken using the integration method from ANSI C63.10 clause 11.13.3. This procedure uses the channel power feature of the spectrum analyzer to integrate the power of the emission within a 1 MHz bandwidth.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*log(1/dc).

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Antenna - Double Ridge	ETS Lindgren	3115	AJA	2023-09-06	2025-09-06
Cable	Element	Double Ridge Guide Horn Cables	MNV	2024-09-10	2025-09-10
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	2025-02-01	2026-02-01
Attenuator	Coaxicom	3910-20	AXY	2024-09-10	2025-09-10
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	2024-05-31	2025-05-31

Radiated Spurious Emissions Restricted Band Edge

EUT:	G Series AI RIC 312	Work Order:	STAK0364
Serial Number:	250579964	Date:	2025-03-28
Customer:	Starkey Laboratories, Inc.	Temperature:	23.1°C
Attendees:	John Quach	Relative Humidity:	33.6%
Customer Project:	None	Bar. Pressure (PMSL):	1001 mbar
Tested By:	Marcelo Aguayo	Job Site:	MN09
Power:	Battery	Configuration:	STAK0364-1

COMMENTS

Power 6 dBm. Operational duty cycle is 16% (1 Mbps), 7% (2 Mbps). Test Mode duty cycle is 22.79% (1Mbps) and 16.39% (2Mbps). Duty cycle correction factor (DCCF) applied using DCCF=[10*log(1/test mode DC)]+[10*log(operational DC)]. Therefore, data was corrected downwards. -1.6 dB (1Mbps), -3.7 dB (2Mbps)

DEVIATIONS FROM TEST STANDARD

None

CONCLUSION

Pass

Tested By

TEST RESULTS

	Frequency (MHz)	PK (dBuV/m) AV (dBuV/m)	PK Lim (dBuV/m) AV Lim (dBuV/m)	Worst Margin (dB)	Pol. (H/V)	EUT Orientation	Results
BLE/GFSK 1 Mbps							
Low Channel, 2402 MHz	2389.862 2385.000	58.0 45.5	74.0 54.0	-8.5	н	Horizontal	Pass
High Channel, 2480 MHz	2487.184 2483.503	58.9 46.0	74.0 54.0	-8.0	н	Horizontal	Pass
BLE/GFSK 2 Mbps							
Low Channel, 2402 MHz	2388.377 2385.000	58.5 43.5	74.0 54.0	-10.5	н	Horizontal	Pass
High Channel, 2480 MHz	2486.139 2483.868	59.3 44.0	74.0 54.0	-10.0	н	Horizontal	Pass

Radiated Spurious Emissions Restricted Band Edge

High Channel, 2480 MHz

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequencies and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. A reference preview scan (pre-scan) is included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis if required, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

Measurements were made to satisfy the specific requirements of the test specification for out of band emissions as well as the restricted band requirements.

If there are no detectable emissions above the noise floor, the data included may show noise floor measurements for reference only.

Where the radio test software does not provide for a duty cycle at continuous transmit conditions (> 98%) and the RMS (power average) measurements were made across the on and off times of the EUT transmissions, a duty cycle correction is added to the measurements using the formula of 10*log(1/dc).

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFG	2024-05-31	2025-05-31
Cable	Element	Standard Gain Cable	MNW	2024-09-10	2025-09-10
Amplifier - Pre-Amplifier	L-3 Narda-Miteq	AMF-6F-12001800-30-10P	PAP	2025-02-01	2026-02-01
Amplifier - Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	2025-02-01	2026-02-01
Cable	Element	Double Ridge Guide Horn Cables	MNV	2024-09-10	2025-09-10
Amplifier - Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	2025-02-01	2026-02-01
Cable	Element	Biconilog Cable	MNX	2024-09-10	2025-09-10
		AM-1064-9079 and			
Amplifier - Pre-Amplifier	Miteq	SA18E-10	AOO	2025-01-30	2026-01-30
Filter - Low Pass	Micro-Tronics	LPM50004	HGG	2024-09-10	2025-09-10
Antenna - Double Ridge	ETS Lindgren	3115	AJA	2023-09-06	2025-09-06
Attenuator	Coaxicom	3910-20	AXY	2024-09-10	2025-09-10
Filter - High Pass	Micro-Tronics	HPM50111	HFM	2024-09-10	2025-09-10
Antenna - Standard Gain	ETS-Lindgren	3160-07	AJJ	2025-02-04	2026-02-04
Antenna - Standard Gain	ETS-Lindgren	3160-08	AJP	2025-02-04	2026-02-04
Antenna - Loop	ETS Lindgren	6502	AOB	2023-06-12	2025-06-12
Antenna - Biconilog	Teseq	CBL 6141B	AYD	2024-03-18	2026-03-18
Antenna - Standard Gain	ETS Lindgren	3160-09	AHG	2025-02-04	2026-02-04
Amplifier - Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	2024-09-05	2025-09-05
Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNP	2024-09-05	2025-09-05

TEST EQUIPMENT

FREQUENCY RANGE INVESTIGATED

9 kHz TO 26.5 GHz

POWER INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

STAK0364-1

MODES INVESTIGATED

Transmitting BLE Low, Mid and High Chs (2402, 2442 and 2480 MHz) 1 Mbps and 2 Mbps

EUT:	G Series AI RIC 312	Work Order:	STAK0364
Serial Number:	250579964	Date:	2025-03-27
Customer:	Starkey Laboratories, Inc.	Temperature:	23.7°C
Attendees:	John Quach	Relative Humidity:	28.1%
Customer Project:	None	Bar. Pressure (PMSL):	1018 mb
Tested By:	Marcelo Aguayo	Job Site:	MN09
Power:	Battery	Configuration:	STAK0364-1

TEST PARAMETERS

|--|

COMMENTS

Power 6 dBm. The operational duty cycle is 16% (1 Mbps), 7% (2 Mbps). Test Mode duty cycle is 22.79% (1Mbps) and 16.39% (2Mbps). Duty cycle correction factor (DCCF) applied using DCCF=[10*log(1/test mode DC)]+[10*log(operational DC)]. Therefore, data was corrected downwards. -1.6 dB (1Mbps), -3.7 dB (2Mbps)

EUT OPERATING MODES

Transmitting BLE Low, Mid and High Chs (2402, 2442 and 2480 MHz) 1 Mbps and 2 Mbps

DEVIATIONS FROM TEST STANDARD

None

RESULTS - Run #20

orrected (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
7439.283	39.1	14.1	1.4	147.0	-1.6	0.0	Horz	AV	0.0	51.6	54.0	-2.4	EUT Horz, High Ch 1Mbps
7325.383	36.9	13.2	2.6	25.0	-1.6	0.0	Horz	AV	0.0	48.5	54.0	-5.5	EUT Horz, Mid Ch 1Mbps
7439.383	35.7	14.1	3.6	219.0	-1.6	0.0	Vert	AV	0.0	48.2	54.0	-5.8	EUT On Side, High Ch 1Mbps
7439.333	35.2	14.1	2.0	244.0	-1.6	0.0	Horz	AV	0.0	47.7	54.0	-6.3	EUT On Side, High Ch 1Mbps
7439.358	34.8	14.1	1.1	331.0	-1.6	0.0	Vert	AV	0.0	47.3	54.0	-6.7	EUT Vert, High Ch 1Mbps
7439.417	34.5	14.1	1.2	136.0	-1.6	0.0	Vert	AV	0.0	47.0	54.0	-7.0	EUT Horz, High Ch 1Mbps
7439.383	33.3	14.1	1.4	164.0	-1.6	0.0	Horz	AV	0.0	45.8	54.0	-8.2	EUT Vert, High Ch 1Mbps
7438.575	34.9	14.1	1.1	56.0	-3.7	0.0	Horz	AV	0.0	45.3	54.0	-8.7	EUT Horz, High Ch 2Mbps
7326.392	32.3	13.2	1.5	4.0	-1.6	0.0	Vert	AV	0.0	43.9	54.0	-10.1	EUT Horz, Mid Ch 1Mbps
7438.542	32.6	14.1	2.0	50.0	-3.7	0.0	Vert	AV	0.0	43.0	54.0	-11.0	EUT On Side, High Ch 2Mbps
7439.392	46.0	14.1	1.4	147.0	0.0	0.0	Horz	PK	0.0	60.1	74.0	-13.9	EUT Horz, High Ch 1Mbps
7438.500	45.2	14.1	1.1	56.0	0.0	0.0	Horz	PK	0.0	59.3	74.0	-14.7	EUT Horz, High Ch 2Mbps
7440.300	43.8	14.1	3.6	219.0	0.0	0.0	Vert	PK	0.0	57.9	74.0	-16.1	EUT On Side, High Ch 1Mbps
7440.683	43.6	14.1	2.0	244.0	0.0	0.0	Horz	PK	0.0	57.7	74.0	-16.3	EUT On Side, High Ch 1Mbps
7438.700	43.6	14.1	2.0	50.0	0.0	0.0	Vert	PK	0.0	57.7	74.0	-16.3	EUT On Side, High Ch 2Mbps
7325.083	44.4	13.2	2.6	25.0	0.0	0.0	Horz	PK	0.0	57.6	74.0	-16.4	EUT Horz, Mid Ch 1Mbps
7440.475	43.2	14.1	1.1	331.0	0.0	0.0	Vert	PK	0.0	57.3	74.0	-16.7	EUT Vert, High Ch 1Mbps
7440.383	42.9	14.1	1.2	136.0	0.0	0.0	Vert	PK	0.0	57.0	74.0	-17.0	EUT Horz, High Ch 1Mbps
7439.467	42.3	14.1	1.4	164.0	0.0	0.0	Horz	PK	0.0	56.4	74.0	-17.6	EUT Vert, High Ch 1Mbps
7326.783	41.3	13.2	1.5	4.0	0.0	0.0	Vert	PK	0.0	54.5	74.0	-19.5	EUT Horz, Mid Ch 1Mbps
4884.042	30.3	4.8	1.5	37.0	-1.6	0.0	Vert	AV	0.0	33.5	54.0	-20.5	EUT Horz, Mid Ch 1Mbps
4883.883	30.1	4.8	3.3	98.0	-1.6	0.0	Horz	AV	0.0	33.3	54.0	-20.7	EUT Horz, Mid Ch 1Mbps
4804.392	29.1	5.1	2.8	243.0	-1.6	0.0	Horz	AV	0.0	32.6	54.0	-21.4	EUT Horz, Low Ch 1Mbps
4805.150	28.9	5.0	1.5	70.0	-1.6	0.0	Vert	AV	0.0	32.3	54.0	-21.7	EUT Horz, Low Ch 1Mbps
4959.000	29.0	4.6	1.5	174.0	-1.6	0.0	Horz	AV	0.0	32.0	54.0	-22.0	EUT Horz, High Ch 1Mbps
4959.342	29.0	4.6	1.5	199.0	-1.6	0.0	Vert	AV	0.0	32.0	54.0	-22.0	EUT Horz, High Ch 1Mbps
12008.550	31.5	-1.6	1.5	154.0	-1.6	0.0	Horz	AV	0.0	28.3	54.0	-25.7	EUT Horz, Low Ch 1Mbps
12010.960	31.2	-1.6	1.2	101.0	-1.6	0.0	Vert	AV	0.0	28.0	54.0	-26.0	EUT Horz, Low Ch 1Mbps
12212.290	30.3	-0.8	1.5	280.0	-1.6	0.0	Horz	AV	0.0	27.9	54.0	-26.1	EUT Horz, Mid Ch 1Mbps
12398.120	29.5	-0.1	1.0	44.0	-1.6	0.0	Vert	AV	0.0	27.8	54.0	-26.2	EUT Horz, High Ch 1Mbps
12211.850	30.2	-0.8	1.5	57.0	-1.6	0.0	Vert	AV	0.0	27.8	54.0	-26.2	EUT Horz, Mid Ch 1Mbps
12397.580	29.2	-0.1	1.5	199.0	-1.6	0.0	Horz	AV	0.0	27.5	54.0	-26.5	EUT Horz, High Ch 1Mbps
4803.833	40.6	5.1	2.8	243.0	0.0	0.0	Horz	PK	0.0	45.7	74.0	-28.3	EUT Horz, Low Ch 1Mbps
4883.158	40.4	4.8	3.3	98.0	0.0	0.0	Horz	PK	0.0	45.2	74.0	-28.8	EUT Horz, Mid Ch 1Mbps
4884.533	40.2	4.8	1.5	37.0	0.0	0.0	Vert	PK	0.0	45.0	74.0	-29.0	EUT Horz, Mid Ch 1Mbps
4960.550	39.5	4.6	1.5	199.0	0.0	0.0	Vert	PK	0.0	44.1	74.0	-29.9	EUT Horz, High Ch 1Mbps
4805.725	39.0	5.0	1.5	70.0	0.0	0.0	Vert	PK	0.0	44.0	74.0	-30.0	EUT Horz, Low Ch 1Mbps
4959.475	39.3	4.6	1.5	174.0	0.0	0.0	Horz	PK	0.0	43.9	74.0	-30.1	EUT Horz, High Ch 1Mbps
12210.290	41.7	-0.8	1.5	280.0	0.0	0.0	Horz	PK	0.0	40.9	74.0	-33.1	EUT Horz, Mid Ch 1Mbps
12210.070	41.5	-0.8	1.5	57.0	0.0	0.0	Vert	PK	0.0	40.7	74.0	-33.3	EUT Horz, Mid Ch 1Mbps

orrected (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
12397.860	40.5	-0.1	1.0	44.0	0.0	0.0	Vert	PK	0.0	40.4	74.0	-33.6	EUT Horz, High Ch 1Mbps
12011.480	41.8	-1.6	1.5	154.0	0.0	0.0	Horz	PK	0.0	40.2	74.0	-33.8	EUT Horz, Low Ch 1Mbps
12398.070	40.2	-0.1	1.5	199.0	0.0	0.0	Horz	PK	0.0	40.1	74.0	-33.9	EUT Horz, High Ch 1Mbps
12009.880	41.4	-1.6	1.2	101.0	0.0	0.0	Vert	PK	0.0	39.8	74.0	-34.2	EUT Horz, Low Ch 1Mbps

CONCLUSION

Pass

Tested By

PRESCAN DATA

Radiated spurious emissions from the EUT are initially reviewed with Pre-scans (Preview scans). Pre-scans are performed, with the EUT transmitting on the lowest applicable data rate, for both vertical and horizontal polarizations. The Pre-scan plots below are shown with a peak detector and RBW for the following frequency ranges: 9 kHz RBW (< 30 MHz); 120 kHz RBW (30 - 1000 MHz); 1 MHz RBW (> 1 GHz). In the case where unintentional emissions are observed, an ambient or idle pre-scan with the radio off, will be shown for comparison.

8200-12400 MHz, Run 9

End of Test Report