TEST REPORT Applicant Name: VTech Telecommunications Ltd Address: 23/F Tai Ping Ind Center Block 1 57 Ting Kok Rd Tai Po NT, Hong Kong Report Number: SZNS211213-64525E-SAA FCC ID: EW780-H0FH-14 Test Standard (s) FCC 47 CFR part 2.1093 **Sample Description** Product Type: SIP Cordless Hotel Telephone Model No.: NG-S3411W Multiple Model(s) No.: NG-S3411,NG-C5101,C5012,NG-C3411HC (Model Difference please refer to the DOS) Trade Mark: vtech Date Received: 2021/12/13 Report Date: 2022/07/05 Test Result: Pass* Prepared and Checked By: anceli Lance Li **EMC** Engineer **Approved By:** Candy Li **EMC** Engineer Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk " \star ". Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. ^{*} In the configuration tested, the EUT complied with the standards above. | Report No.: SZNS211213 | 3-64525E-SAA | |------------------------|--------------| | | | | Attestation of Test Results | | | | | | | |---|--|---|--------------|--|--|-------------------------| | MOI | DE | Max. SAR Level(s) Reported(W/kg) | Limit (W/kg) | | | | | DECT | 1g Head SAR | 0.03 | 1.6 | | | | | DECI | 1g Body SAR | 0.03 | 1.0 | | | | | | FCC 47 CFR part 2. Radiofrequency radia | 1093 tion exposure evaluation: portable devices | | | | | | RF Exposure Procedures: TCB Workshop April 2019 | | | | | | | | | IEEE1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques | | | | | | | Applicable Standards IEC 62209-1:2016 Measurement procedure for the assessment of specific absorption rate of human exposs radio frequency fields from hand-held and body-mounted wireless communication development 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz) KDB procedures KDB 447498 D01 General RF Exposure Guidance v06 KDB 447498 D04 Interim General RF Exposure Guidance v01 KDB 648474 D04 Handset SAR v01r03. KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 | | | | | | | | | | | | | | Note: This wireless day | **Note:** This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in **FCC 47 CFR part 2.1093** and has been tested in accordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures. The results and statements contained in this report pertain only to the device(s) evaluated. # TABLE OF CONTENTS | DOCUMENT REVISION HISTORY | 4 | |--|----| | EUT DESCRIPTION | 5 | | TECHNICAL SPECIFICATION | 5 | | REFERENCE, STANDARDS, AND GUIDELINES | 6 | | SAR LIMITS | | | FACILITIES | 8 | | DESCRIPTION OF TEST SYSTEM | 9 | | EQUIPMENT LIST AND CALIBRATION | 14 | | EQUIPMENT LIST AND CALIBRATION | | | EQUIPMENTS LIST & CALIBRATION INFORMATION | 14 | | SAR MEASUREMENT SYSTEM VERIFICATION | | | LIQUID VERIFICATION | | | SYSTEM ACCURACY VERIFICATION. | | | SAR SYSTEM VALIDATION DATA | | | EUT TEST STRATEGY AND METHODOLOGY | | | TEST POSITIONS FOR DEVICE OPERATING NEXT TO A PERSON'S EAR | | | CHEEK/TOUCH POSITIONEAR/TILT POSITION | | | TEST POSITION | | | TEST DISTANCE FOR SAR EVALUATION | | | SAR EVALUATION PROCEDURE | | | CONDUCTED OUTPUT POWER MEASUREMENT | | | MAXIMUM TARGET OUTPUT POWER | | | TEST RESULTS: | 22 | | STANDALONE SAR TEST EXCLUSION CONSIDERATIONS | | | SAR MEASUREMENT RESULTS | 24 | | SAR TEST DATA | 24 | | SAR PLOTS | 25 | | APPENDIX A MEASUREMENT UNCERTAINTY | 30 | | APPENDIX B EUT TEST POSITION PHOTOS | | | LIQUID DEPTH ≥ 15CM | | | HEAD LEFT CHEEK SETUP PHOTO | | | HEAD LEFT TILT SETUP PHOTO | | | HEAD RIGHT CHEEK SETUP PHOTO | | | HEAD RIGHT TILT SETUP PHOTO | | | BODY BACK SETUP PHOTO (0MM) | | | APPENDIX C PROBE CALIBRATION CERTIFICATES | | | ADDENDIY D DIDOLE CALIEDATION CEDTIFICATES | 57 | ## Report No.: SZNS211213-64525E-SAA # DOCUMENT REVISION HISTORY | Revision Number | Report Number | Description of Revision | Date of Revision | |-----------------|-----------------------|-------------------------|------------------| | 0 | SZNS211213-64525E-SAA | Original Report | 2022-05-05 | # **EUT DESCRIPTION** This report has been prepared on behalf of VTech Telecommunications Ltd and their product SIP Cordless Hotel Telephone, Model: NG-S3411W, FCC ID: EW780-H0FH-14 or the EUT (Equipment under Test) as referred to in the rest of this report. Report No.: SZNS211213-64525E-SAA # **Technical Specification** | Product Type | Portable | | |-------------------------------|------------------------------|--| | Exposure Category: | Population / Uncontrolled | | | Antenna Type(s): | Internal Antenna | | | Body-Worn Accessories: | None | | | Modulation: | DECT: GFSK | | | Frequency Band: | DECT: 1921.536-1928.448 MHz; | | | Conducted RF Power: | DECT: 20.25 dBm | | | Power Source: | Rechargeable Battery | | | Normal Operation: | Head and Body | | ## REFERENCE, STANDARDS, AND GUIDELINES #### FCC: The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling. Report No.: SZNS211213-64525E-SAA This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass. ## Report No.: SZNS211213-64525E-SAA ## **SAR Limits** ## **FCC Limit**(1g Tissue) | | SAR (W/kg) | | | | | | |--|--|--|--|--|--|--| | EXPOSURE LIMITS | (General Population /
Uncontrolled Exposure
Environment) | (Occupational /
Controlled Exposure
Environment) | | | | | | Spatial Average (averaged over the whole body) | 0.08 | 0.4 | | | | | | Spatial Peak
(averaged over any 1 g of tissue) | 1.60 | 8.0 | | | | | | Spatial Peak
(hands/wrists/feet/ankles
averaged over 10 g) | 4.0 | 20.0 | | | | | Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure. Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation). General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC) applied to the EUT. ## Report No.: SZNS211213-64525E-SAA ## **FACILITIES** The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China. The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358,the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 4297.01 Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A. The test site has been registered with ISED Canada under ISED Canada Registration Number CN0016. Version 821: 2021-11-09 Page 8 of 62 FCC SAR ## **DESCRIPTION OF TEST SYSTEM** These
measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter: ## **DASY5 System Description** The DASY5 system for performing compliance tests consists of the following items: Version 821: 2021-11-09 Page 9 of 62 FCC SAR - Report No.: SZNS211213-64525E-SAA - A standard high precision 6-axis robot (Staubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). - An isotropic field probe optimized and calibrated for the targeted measurement. - A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC. - The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. - The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. - A computer running Win7 professional operating system and the DASY52 software. - Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. - The phantom, the device holder and other accessories according to the targeted measurement. ## **DASY5** Measurement Server The DASY5 measurement server is based on a PC/104 CPU board with a 400 MHz Intel ULV Celeron, 128 MB chip-disk and 128 MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16-bit AD converter system for optical detection and digital I/O interface are contained on the DASY6 I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all real-time data evaluations of field measurements and surface detection, controls robot movements, and handles safety operations. The PC operating system cannot interfere with these time-critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port, which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Connection of devices from any other supplier could seriously damage the measurement server. ## **Data Acquisition Electronics** The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. #### **EX3DV4 E-Field Probes** | Frequency | 10 MHz to > 6 GHz
Linearity: ±0.2 dB (30 MHz to 6 GHz) | |------------------|---| | Directivity | ±0.3 dB in TSL (rotation around probe axis)
±0.5 dB in TSL (rotation normal to probe axis) | | Dynamic
Range | 10 $\mu W/g$ to > 100 mW/g
Linearity: ± 0.2 dB (noise: typically < 1 $\mu W/g$) | | Dimensions | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm | | Application | High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%. | | Compatibility | DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI | #### **SAM Twin Phantom** The SAM Twin Phantom (shown in front of DASY5) is a fiberglass shell phantom with shell thickness 2 mm, except in the ear region where the thickness is increased to 6 mm.. When the phantom is mounted inside allocated slot of the DASY5 platform, phantom reference points can be taught directly in the DASY5 V5.2 software. When the DASY5 platform is used to mount the Phantom, some of the phantom teaching points cannot be reached by the robot in DASY5 V5.2. A special tool called P1a-P2aX-Former is provided to transform two of the three points, P1 and P2, to reachable locations. To use these new teaching points, a revised phantom configuration file is required. In addition to our standard broadband liquids, the phantom can be used with the following tissue simulating liquids: Sugar-water-based liquids can be left permanently in the phantom. Always cover the liquid when the system is not in use to prevent changes in liquid parameters due to water evaporation. DGBE-based liquids should be used with care. As DGBE is a softener for most plastics, the liquid should be taken out of the phantom, and the phantom should be dried when the system is not in use (desirable at least once a week). Do not use other organic solvents without previously testing the solvent resistivity of the phantom. Approximately 25 liters of liquid is required to fill the SAM Twin phantom. #### **Area Scans** Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments. Report No.: SZNS211213-64525E-SAA Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging. ## **Zoom Scan (Cube Scan Averaging)** The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm. When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface. The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis. ## Report No.: SZNS211213-64525E-SAA ## **Tissue Dielectric Parameters for Head and Body Phantoms** The head tissue dielectric parameters recommended by the IEC 62209-1:2016 ## **Recommended Tissue Dielectric Parameters for Head** Table A.3 - Dielectric properties of the head tissue-equivalent liquid | Frequency | Relative permittivity | Conductivity (σ) | |-----------|-----------------------|---------------------------| | MHz | $arepsilon_{ m r}$ | S/m | | 300 | 45,3 | 0,87 | | 450 | 43,5 | 0,87 | | 750 | 41,9 | 0,89 | | 835 | 41,5 | 0,90 | | 900 | 41,5 | 0,97 | | 1 450 | 40,5 | 1,20 | | 1 500 | 40,4 | 1,23 | | 1 640 | 40,2 | 1,31 | | 1 750 | 40,1 | 1,37 | | 1 800 | 40,0 | 1,40 | | 1 900 | 40,0 | 1,40 | | 2 000 | 40,0 | 1,40 | | 2 100 | 39,8 | 1,49 | | 2 300 | 39,5 | 1,67 | | 2 450 | 39,2 | 1,80 | | 2 600 | 39,0 | 1,96 | | 3 000 | 38,5 | 2,40 | | 3 500 | 37,9 | 2,91 | | 4 000 | 37,4 | 3,43 | | 4 500 | 36,8 | 3,94 | | 5 000 | 36,2 | 4,45 | | 5 200 | 36,0 | 4,66 | | 5 400 | 35,8 | 4,86 | | 5 600 | 35,5 | 5,07 | | 5 800 | 35,3 | 5,27 | | 6 000 | 35,1 | 5,48 | NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown in italics). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz. # **EQUIPMENT LIST AND CALIBRATION** # **Equipments List & Calibration Information** | Equipment | Model | S/N | Calibration
Date | Calibration
Due Date | |--|-------------------------|---------------|---------------------|-------------------------| | DASY5 Test Software | DASY52 52.10.4 | N/A | NCR | NCR | | DASY5 Measurement Server | DASY5 6.0.31 | N/A | NCR | NCR | | Data Acquisition Electronics | DAE4 | 1562 | 2021/12/13 | 2022/12/12 | | E-Field Probe | EX3DV4 | 3619 | 2021/08/25 | 2022/08/24 | | Mounting
Device | MD4HHTV5 | SD 000 H01 KA | NCR | NCR | | SAM Twin Phantom | SAM-Twin V5.0 | 1744 | NCR | NCR | | Dipole, 1900MHz | D1900V2 | 5d231 | 2020/1/14 | 2023/1/13 | | Simulated Tissue Liquid
Head(500-9500MHz) | HBBL600-10000V6 | 180622-2 | Each Time | / | | Network Analyzer | 8753D | 3410A08288 | 2021/7/07 | 2022/7/06 | | Dielectric Assessment Kit | DAK-3.5 | 1248 | NCR | NCR | | Signal Generator | SMB100A | 108362 | 2021/12/24 | 2022/12/23 | | USB wideband power sensor | U2021XA | MY52350001 | 2021/7/31 | 2022/7/30 | | Power Amplifier | CBA 1G-070 | T44328 | 2021/12/24 | 2022/12/23 | | Linear Power Amplifier | AS0860-40/45 | 1060913 | 2021/12/24 | 2022/12/23 | | Directional Coupler | 4223-20 | 3.113.277 | 2021/12/24 | 2022/12/23 | | 6dB Attenuator | 8493B 6dB
Attenuator | 2708A 04769 | 2021/12/24 | 2022/12/23 | | Digital Radio Communication
Tester | CMD60 | 830861/029 | 2021/12/24 | 2022/12/23 | # SAR MEASUREMENT SYSTEM VERIFICATION # **Liquid Verification** Liquid Verification Setup Block Diagram # **Liquid Verification Results** | Frequency | Liquid | Liq
Para | uid
ımeter | Targe | t Value | | elta
6) | Tolerance | |-----------|--------------------|-------------------|---------------|-------------------|----------|--------------------------|--------------|-----------| | (MHz) | Туре | $\epsilon_{ m r}$ | O' (S/m) | $\epsilon_{ m r}$ | O' (S/m) | $\Delta \epsilon_{ m r}$ | ΔΟ΄
(S/m) | (%) | | 1900 | Tissue Liquid Head | 40.539 | 1.412 | 40.0 | 1.40 | 1.35 | 0.86 | ±5 | | 1921.54 | Tissue Liquid Head | 40.561 | 1.417 | 40.0 | 1.40 | 1.40 | 1.21 | ±5 | | 1924.99 | Tissue Liquid Head | 40.556 | 1.419 | 40.0 | 1.40 | 1.39 | 1.36 | ±5 | | 1928.45 | Tissue Liquid Head | 40.575 | 1.415 | 40.0 | 1.40 | 1.44 | 1.07 | ±5 | ^{*}Liquid Verification above was performed on 2022/04/13. #### Report No.: SZNS211213-64525E-SAA ## **System Accuracy Verification** Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files. The spacing distances in the **System Verification Setup Block Diagram** is given by the following: - a) $s = 15 \text{ mm} \pm 0.2 \text{ mm for } 300 \text{ MHz} \le f \le 1000 \text{ MHz};$ - b) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for $1000 \text{ MHz} < f \le 3000 \text{ MHz}$; - c) $s = 10 \text{ mm} \pm 0.2 \text{ mm}$ for $3~000 \text{ MHz} < f \le 6~000 \text{ MHz}$. ## **System Verification Setup Block Diagram** ## **System Accuracy Check Results** | Date | Frequency
Band
(MHz) | Liquid
Type | Input
Pow
er
(mW) | | asured
SAR
V/kg) | Normalized
to 1W
(W/kg) | Target
Value
(W/Kg) | Delta
(%) | Tolerance (%) | |------------|----------------------------|----------------|----------------------------|----|------------------------|-------------------------------|---------------------------|--------------|---------------| | 2022/04/13 | 1900 | Head | 100 | 1g | 4.11 | 41.1 | 40.3 | 1.985 | ±10 | ^{*}The SAR values above are normalized to 1 Watt forward power. ## SAR SYSTEM VALIDATION DATA ## System Performance 1900 MHz Head ## DUT: Dipole 1900MHz; Type: D1900V2; Serial: 5d231 Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.412$ S/m; $\epsilon_r = 40.539$; $\rho = 1000$ kg/m³ Phantom section: Flat Section ## **DASY5** Configuration: • Probe: EX3DV4 – SN3619; ConvF(7.07, 7.07, 7.07) @ 1900 MHz; • Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1562; Calibrated: 2021-12-13 Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744 • Measurement SW: DASY52, Version 52.10 (4); ## Head 1900MHz Pin=100mW/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 4.68 W/kg ## Head 1900MHz Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.04 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 7.67W/kg ## SAR(1 g) = 4.11 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 4.63 W/kg 0 dB = 4.63 W/kg = 6.66 dBW/kg ## EUT TEST STRATEGY AND METHODOLOGY ## Test Positions for Device Operating Next to a Person's Ear This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper ½ of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth. A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR: ## Cheek/Touch Position The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom. Report No.: SZNS211213-64525E-SAA This test position is established: When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom. (or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom. For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer. ## **Cheek / Touch Position** ## **Ear/Tilt Position** With the handset aligned in the "Cheek/Touch Position": - 1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer. - 2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability. - If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tilt/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional. ## Ear /Tilt 15° Position ## Test positions for body-worn and other configurations Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the
accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested. Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components. Figure 5 - Test positions for body-worn devices ## **Test Distance for SAR Evaluation** For this case the EUT(Equipment Under Test) is set 0mm away from the phantom, the test distance is 0mm. ## **SAR Evaluation Procedure** The evaluation was performed with the following procedure: Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing. Report No.: SZNS211213-64525E-SAA - Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified. - Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure: - 1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. - 2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages. - All neighboring volumes were evaluated until no neighboring volume with a higher average value was found. - Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated. ## CONDUCTED OUTPUT POWER MEASUREMENT ## **Maximum Target Output Power** | Max Target Power(dBm) | | | | | | | |-----------------------|------|------|------|--|--|--| | Channel | | | | | | | | Mode/Band | High | | | | | | | DECT | 20.3 | 20.3 | 20.3 | | | | ## **Test Results:** ## **DECT:** | Mode | Frequency
(MHz) | RF Output Peak
Power (dBm) | RF Output Peak
Power (mW) | |------|--------------------|-------------------------------|------------------------------| | | 1921.536 | 20.25 | 105.93 | | DECT | 1924.992 | 20.18 | 104.23 | | | 1928.448 | 20.10 | 102.33 | #### Note: - 1. Rohde & Schwarz Radio Communication Tester (CMD60) was used for the measurement of DECT peak output power. - 2. Duty Cycle=0.0479 (1:20.9) which from Radio report. - 3. The EUT belongs to a low duty cycle device. - 4. Per KDB 447498 D01, 1 Channel shall be tested; the middle channel was selected to test: $$N_{\rm c} = Round \left\{ \left[100 \left(f_{\rm high} - f_{\rm low} \right) / f_{\rm c} \right]^{0.5} \times \left(f_{c} / 100 \right)^{0.2} \right\},\,$$ where f_{high} is the highest frequency in the band and f_{low} , is the lowest f_c is the center frequency in the band. # Standalone SAR test exclusion considerations ## **Antennas Location:** **EUT Back View** ## Report No.: SZNS211213-64525E-SAA ## SAR MEASUREMENT RESULTS This page summarizes the results of the performed dosimetric evaluation. ## **SAR Test Data** ## **Environmental Conditions** | Temperature: | 22.2-23.0 ℃ | |--------------------|-------------| | Relative Humidity: | 41-55 % | | ATM Pressure: | 101.3 kPa | | Test Date: | 2022/04/13 | Testing was performed by Seven Liang. ## **DECT Mode:** | EUT | Enganomor | Test | Max.
Meas. | Max.
Rated | 1g SAR | (W/Kg), I | Limited=1.6W | /kg | |------------------|--------------------|------|---------------|---------------|------------------|--------------|--------------|------| | Position | Frequency
(MHz) | Mode | Power (dBm) | Power (dBm) | Scaled
Factor | Meas.
SAR | Scaled SAR | Plot | | | 1921.536 | GFSK | / | / | / | / | / | / | | Head Left Cheek | 1924.992 | GFSK | 20.18 | 20.3 | 1.028 | 0.027 | 0.03 | 1# | | | 1928.448 | GFSK | | | | | | / | | | 1921.536 | GFSK | | | | | | / | | Head Left Tilt | 1924.992 | GFSK | 20.18 | 20.3 | 1.028 | 0.012 | 0.01 | 2# | | | 1928.448 | GFSK | / | / | / | / | / | / | | | 1921.536 | GFSK | / | / | / | / | / | / | | Head Right Cheek | 1924.992 | GFSK | 20.18 | 20.3 | 1.028 | 0.019 | 0.02 | 3# | | | 1928.448 | GFSK | / | / | / | / | / | / | | | 1921.536 | GFSK | / | / | / | / | / | / | | Head Right Tilt | 1924.992 | GFSK | 20.18 | 20.3 | 1.028 | 0.012 | 0.01 | 4# | | | 1928.448 | GFSK | / | / | / | / | / | / | | | 1921.536 | GFSK | / | / | / | / | / | / | | Body Back | 1924.992 | GFSK | 20.18 | 20.3 | 1.028 | 0.027 | 0.03 | 5# | | | 1928.448 | GFSK | / | / | / | / | / | / | When the 1-g SAR is ≤ 0.8W/Kg, testing for other channels are optional. When SAR or MPE is not measured at the maximum power level allowed for production to the individual channels tested to determine compliance. ## **SAR Plots** #### Plot 1# ## DUT: NG-S3411W; Type: SIP Cordless Hotel Telephone; Serial: SZNS211213-64525E-SA-S1 Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz; Duty Cycle: 1:20.9 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.419 \text{ S/m}$; $\varepsilon_r = 40.556$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section ## DASY5 Configuration: Probe: EX3DV4 – SN3619; ConvF(7.07, 7.07, 7.07) @ 1924.99 MHz; • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1562; Calibrated: 2021-12-13 Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744 • Measurement SW: DASY52, Version 52.10 (4); **Head Left Cheek/DECT Mid/Area Scan (71x91x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0337 W/kg Head Left Cheek/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.599 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 0.0490 W/kg SAR(1 g) = 0.027 W/kg; SAR(10 g) = 0.015 W/kg Maximum value of SAR (measured) = 0.0306 W/kg 0 dB = 0.0306 W/kg = -15.14 dBW/kg #### Plot 2# #### DUT: NG-S3411W; Type: SIP Cordless Hotel Telephone; Serial: SZNS211213-64525E-SA-S1 Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz; Duty Cycle: 1:20.9 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.419$ S/m; $\epsilon_r = 40.556$; $\rho = 1000$ kg/m³ Phantom section: Left Section ## **DASY5** Configuration: • Probe: EX3DV4 – SN3619; ConvF(7.07, 7.07, 7.07) @ 1924.99 MHz; • Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1562; Calibrated: 2021-12-13 Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744 • Measurement SW: DASY52, Version 52.10 (4); Head Left Tilt/DECT Mid/Area Scan (71x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0142 W/kg Head Left Tilt/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.7660 V/m; Power Drift = 0.20 dB Peak SAR (extrapolated) = 0.0190 W/kg SAR(1 g) = 0.012 W/kg; SAR(10 g) = 0.00561 W/kg (Maximum value of SAR (measured) = 0.0133 W/kg 0 dB = 0.0133 W/kg = -18.76 dBW/kg #### Plot 3# #### DUT: NG-S3411W; Type: SIP Cordless Hotel Telephone; Serial: SZNS211213-64525E-SA-S1 Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz; Duty Cycle: 1:20.9 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.419 \text{ S/m}$; $\varepsilon_r = 40.556$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section ## **DASY5** Configuration: • Probe: EX3DV4 – SN3619; ConvF(7.07, 7.07, 7.07) @ 1924.99 MHz; • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1562; Calibrated: 2021-12-13 • Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744 • Measurement SW: DASY52, Version 52.10 (4); **Head Right Cheek/DECT Mid/Area Scan (71x91x1):** Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0373 W/kg Head Right Cheek/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.549 V/m; Power Drift = 0.20 dB Peak SAR (extrapolated) = 0.0800 W/kg SAR(1 g) = 0.019 W/kg; SAR(10 g) = 0.011 W/kg Maximum value of SAR (measured) = 0.0199 W/kg 0 dB = 0.0199 W/kg = -17.01 dBW/kg #### Plot 4# #### DUT: NG-S3411W; Type: SIP Cordless
Hotel Telephone; Serial: SZNS211213-64525E-SA-S1 Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz; Duty Cycle: 1:20.9 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.419 \text{ S/m}$; $\varepsilon_r = 40.556$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section ## **DASY5** Configuration: • Probe: EX3DV4 – SN3619; ConvF(7.07, 7.07, 7.07) @ 1924.99 MHz; • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1562; Calibrated: 2021-12-13 • Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744 • Measurement SW: DASY52, Version 52.10 (4); ## Head Right Tilt/DECT Mid/Area Scan (71x91x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0169 W/kg ## Head Right Tilt/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.895 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 0.0200 W/kg ## SAR(1 g) = 0.012 W/kg; SAR(10 g) = 0.00716 W/kg Maximum value of SAR (measured) = 0.0146 W/kg 0 dB = 0.0146 W/kg = -18.36 dBW/kg #### Plot 5# ## DUT: NG-S3411W; Type: SIP Cordless Hotel Telephone; Serial: SZNS211213-64525E-SA-S1 Communication System: UID 0, DECT (0); Frequency: 1924.99 MHz; Duty Cycle: 1:20.9 Medium parameters used (interpolated): f = 1924.99 MHz; $\sigma = 1.419 \text{ S/m}$; $\varepsilon_r = 40.556$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### DASY5 Configuration: • Probe: EX3DV4 – SN3619; ConvF(7.07, 7.07, 7.07) @ 1924.99 MHz; • Sensor-Surface: 4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1562; Calibrated: 2021-12-13 Phantom: Twin SAM; Type: QD000P40CD; Serial: 1744 • Measurement SW: DASY52, Version 52.10 (4); Body Back/DECT Mid/Area Scan (71x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.0333 W/kg Body Back/DECT Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.847 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.0420 W/kg SAR(1 g) = 0.027 W/kg; SAR(10 g) = 0.016 W/kg Maximum value of SAR (measured) = 0.0293 W/kg 0 dB = 0.0293 W/kg = -15.33 dBW/kg # APPENDIX A MEASUREMENT UNCERTAINTY The uncertainty budget has been determined for the measurement system and is given in the following Table. Measurement uncertainty evaluation for IEEE1528-2013 SAR test | Source of uncertainty | Tolerance/
uncertaint
y
±% | Probability
distributio
n | Divisor | ci
(1 g) | ci
(10
g) | Standard
uncertai
nty
±%, (1
g) | Standard
uncertai
nty
±%, (10
g) | |--|-------------------------------------|---------------------------------|------------|-------------|-----------------|--|--| | | | Measurement | system | • | | <u>. </u> | <u> </u> | | Probe calibration | 6.55 | N | 1 | 1 | 1 | 6.6 | 6.6 | | Axial Isotropy | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | Hemispherical Isotropy | 9.6 | R | √3 | 0 | 0 | 0.0 | 0.0 | | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | Detection limits | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | Response time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | Integration time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | RF ambient conditions – noise | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | RF ambient conditions—reflections | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | Probe positioner mech. Restrictions | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | | Probe positioning with respect to phantom shell | 6.7 | R | √3 | 1 | 1 | 3.9 | 3.9 | | Post-processing | 2.0 | R | √3 | 1 | 1 | 1.2 | 1.2 | | | | Test sample | related | | | | | | Test sample positioning | 2.8 | N | 1 | 1 | 1 | 2.8 | 2.8 | | Device holder uncertainty | 6.3 | N | 1 | 1 | 1 | 6.3 | 6.3 | | Drift of output power | 5.0 | R | √3 | 1 | 1 | 2.9 | 2.9 | | | | Phantom and | set-up | | | | | | Phantom uncertainty (shape and thickness tolerances) | 4.0 | R | $\sqrt{3}$ | 1 | 1 | 2.3 | 2.3 | | Liquid conductivity target) | 5.0 | R | √3 | 0.64 | 0.43 | 1.8 | 1.2 | | Liquid conductivity meas.) | 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.1 | | Liquid permittivity target) | 5.0 | R | √3 | 0.6 | 0.49 | 1.7 | 1.4 | | Liquid permittivity meas.) | 2.5 | N | 1 | 0.6 | 0.49 | 1.5 | 1.2 | | Combined standard uncertainty | | RSS | | | | 12.2 | 12.0 | | Expanded uncertainty 95 % confidence interval) | | | | | | 24.3 | 23.9 | # Measurement uncertainty evaluation for IEC 62209-2 SAR test | Source of uncertainty | Tolerance/
uncertai
nty
±% | Probability
distributio
n | Divisor | ci
(1
g) | ci
(10
g) | Standard
uncertai
nty
± %, (1
g) | Standard
uncertai
nty
± %, (10
g) | |--|-------------------------------------|---------------------------------|------------|----------------|-----------------|--|---| | | | Measurement | system | | | | _ | | Probe calibration | 6.55 | N | 1 | 1 | 1 | 6.6 | 6.6 | | Axial Isotropy | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | Hemispherical Isotropy | 9.6 | R | √3 | 0 | 0 | 0.0 | 0.0 | | Linearity | 4.7 | R | √3 | 1 | 1 | 2.7 | 2.7 | | Modulation Response | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | Detection limits | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | Boundary effect | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | Readout electronics | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | | Response time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | Integration time | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | | RF ambient conditions – noise | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | | RF ambient conditions–reflections | 1.0 | R | $\sqrt{3}$ | 1 | 1 | 0.6 | 0.6 | | Probe positioner mech. Restrictions | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | | Probe positioning with respect to phantom shell | 6.7 | R | $\sqrt{3}$ | 1 | 1 | 3.9 | 3.9 | | Post-processing | 2.0 | R | √3 | 1 | 1 | 1.2 | 1.2 | | | | Test sample | related | | I | | | | Device holder Uncertainty | 6.3 | N | 1 | 1 | 1 | 6.3 | 6.3 | | Test sample positioning | 2.8 | N | 1 | 1 | 1 | 2.8 | 2.8 | | Power scaling | 4.5 | R | √3 | 1 | 1 | 2.6 | 2.6 | | Drift of output power | 5.0 | R | √3 | 1 | 1 | 2.9 | 2.9 | | | | Phantom and | l set-up | | | | | | Phantom uncertainty (shape and thickness tolerances) | 4.0 | R | √3 | 1 | 1 | 2.3 | 2.3 | | Algorithm for correcting SAR for deviations in permittivity and conductivity | 1.9 | N | 1 | 1 | 0.84 | 1.1 | 0.9 | | Liquid conductivity (meas.) | 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.1 | | Liquid permittivity (meas.) | 2.5 | N | 1 | 0.6 | 0.49 | 1.5 | 1.2 | | Temp. unc Conductivity | 1.7 | R | √3 | 0.78 | 0.71 | 0.8 | 0.7 | | Temp. unc Permittivity | 0.3 | R | √3 | 0.23 | 0.26 | 0.0 | 0.0 | | Combined standard uncertainty | | RSS | | | | 12.2 | 12.1 | | Expanded uncertainty 95 % confidence interval) | | | | | | 24.5 | 24.2 | # APPENDIX B EUT TEST POSITION PHOTOS # Liquid depth ≥ 15cm **Head Left Cheek Setup Photo** Version 821: 2021-11-09 Page 32 of 62 FCC SAR # **Head Left Tilt Setup Photo** **Head Right Cheek Setup Photo** # **Head Right Tilt Setup Photo** **Body Back Setup Photo (0mm)** ## APPENDIX C PROBE CALIBRATION CERTIFICATES ## A#00396 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BACL USA Certificate No: EX3-3619_Aug21 Accreditation No.: SCS 0108 CALIBRATION CERTIFICATE Object EX3DV4 - SN:3619 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 09-Apr-21 (No. 217-03343) | Apr-22 | | DAE4 | SN: 660 | 23-Dec-20 (No. DAE4-660_Dec20) | Dec-21 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-20 (No. ES3-3013_Dec20) | Dec-21 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | | | | Calibrated by: Name Function Signature Laboratory Technician Approved by: Niels Kuster Duality Manager Issued: September 2, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3619_Aug21 Page 1 of 22 Calibration Laboratory of Schmid & Partner Engineering AG sughausstrasse
43, 8004 Zurich, Switzerland Schweizerischer Kallbrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: tissue simulating liquid tissue simulating inquio sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters NORMx,y,z ConvF DCP A, B, C, D Polarization φ φ rotation around probe axis Polarization 9 3 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 3 = 0 is normal to probe axis information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle ## Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization $\theta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E^2 -field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included - implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer - Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. "he sensitivity in TSL corresponds to NORMx,y,z "ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3619 Aug21 Page 2 of 22 Report No.: SZNS211213-64525E-SAA EX3DV4 - SN:3619 August 25, 2021 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.45 | 0.37 | 0.40 | ± 10.1 % | | DCP (mV) ⁸ | 100.7 | 95.9 | 97.2 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dBõV | С | dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | | | | |---------|--|---|--------------|-----------|-------|---|---|-------------|----------------------------------|---------|--|--| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 136.8 | ± 3.0% | ± 4.7 % | | | | | 7.0 | 100000 | Y | 0.00 | 0.00 | 1.00 | 70071000 | 140.2 | | 11000000000 | | | | | | | Z | 0.00 | 0.00 | 1.00 | | 129.7 | | l) | | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 20.00 | 91.00 | 20.78 | 10.00 | 60.0
60.0 | ± 3.3 % | ± 9.6 % | | | | | AAA | | Y | 20.00 | 91.31 | 20.32 | | | | 3175500-10 | | | | | | A TO A STREET OF THE PARTY T | Z | 20.00 | 90.73 | 20.77 | Ti- | 60.0 | | | | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 20.00 | 92,40 | 20.17 | 6.99 | 80.0 | ±1.9% | ± 9.6 % | | | | | AAA | , | Y | 20.00 | 94.02 | 20.51 | | 80.0 | | | | | | | VI (10) | | Z | 20.00 | 92.05 | 20.07 | Manager 1 | 80.0 | | | | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 95.90 | 20.43 | 3.98 | 95.0 | ±1.1% | ± 9.6 % | | | | | AAA | W 100 | Y | 20.00 | 100.99 | 22.55 | | | | 95.0 | 95.0 | | | | | | Z | 20.00 | 94.75 | 19.91 | | 95.0 | | 9 | | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 101.26 | 21.75 | 2.22 | 120.0 | ± 0.9 % ± | ± 9.6 % | | | | | AAA | | Y | 20.00 110.57 | 25.81 | 120.0 | 120.0 | 20000000 | | | | | | | | | Z | 20.00 | 99.53 | 20.96 | | 120.0 | 1 | | | | | | 10387- | OPSK Waveform, 1 MHz | X | 1.63 | 64.30 | 14.18 | 1.00 150.0
150.0 | ± 1.6 % | ± 9.6 % | | | | | | AAA | | Y | 1.70 | 65.79 | 14.92 | | 000000000000000000000000000000000000000 | 150.0 | | 1700000 | | | | | | Z | 1.75 | 65.33 | 14.77 | | 150.0 | 7 | | | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.11 | 66.24 | 14.81 | 0.00 | 150.0 | ± 1.0 % | ± 9.6 % | | | | | AAA | | Y | 2.24 | 67.52 | 15.58 | 0.0000000000000000000000000000000000000 | 150.0 | | 25000000 | | | | | | | Z | 2.29 | 67.54 | 15.45 | g | 150.0 | 1 | 1 | | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 3.00 | 69.58 | 18.20 | 3.01 | 150.0 | ± 0.8 % | ± 9.6 9 | | | | | AAA | | Y | 2.91 | 69.50 | 18.29 | 1100000 | 150.0 | | 27-2500-5 | | | | | | - Committee of the comm | Z | 3.05 | 69.63 | 18.27 | lemme | 150.0 | 1 | | | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.46 | 66.35 | 15.34 | 0.00 | 150.0 | ± 0.7 % | ± 9.6 9 | | | | | AAA | | Y | 3.57 | 67.04 | 15.78 | - | 150.0 | | | | | | | | | Z | 3.43 | 66.28 | 15.34 | Service | 150.0 | | | | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.90 | 65.28 | 15.30 | 0.00 | 150.0 | ± 1.4 % | ± 9.6 9 | | | | | AAA | 10 | Y | 4.76 | 65.03 | 15.26 | | 150.0 | | | | | | | | | Z | 4.86 | 65.14 | 15.25 | | 150.0 | 1 | 0.7 | | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-3619_Aug21 Page 3 of 22 ^{The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.} EX3DV4- SN:3619 August 25, 2021 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619 #### Sensor Model Parameters | | C1
fF | C2
fF | α
V-1 | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V-2 | T5
V-1 | T6 | |---|----------|----------|----------|--------------------------
--------------------------|----------|-----------|-----------|------| | X | 51.1 | 383.01 | 35.69 | 9.96 | 0.40 | 5.01 | 1.42 | 0.30 | 1.01 | | Υ | 45.1 | 338.51 | 35.83 | 9.28 | 0.00 | 5.03 | 1.02 | 0.31 | 1.01 | | Z | 53.1 | 397.58 | 35.66 | 9.81 | 0.50 | 5.01 | 0.63 | 0.43 | 1.01 | #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (*) | -153.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. Certificate No: EX3-3619_Aug21 Page 4 of 22 EX3DV4- SN:3619 August 25, 2021 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3619 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|--------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 450 | 56.7 | 0.94 | 8.89 | 8.89 | 8.89 | 0.16 | 1.30 | ± 13.3 % | | 600 | 56.1 | 0.95 | 8.96 | 8.96 | 8.96 | 0.10 | 1.25 | ± 13.3 % | | 750 | 41.9 | 0.89 | 8.63 | 8.63 | 8.63 | 0.42 | 0.90 | ± 12.0 % | | 835 | 41.5 | 0.90 | 8.50 | 8.50 | 8.50 | 0.43 | 08.0 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.28 | 8.28 | 8.28 | 0.34 | 0.99 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.33 | 7.33 | 7.33 | 0.22 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.07 | 7.07 | 7.07 | 0.26 | 0.86 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.69 | 6.69 | 6.69 | 0.19 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 6.53 | 6.53 | 6.53 | 0.15 | 0.90 | ± 12.0 % | | 5250 | 35.9 | 4.71 | 4.37 | 4.37 | 4.37 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.03 | 4.03 | 4.03 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 3.93 | 3.93 | 3.93 | 0.40 | 1.80 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band, Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respecifiely. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. *At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (a and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated larget tissue parameters. *At frequencies below at the ConvF uncertainty for indicated larget tissue parameters. *At frequencies determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-8 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-3619_Aug21 Page 5 of 22 EX3DV4-SN:3619 August 25, 2021 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3619_Aug21 Page 6 of 22 ## Receiving Pattern (φ), 9 = 0° Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2) 1800 MHz 2500 MHz 600 MHz Certificate No: EX3-3619_Aug21 100 MHz Page 7 of 22 ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3619_Aug21 Page 8 of 22 ### Conversion Factor Assessment ### Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz Page 9 of 22 August 25, 2021 EX3DV4- SN:3619 #### **Appendix: Modulation Calibration Parameters** | UID | Rev | Communication System Name | Group | PAR
(dB) | Unc ^b
(k=2) | |-------|-----|---|-----------|-------------|---------------------------| | 0 | - | CW | CW | 0.00 | ± 4.7 % | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 % | | 10011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 % | | 10012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 % | | 10013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 % | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 % | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 % | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 % | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ± 9.6 % | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 % | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ± 9.6 % | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ± 9.6 % | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ± 9.6 % | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ± 9.6 % | | 10034 | CAA | IEEE 802.15.1 Bluetooth (Pt/4-DQPSK, DH3) | Bluetooth | 4.53 | ± 9.6 % | | 10035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ±9.6 % | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ± 9.6 % | | 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.77 | ± 9.6 % | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 333.6.9.1 | ± 9.6 % | | 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 4.57 | ± 9.6 % | | 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 7.78 | ± 9.6 % | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 0.00 | ± 9.6 % | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 13.80 | ± 9.6 % | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mgps) | TD-SCDMA | 10.79 | ± 9.6 % | | 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM GSM | 11.01 | ± 9.6 % | | 10059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | | 6.52 | ± 9.6 % | | 10060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ± 9.6 % | | 10061 | | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ± 9.6 % | | 10062 | CAB | | WLAN | 3.60 | ± 9.6 % | | 10063 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ± 9.6 % | | 10064 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ± 9.6 % | | | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ± 9.6 % | | 10065 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ± 9.6 % | | 10066 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ± 9.6 % | | 10067 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ± 9.6 % | | 10068 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ± 9.6 % | | 10069 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ± 9.6 % | | 10071 | CAB | IEEE 802.11g WiFl 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ± 9.6 % | | 10072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ± 9.6 % | | 0073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 % | | 0074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ± 9.6 % | | 0075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ± 9.6 % | | 0076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ± 9.6 % | | 0077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ± 9.6 % | | 0081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ± 9.6 % | | 0082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ± 9.6 % | | 0090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ± 9.6 % | | 0097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ± 9.6 % | | 0098 | DAC | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ± 9.6 % | Certificate No: EX3-3619_Aug21 Page 10 of 22 | EX3DV4 SN:3619 | August 25, 2021 | |----------------|-----------------| | | | | 10099 | CAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ± 9.6 % | |-------|-----|---|---------|-------|---------| | 10100 | CAC | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ± 9.6 % | | 10101 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 % | | 10102 | CAB | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10103 | DAC | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TOD | 9.29 | ± 9.6 % | | 10104 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.29 | ±9.6 % | | 10105 | CAE | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TOD | 10.01 | ± 9.6 % | | 10108 | CAE | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ± 9.6 % | | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ± 9.6 % | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) |
LTE-FDD | 6.59 | ± 9.6 % | | 10113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10114 | CAG | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10115 | CAG | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ± 9.6 % | | 10116 | CAG | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ± 9.6 % | | 10117 | CAG | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ± 9.6 % | | 10118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 % | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ± 9.6 % | | 10140 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10141 | CAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz. 64-QAM) | LTE-FDD | 6.53 | ± 9.6 % | | 10142 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10143 | CAD | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ± 9.6 % | | 10144 | CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ± 9.6 % | | 10145 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ± 9.6 % | | 10146 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | | | 10147 | CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ± 9.6 % | | 10149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz. 16-QAM) | LTE-FDD | 6.72 | ± 9.6 % | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10151 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | 9.28 | | | 10152 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.28 | ± 9.6 % | | 10153 | CAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TOD | 10.05 | ± 9.6 % | | 10154 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10155 | CAF | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10156 | CAF | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ± 9.6 % | | 10157 | CAE | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10158 | CAE | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 10159 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FOD | 6.56 | | | 10160 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ± 9.6 % | | 10161 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | | 10162 | CAG | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ± 9.6 % | | 10166 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ± 9.6 % | | 10167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | | | 10168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ± 9.6 % | | 10169 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10170 | CAG | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | | | 10171 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ± 9.6 % | | 10172 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TOD | 9.21 | | | 10173 | CAE | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TOD | 9.21 | ± 9.6 % | | 10174 | CAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10175 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10176 | CAF | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10177 | CAF | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | | ± 9.6 % | | 10178 | CAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 5.73 | ± 9.6 % | | 10179 | AAE | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.52 | ±9.6% | | 10180 | | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | | 6.50 | ± 9.6 % | | 10100 | CAG | LILIDO (SO-FOMA, I RD, S MHZ, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | Page 11 of 22 EX3DV4- SN:3619 | EX3DV4- | - SN:361 | 9 | | Aug | ust 25, 2021 | |---------|----------|---|---------|------|--------------| | 10181 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ±9.6% | | 10182 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10183 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | | +96% | | 10181 | 1000 | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | | | | |-------|------|--|---------|-------|---------| | 10182 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 5.72 | ± 9.6 % | | 10183 | CAG | | LTE-FDD | 6.52 | ± 9.6 % | | 10184 | CAG | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10184 | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10186 | CAI | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ± 9.6 % | | | CAG | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10187 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10188 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10189 | CAE | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10193 | CAE | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ± 9.6 % | | 10194 | AAD | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ± 9.6 % | | 10195 | CAE | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.21 | ± 9.6 % | | 10196 | CAE | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10197 | AAE | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10198 | CAF | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10219 | CAF | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ± 9.6 % | | 10220 | AAF | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10221 | CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10222 | CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ± 9.6 % | | 10223 | CAD | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAD | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | | | 10225 | CAD | UMTS-FDD (HSPA+) | WCDMA | | ± 9.6 % | | 10226 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 5.97 | ± 9.6 % | | 10227 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | | 9.49 | ± 9.6 % | | 10228 | CAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 04-QAM) | LTE-TDD | 10.26 | ± 9.6 % | | 10229 | | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.22 | ± 9.6 % | | 10230 | DAC | | LTE-TDD | 9.48 | ± 9.6 % | | 10230 | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6% | | | CAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TDD | 9.19 | ± 9.6 % | | 10232 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10233 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10234 | CAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10235 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10236 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10237 | CAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10238 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10239 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10240 | CAB | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10241 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ± 9.6 % | | 10242 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ± 9.6 % | | 10243 | CAD | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ± 9.6 % | | 10244 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10245 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE TOD | 10.06 | ± 9.6 % | | 10246 | CAG | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.91 | ± 9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.09 | | | 10249 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.29 | ± 9.6 % | | 10251 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TOD | 9.81 | ± 9.6 % | | 10252 | CAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | | 10.17 | ± 9.6 % | | 10252 | | LTE-TOD (SC-FDMA, 50% RB, 10 MHz, QPSK) LTE-TOD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TOD | 9.24 | ± 9.6 % | | 10253 | CAF | | LTE-TDD | 9.90 | ± 9.6 % | | | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ± 9.6 % | | 10255 | CAB | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ± 9.6 % | | 10256 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.96 | ± 9.6 % | | 10257 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.08 | ± 9.6 % | | 10258 | CAD | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ± 9.6 % | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.98 | ± 9.6 % | Certificate No: EX3-3619_Aug21 Page 12 of 22 | 10261 | E-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)
E-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.97 | |
--|--|----------------------|--------------|---------| | 10262 | | T | | ± 9.6 % | | 10283 CAG LTI 10286 CAG LTI 10286 CAF LTI 10286 CAF LTI 10286 CAF LTI 10286 CAF LTI 10287 CAB LTI 10288 CAF 10274 CAB LTI 10277 CAD PH 10277 CAD PH 10277 CAD PH 10277 CAG PH 10279 CAG CD 10291 CAG CD 10291 CAG CD 10292 CAG CD 10292 CAG CD 10292 CAG CD 10293 CAG CD 10292 CAG CD 10293 CAG CD 10293 CAG CD 10294 CAG CD 10295 CAG CD 10295 CAG CD 10295 CAG CD 10296 CAF LTI 10298 CAF LTI 10298 CAF LTI 10299 CAF LTI 10299 CAF LTI 103001 CAC 1030 | | LTE-TDO | 9.24 | ± 9.6 % | | 10284 CAG LTI 10285 CAG LTI 10286 CAF LTI 10267 CAF LTI 10268 CAF LTI 10268 CAF LTI 10268 CAF LTI 10269 CAB LTI 10270 CAB LTI 10271 CAB LTI 10271 CAB LTI 10272 CAD PH 10273 CAD PH 10274 CAG CD 10275 CAD CAG 10277 CAC PH 10275 CAD CAG 10277 CAC PH 10276 CAG CD 10277 CAG PH 10277 CAG CD 10291 CAG CD 10292 CAG CD 10291 10293 10294 CAG CD 10295 | E-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)
E-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 9.83 | ± 9.6 ° | | 10265 | E-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TDD | 10.16 | ± 9.6 | | 10266 | E-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.23 | ± 9.6 | | 10267 | E-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TOD | 9.92 | ± 9.6 | | 10268 | E-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.07 | ± 9.6 | | 10269 | E-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TOD | 9.30 | ± 9.6 | | 10270 CAB LTI 10274 CAB UM 10275 CAD UM 10275 CAD UM 10275 CAD PH 10276 CAD PH 10278 CAD PH 10278 CAD PH 10279 CAG PH 10279 CAG PH 10292 CAG CD 10291 CAG CD 10291 CAG CD 10292 CAG CD 10291 CAG CD 10292 CAG CD 10295 CAG CD 10295 CAG CD 10296 CAF LTI 10298 CAF LTI 10298 CAF LTI 10300 CAC LTI 10301 CAC EEE 10302 CAB EEE 10303 CAB EEE 10303 CAB EEE 10303 CAB EEE 10304 CAA EEE 10305 CAA EEE 10306 CAA EEE 10307 CAB EEE 10307 CAB EEE 10308 CAB EEE 10308 CAB EEE 10309 AAB EEE 10309 AAB EEE 10301 10303 | E-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 | | 10274 CAB UM 10275 CAD UM 10275 CAD UM 10277 CAD PH 10277 CAD PH 10279 CAG PH 10279 CAG PH 10279 CAG PH 10279 CAG CD 10291 CAG CD 10292 CAG CD 10292 CAG CD 10292 CAG CD 10293 CAG CD 10293 CAG CD 10293 CAG CD 10295 CAF LT 10296 CAF LT 10301 CAC | E-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TOD | 10.13 | ± 9.6 | | 10275 CAD UN 10277 CAD PH 10277 CAD PH 10278 CAD PH 10279 CAG PH 10279 CAG PH 10279 CAG CD 10291 CAG CD 10292 CAG CD 10293 CAG CD 10293 CAG CD 10293 CAG CD 10295 CAG CD 10296 CAG CD 10297 CAF LTI 10298 CAF LTI 10298 CAF LTI 10298 CAF LTI 10299 CAF LTI 10299 CAF LTI 10299 CAF LTI 10299 CAF LTI 103001 CAC LEE 103001 CAC LEE 103001 CAC LTI 103001 CAC LEE 103001 CAC LEE 103001 CAC LTI LT CA | ITS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 9.58 | ± 9.6 | | 10277 | ITS-FDD (HSUPA, Subtest 5, 3GPP Rei8.10) | WCDMA | 4.87 | ± 9.6 | | 10278 CAD PH 10279 CAG PH 10279 CAG PH 10279 CAG CD 10291 CAG CD 10292 CAG CD 10292 CAG CD 10292 CAG CD 10293 CAG CD 10295 CAG CD 10295 CAG CD 10296 CAF LTI 10298 CAF LTI 10300 CAC LTI 10301 CAC EE 10301 CAB EE 10303 CAB EE 10304 CAA EE 10305 CAA EE 10307 AAB EE 10306 CAA EE 10307 AAB EE 10307 AAB EE 10308 AAB EE 10309 AAB EE 10309 AAB EE 10310 AAB EE 10310 AAB EE 10310 AAB EE 10310 AAB EE 10311 AAB ET 10311 AAD ET 10312 AAD EE 10313 AAD EE 10314 AAD EE 10315 AAD EE 10315 AAD EE 10316 AAD EE 10317 AAA EE 10318 AAD EE 10318 AAD EE 10318 AAD EE 10319 AAB EE 10310 10 | IS (QPSK) | PHS | 3.96 | ± 9.6 | | 10279 | IS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 | | 10290 | IS (QPSK, BW 884MHz, Rolloff 0.38) | 1.501.050 | 11.81 | ± 9.6 | | 10291 | MA2000, RC1, SQ55, Full Rate | PHS | 12.18 | ± 9.6 | | 10292 | | CDMA2000 | 3.91 | ± 9.6 | | CAG | MA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ± 9.6 | | CAG | MA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ± 9.6 | | 10297 CAF LTI 10298 CAF LTI 10298 CAF LTI 10298 CAF LTI 10299 CAF LTI 10300 CAC LTI 10301 CAC LEE 10303 CAB LEE 10303 CAB LEE 10303 CAB LEE 10304 CAA LEE 10305 CAA LEE 10306 CAA LEE 10307 AAB LEE 10307 AAB LEE 10308 AAB LEE 10309 AAB LEE 10311 AAB LTE 10313 AAD LTE 10313 AAD LTE 10314 AAD LTE 10315 AAD LEE 10315 AAD LEE 10316 AAD LEE 10317 AAA LEE 10318 AAD LEE 10318 AAD LEE 10319 AAB LEE 10319 AAB LEE 10310 AAD AAA CLEE | MA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ± 9.6 | | 10298 CAF LTI 10299 CAF LTI 10299 CAF LTI 10299 CAF LTI 10300 CAC LTI 10301 CAC LEE 10302 CAB LEE 10303 CAB LEE 10303 CAB LEE 10303 CAB LEE 10306 CAA LEE 10306 CAA LEE 10307 AAB LEE 10309 AAB LEE 10309 AAB LEE 10309 AAB LEE 10309 AAB LEE 10301 LTI 10311 AAB LTI 10311 AAB LEE 10 | MA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 | | 10299 | E-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ± 9.6 | | 10300 CAC LTI 10301 CAC LTI 10301 CAC LTI 10301 CAC LEE 10302 CAB LEE 10303 CAB LEE 10304 CAA LEE 10305 CAA LEE 10306 CAA LEE 10307 AAB 10308 10 | E-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 | | 10301 | E-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ± 9.6 | | 10302 | E-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 | | 10303 | E 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WIMAX | 12.03 | ± 9.6 | | 10304 CAA IEEE 10305 CAA IEEE 10305 CAA IEEE 10307 AAB IEEE 10307 AAB IEEE 10309 AAB IEEE 10309 AAB IEEE 10301 AAB IEEE 10311 10312 AAA IEEE 10315 AAA IEEE 10315 AAA Pul 10352 AAA Pul 10353 AAA Pul 10355 AAA Pul 10356 | E 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WIMAX | 12.57 | ± 9.6 | | 10305 CAA IEE 10306 CAA IEE 10306 CAA IEE 10306 CAA IEE 10307 AAB IEE 10309 AAB IEE 10309 AAB IEE 10309 AAB IEE 103010 AAB IEE 10311 10315 AAD IEE 10316 AAD IEE 10317 AAA IEE 10317 AAA IEE 10317 AAA Pul 10355 AAA Pul 10355 AAA Pul 10355 AAA Pul 10356 AA AA 10356 AAA AA 1 | E 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | WIMAX | 12.52 | ± 9.6 | | 10306 CAA IEE 10307 AAB IEE 10308 AAB IEE 10309 AAB IEE 10310 AAB IEE 10310 AAB IEE 10311 10313 AAD IEE 10316 AAD IEE 10317 AAA IEE 10317 AAA IEE 10317 AAA IEE 10318 AAA Pul 10355 AAA Pul 10355 AAA Pul 10355 AAA Pul 10356 AAA Pul 10356 AAA Pul 10356 AAA Pul 10356 AAA Pul 10358 AAA QP 10388 AAA QP 10388 AAA QP 10399 AAA 64- 104000 AAD IEE | E 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WIMAX | 11.86 | ± 9.6 | | 10307 AAB IEE 10308 AAB IEE 10308 AAB IEE 10310 AAB IEE 10310 AAB IEE 10311 AAB LT 10313 AAD IDE 10313 AAD IDE 10314 AAD IDE 10315 AAD IEE 10316 AAD IEE 10317 AAA IEE 10316 AAD IEE 10316 AAD IEE 10317 AAA IEE 10318 AAA Pul 10352 AAA Pul 10353 AAA Pul 10354 AAA Pul 10355 AAA Pul 10355 AAA Pul 10356 103 | E 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WIMAX | 15.24 | ± 9.6 | | 10308 AAB IEE 10309 AAB IEE 10309 AAB IEE 10309 AAB IEE 10310 AAB IEE 10311 AAB LT 10313 AAD IDE 10314 AAD IDE 10315 AAD IEE 10316 AAD IEE 10317 AAA IEE 10317 AAA IEE 10317 AAA Pul 10353 AAA Pul 10355 AAA Pul 10356 A Pul 10356 AAA A Pul 10356 AAA A Pul 10356 AAA A Pul 10356 AAA A AAA AAA AAA AAA AAA AAA AAA AAA | E 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) | WIMAX | 14.67 | ± 9.6 | | 10309 AAB IEE 10310 AAB IEE 10310 AAB IEE 10310 AAB IEE 10311 AAB IEE 10311 AAD IEE 10313 AAD IEE 10315 AAD IEE 10316 AAD IEE 10316 AAD IEE 10317 AAA IEE 10352 AAA Pul 10355 AAA Pul 10355 AAA Pul 10355 AAA Pul 10356 AA AA | E 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WIMAX | 14.49 | ± 9.6 | | 10310 AAB IEE 10311 AAB LITE 10313 AAB LITE 10313 AAD IDE 10314 AAD IDE 10315 AAD IEE 10315 AAD IEE 10316 AAD IEE 10317 AAA IEE 10317 AAA IEE 10352 AAA Pul 10355 AAA Pul 10355 AAA Pul 10355 AAA Pul 10355 AAA Pul 10356 | E 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WIMAX | 14.46 | ± 9.6 | | 10311 AAB LTE 10313 AAD IDE 10313 AAD IDE 10313 AAD IDE 10315 AAD IEE 10316 AAD IEE 10316 AAD IEE 10317 AAA IEE 10317 AAA IEE 10318 AAA Pul 10352 AAA Pul 10353 AAA Pul 10354 AAA Pul 10355 AAA Pul 10356 10 | E 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM,AMC
2x3) | WIMAX | 14.58 | ± 9.6 | | 10313 AAD 10E 10314 AAD 10E 10314 AAD 10E 10315 AAD 1EE 10316 AAD 1EE 10317 AAA 1EE 10317 AAA 1EE 10317 AAA Pul 10353 AAA Pul 10355 AAA Pul 10355 AAA Pul 10356 164 10400 AAA 64- | E 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 | WIMAX | 14.57 | ± 9.6 | | 10314 AAD IDE 10315 AAD IDE 10316 AAD IEE 100317 AAA IEE 100317 AAA IEE 100352 AAA Pul 100353 AAA Pul 100355 AAA Pul 100355 AAA Pul 100356 AAA Pul 100358 AAA Pul 100358 AAA QP 100388 AAA QP 100388 AAA QP 100399 AAA 64- 10400 AAD IEE | E-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 | | 10315 AAD IEE 10316 AAD IEE 10316 AAD IEE 10317 AAA IEE 10352 AAA Pul 10353 AAA Pul 10354 AAA Pul 10355 AAA Pul 10355 AAA Pul 10356 AAA Pul 10356 AAA CPul | N 1:3 | iDEN | 10.51 | ± 9.6 | | 10316 AAD IEE 10317 AAA IEE 10317 AAA IEE 10352 AAA Pul 10352 AAA Pul 10353 AAA Pul 10355 AAA Pul 10355 AAA Pul 10356 AAA Pul 10366 AAA Pul 10386 AAA QP 10388 AAA QP 10388 AAA QP 10398 AAA G4 10399 AAA 64- | N 1:6 | IDEN | 13.48 | ± 9.6 | | 10316 AAD IEE 10317 AAA IEE 10352 AAA Pul 10353 AAA Pul 10354 AAA Pul 10355 AAA Pul 10356 AAA Pul 10356 AAA Pul 10356 AAA QP 10386 AAA QP 10388 AAA QP 10388 AAA QP 10389 AAA 64- 10399 AAA 64- 10400 AAD IEE | E 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) | WLAN | 1.71 | ± 9.6 | | 10317 AAA IEE 10352 AAA Pul 10353 AAA Pul 10355 AAA Pul 10355 AAA Pul 10355 AAA Pul 10356 AAA Pul 10356 AAA Pul 10356 AAA QP | E 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 | | 10352 AAA Pul
10353 AAA Pul
10354 AAA Pul
10355 AAA Pul
10356 AAA Pul
10387 AAA QP
10388 AAA QP
10388 AAA QP
10389 AAA 64- | E 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 | | 10354 AAA Pul
10355 AAA Pul
10356 AAA Pul
10367 AAA QP
10388 AAA QP
10388 AAA QP
10398 AAA 64-
10399 AAA 64- | se Waveform (200Hz, 10%) | Generic | 10.00 | 19.6 | | 10355 AAA Pul
10356 AAA Pul
10367 AAA QP
10388 AAA QP
10388 AAA QP
10396 AAA 64-
10399 AAA 64-
10400 AAD IEE | se Waveform (200Hz, 20%) | Generic | 6.99 | ± 9.6 | | 10356 AAA Pul
10387 AAA QP
10388 AAA QP
10398 AAA 64-
10399 AAA 64-
10400 AAD IEEE | se Waveform (200Hz, 40%) | Generic | 3.98 | ± 9.6 | | 10387 AAA QP
10388 AAA QP
10398 AAA 64-
10399 AAA 64-
10400 AAD IEE | se Waveform (200Hz, 60%) | Generic | 2.22 | ± 9.6 | | 10387 AAA QP
10388 AAA QP
10396 AAA 64-
10399 AAA 64-
10400 AAD IEE | se Waveform (200Hz, 80%) | Generic | 0.97 | ± 9.6 | | 10388 AAA QP
10396 AAA 64-
10399 AAA 64-
10400 AAD IEE | SK Waveform, 1 MHz | Generic | 5.10 | ± 9.6 | | 10396 AAA 64-
10399 AAA 64-
10400 AAD IEE | SK Waveform, 10 MHz | Generic | 5.22 | ± 9.6 | | 10399 AAA 64-
10400 AAD IEE | QAM Waveform, 100 kHz | Generic | 6.27 | ± 9.6 | | 10400 AAD IEE | QAM Waveform, 40 MHz | Generic | 6.27 | ± 9.6 | | 700 | E 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | ± 9.6 | | ANA ILL | E 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) | WLAN | 8.60 | ± 9.6 | | 10402 AAA IEE | E 802.11ac WiF1 (80MHz, 64-QAM, 99pc dc) | WLAN | | | | 1444 | MA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 8.53 | ± 9.6 | | PA-PO | MA2000 (1xEV-DO, Rev. 0) | | 3.76 | ± 9.6 | | 74.0 | MA2000 (1XEV-DO, Rev. A)
MA2000, RC3, SO32, SCH0, Full Rate | CDMA2000
CDMA2000 | 3.77
5.22 | ± 9.6 | Certificate No: EX3-3619_Aug21 Page 13 of 22 EX3DV4- SN:3619 August 25, 2021 | 10410 | AAA | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) WLAN CCDF, 64-QAM, 40MHz | LTE-TDD | 7.82 | ± 9.6 % | |-------|-----|---|----------------------|--------------|---------| | | AAA | | Generic | 8.54 | ± 9.6 % | | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1.54 | ± 9.6 % | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10417 | AAA | IEEE 802.11a/h WIFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ± 9.6 % | | 10419 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ± 9.6 % | | 10423 | AAA | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ± 9.6 % | | 10424 | AAA | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.47 | ± 9.6 % | | 10424 | AAE | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ± 9.6 % | | 10426 | AAE | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.41 | ± 9.6 % | | 10427 | AAE | IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.45 | ± 9.6 % | | 10430 | AAB | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | WLAN | 8.41 | ± 9.6 % | | 10431 | AAC | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDO | 8.28 | ± 9.6 % | | 10432 | AAB | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ± 9.6 % | | 10433 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | 10434 | AAG | W-CDMA (BS Test Model 1, 64 DPCH) | LTE-FDD | 8.34 | ± 9.6 % | | 10435 | AAA | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | WCDMA
LTE-TDD | 8.60 | ± 9.6 % | | 0447 | AAA | LTE-FDD (GCPDMA, 1 NB, 20 MHz, GPSK, 0L S0b) | LTE-FDD | 7.82 | ± 9.6 % | | 10448 | AAA | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.56 | ± 9.6 % | | 10449 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7.53 | ± 9.6 % | | 10450 | AAA | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Cliping 44%) | | 7.51 | ± 9.6 % | | 10451 | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | LTE-FDD
WCDMA | 7.48 | ± 9.6 % | | 10453 | AAC | Validation (Square, 10ms, 1ms) | Test | 7.59 | ± 9.6 % | | 0456 | AAC | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) | WLAN | 10.00 | ± 9.6 % | | 0457 | AAC | UMTS-FDD (DC-HSDPA) | WCDMA | 8.63 | ± 9.6 % | | 0458 | AAC | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.62 | ± 9.6 % | | 10459 | AAC | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000
CDMA2000 | 6.55 | ± 9.6 % | | 0460 | AAC | UMTS-FDD (WCDMA, AMR) | WCDMA | 8.25 | ± 9.6 % | | 10461 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 2.39
7.82 | ± 9.6 % | | 0462 | AAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TOD | | ± 9.6 % | | 0463 | AAD | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.30 | ± 9.6 % | | 0464 | AAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TOD | 8.56
7.82 | ± 9.6 % | | 0465 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | | ± 9.6 % | | 0466 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.32
8.57 | ± 9.6 % | | 10467 | AAA | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 0468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 0469 | AAD | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 0470 | AAD | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 0471 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 0472 | AAC | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 0473 | AAA | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) | LTE-TOD | 7.82 | ± 9.6 % | | 0474 | AAC | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10475 | AAD | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 0477 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.32 | ± 9.6 % | | 0478 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.57 | ± 9.6 % | | 0479 | AAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TOD | 7.74 | ± 9.6 % | | 0480 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.18 | ± 9.6 % | | 0481 | AAA | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 0482 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) | LTE-TOD | 7.71 | ± 9.6 % | | 0483 | AAA | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) | LTE-TDD | 8.39 | ± 9.6 % | | 0484 | AAB | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.47 | ± 9.6 % | | 0485 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TOD | 7.59 | ± 9.6 % | | 10486 | AAB | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.38 | ± 9.6 % | | | | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.60 | ± 9.6 % | Page 14 of 22 | 10488 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.70 | ± 9.6 % | |-------|-----|--|---------|--------------|---------| | 10489 | AAC | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 % | | 10490 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 0491 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 9 | | 10492 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.41 | ± 9.6 % | | 10493 | AAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ± 9.6 % | | 10494 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10495 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.37 | ± 9.6 % | | 10496 | AAE | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.54 | ± 9.6 % | | 10497 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 9 | | 10498 | AAE | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.40 | ± 9.6 9 | | 10499 | AAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.68 | ± 9.6 9 | | 10500 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 9 | | 10501 | AAF | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM,
UL Sub) | LTE-TDD | 8.44 | ± 9.6 % | | 10502 | AAB | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.52 | ± 9.6 % | | 10504 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.72 | ± 9.6 % | | 10505 | AAB | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 9 | | 10506 | AAC | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10507 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 9 | | 10508 | AAC | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.36 | ± 9.6 % | | 0509 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ± 9.6 9 | | 10510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.99 | ± 9.6 9 | | 10510 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.49 | ± 9.6 9 | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.51 | ± 9.6 9 | | 0513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 9 | | 0514 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub)
LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.42 | ± 9.6 9 | | 0515 | | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | LTE-TDD | 8.45 | ± 9.6 9 | | 0516 | AAE | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 9 | | 0517 | AAF | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc) | WLAN | 1.57 | ± 9.6 % | | 0518 | AAF | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 0519 | AAF | IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 0520 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.39 | ± 9.6 9 | | 0521 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc) | WLAN | 8.12 | ± 9.6 % | | 0522 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 7.97 | ± 9.6 % | | 0523 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 0524 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc) | WLAN | 8.08 | ± 9.6 % | | 0525 | AAC | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc) | WLAN | | ± 9.6 % | | 0526 | AAF | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc) | WLAN | 8.36
8.42 | ± 9.6 % | | 0527 | AAF | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc) | WLAN | 8.42 | ± 9.6 9 | | 0528 | AAF | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc) | WLAN | 8.36 | ±9.69 | | 0529 | AAF | IEEE 802.11ac WiFi (20MHz, MCS4, 99pc dc) | WLAN | 8.36 | ± 9.6 9 | | 0531 | AAF | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc) | WLAN | 8.43 | ±9.69 | | 0532 | AAF | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 9 | | 0533 | AAE | IEEE 802.11ac WIFI (20MHz, MCS8, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 0534 | AAE | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) | WLAN | 8.45 | ± 9.6 9 | | 0535 | AAE | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 0536 | AAF | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 0537 | AAF | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc) | WLAN | 8.44 | ± 9.6 % | | 0538 | AAF | IEEE 802.11ac WiFi (40MHz, MCS4, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 0540 | AAA | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) | WLAN | 8.39 | ±9.6% | | 0541 | AAA | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) | WLAN | 8.46 | ± 9.6 9 | | 0542 | AAA | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) | WLAN | 8.65 | ± 9.6 9 | | 0543 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 0544 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 0545 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) | WLAN | 8.55 | ±9.6% | Page 15 of 22 | EX3DV4- SN:3619 | August 25, 2021 | |-----------------|-----------------| | | | | 10546 | AAC | IEEE 802.11ac WiFl (80MHz, MCS2, 99pc dc) | WLAN | 8.35 | ± 9.6 % | |-------|-----|---|------|------|---------| | 10547 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10548 | AAC | IEEE 802.11ac WiFI (80MHz, MCS4, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10550 | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | 10551 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10552 | AAC | IEEE 802.11ac WIFI (80MHz, MCS8, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10553 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10554 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10555 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10556 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10557 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc) | WLAN | 8.52 | ± 9.6 % | | 10558 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc) | WLAN | 8.61 | ± 9.6 % | | 10560 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc) | WLAN | 8.73 | ± 9.6 % | | 10561 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc) | WLAN | 8.56 | ± 9.6 % | | 10562 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc) | WLAN | 8.69 | ± 9.6 % | | 10563 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10564 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10565 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10566 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | 8.13 | ± 9.6 % | | 10567 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 % | | 10568 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10569 | AAC | IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN | 8.10 | ± 9.6 % | | 10570 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10571 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10572 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10573 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10574 | AAC | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10575 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 9(pc dc) | WLAN | 8.59 | ± 9.6 % | | 10576 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10577 | AAC | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10578 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 50pc dc) | WLAN | 8.49 | ± 9.6 % | | 10579 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 50pc dc) | WLAN | 8.36 | ± 9.6 % | | 10580 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ±9.6% | | 10581 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10582 | AAD | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ±9.6% | | 10583 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ±9.6% | | 10584 | AAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ±9.6% | | 10585 | AAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10586 | AAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10587 | AAA | IEEE 802.11a/n WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10588 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10589 | AAA | IEEE 802 11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10590 | AAA | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10591 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) | WLAN | 8.63 | ± 9.6 % | | | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10593 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10594 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10595 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10596 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) | WLAN | 8.71 | ±9.6% | | 10597 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10598 | AAA | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ± 9.6 % | | | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10600 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10601 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10602 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10603 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc) | WLAN | 9.03 | ±9.6 % | Page 16 of 22 | EX3DV4 SN:3619 | August 25, 2021 | |----------------|-----------------| | | | | 10604 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc) | WLAN | 1 8.76 | ± 9.6 % | |-------|-----|---|-----------|--------------|---------| | 10605 | AAA | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc) | WLAN | 8.97 | ± 9.6 % | | 10606 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10607 | AAC | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10608 | AAC | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10609 | AAC | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ± 9.6 % | | 10610 | AAC | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10611 | AAC | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10612 | AAC | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10613 | AAC | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc) |
WLAN | 8.94 | ± 9.6 % | | 10614 | AAC | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10615 | AAC | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10616 | AAC | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10617 | AAC | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10618 | AAC | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ± 9.6 % | | 10619 | AAC | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10620 | AAC | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10621 | AAC | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10822 | AAC | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc) | WLAN | 8.68 | ± 9.6 % | | 10623 | AAC | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10824 | AAC | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10625 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10626 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10827 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10628 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10629 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10630 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10631 | AAC | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc) | WLAN | 8.81 | ±9.6 % | | 10632 | AAC | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ±9.6 % | | 10633 | AAC | IEEE 802.11ac WiFi (80MHz, MCS7, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10634 | AAC | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10635 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc) | WLAN | 8.81 | | | 10636 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10637 | AAC | IEEE 802.11ac WIFI (160MHz, MCS1, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10638 | AAC | IEEE 802.11ac WIFI (160MHz, MCS2, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10639 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc) | WLAN | | | | 10640 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc) | WLAN | 8.85
8.98 | ± 9.6 % | | 10641 | AAC | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc) | WLAN | | ± 9.6 % | | 10642 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10643 | AAC | IEEE 802.11ac WiFI (160MHz, MCS7, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10644 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10645 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 90pc dc) | WLAN | 9.05 | ± 9.6 % | | 10646 | AAC | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 9.11 | ± 9.6 % | | 10647 | AAC | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 11.96 | ± 9.6 % | | 10648 | AAC | CDMA2000 (1x Advanced) | CDMA2000 | 11.96 | ± 9.6 % | | 10652 | AAC | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 3.45 | ± 9.6 % | | 10653 | AAC | LTE-TOD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | | 6.91 | ± 9.6 % | | 10654 | AAC | LTE-TOD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.42 | ± 9.6 % | | 10655 | | LTE-TOD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | ± 9.6 % | | 10658 | AAC | Pulse Waveform (200Hz, 10%) | LTE-TDD | 7.21 | ± 9.6 % | | 10659 | AAC | Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) | Test | 10.00 | ± 9.6 % | | 10660 | AAC | Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 40%) | Test | 6.99 | ± 9.6 % | | 10661 | AAC | Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 60%) | Test | 3.98 | ± 9.6 % | | 10662 | AAC | Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 80%) | Test | 2.22 | ± 9.6 % | | 10662 | AAC | Bluetooth Low Energy | Test | 0.97 | ± 9.6 % | | 10670 | AAC | IEEE 802.11ax (20MHz, MCS0, 90pc dc) | Bluetooth | 2.19 | ± 9.6 % | | 100/1 | AAD | IEEE OUZ. I TAX (ZUMHZ, MCSU, SUPC CC) | WLAN | 9.09 | ± 9.6 % | Page 17 of 22 | EX3DV4 SN:3619 | August 25, 2021 | |----------------|-----------------| | | | | 10672 | 1 | IEEE OCC 440- (DOMAN - MACCA CO A.) | | | | |-------|-----|--|------|------|---------| | 10672 | AAD | IEEE 802.11ax (20MHz, MCS1, 90pc dc)
IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ± 9.6 % | | 10674 | AAD | IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10674 | AAD | | WLAN | 8.74 | ± 9.6 % | | 10676 | AAD | IEEE 802.11ax (20MHz, MCS4, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | | AAD | IEEE 802.11ax (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10677 | AAD | IEEE 802.11ax (20MHz, MCS6, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10678 | AAD | IEEE 802.11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10679 | AAD | IEEE 802.11ax (20MHz, MCS8, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10680 | AAD | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10681 | AAG | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ± 9.6 % | | 10682 | AAF | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10683 | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc dc) | WLAN | 8.42 | ±9.6 % | | 10684 | AAC | IEEE 802.11ax (20MHz, MCS1, 99pc dc) | WLAN | 8.26 | ±9.6% | | 10685 | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10686 | AAC | IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN | 8.28 | ± 9.6 % | | 10887 | AAE | IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10888 | AAE | IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10689 | AAD | IEEE 802.11ax (20MHz, MCS6, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10690 | AAE | IEEE 802.11ax (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10691 | AAB | IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10692 | AAA | IEEE 802.11ax (20MHz, MCS9, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10693 | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10694 | AAA | IEEE 802.11ax (20MHz, MCS11, 99pc dc) | WLAN | 8.57 | ± 9.6 % | | 10695 | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10896 | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc dc) | WLAN | 8.91 | ± 9.6 % | | 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ± 9.6 % | | 10698 | AAA | IEEE 802.11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10699 | AAA | IEEE 802.11ax (40MHz, MCS4, 90pc dc) | WLAN | | | | 10700 | AAA | IEEE 802.11ax (40MHz, MCS5, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10701 | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10702 | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc dc) | WLAN | | ± 9.6 % | | 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10704 | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.56 | ± 9.6 % | | 10706 | AAC | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.69 | ± 9.6 % | | 10707 | AAC | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8.66 | ± 9.6 % | | 10708 | | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | | 8.32 | ± 9.6 % | | 10709 | AAC | IEEE 802.11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10710 | - | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10711 | AAC | IEEE 802.11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10712 | AAC | IEEE 802.11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10712 | AAC | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | 8.67 | ± 9.6 % | | 10714 | AAC | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10715 | AAC | | WLAN | 8.26 | ± 9.6 % | | 10716 | AAC | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | | AAC | IEEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10717 | AAC | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10718 | AAC | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ± 9.6 % | | 10719 | AAC | IEEE 802.11ax (80MHz, MCS0, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10720 | AAC | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10721 | AAC | IEEE 802.11ax (80MHz, MCS2, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10722 | AAC | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.55 | ± 9.6 % | | 10723 | AAC | IEEE 802.11ax (80MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10724 | AAC | IEEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10725 | AAC | IEEE 802.11ax (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10726 | AAC | IEEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10727 | AAC | IEEE 802.11ax (80MHz, MCS8, 90pc dc) | WLAN | 8.66 | ± 9.6 % | Page 18 of 22 | EX3DV4- SN:3619 | August 25, 2024 | |-----------------|-----------------| | | | | 10728 | AAC | IEEE 802.11ax (80MHz, MCS9, 90pc dc) | WLAN | 8.65 | ± 9.6 % | |-------|-----|---|---------------|------|---------| | | AAC | IEEE 802.11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10730 | AAC | IEEE 802.11ax (80MHz, MCS11, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10731 | AAC | IEEE 802.11ax (80MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10732 | AAC | IEEE 802.11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | 10733 | AAC | IEEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10734 | AAC | IEEE 802.11ax (80MHz, MCS3, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10735 | AAC | IEEE 802.11ax (80MHz, MCS4, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10736 | AAC | IEEE 802.11ax (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10737 | AAC | IEEE 802.11ax (80MHz, MCS6, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10738 | AAC | IEEE 802.11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10739 | AAC | IEEE 802.11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10740 | AAC | IEEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10741 | AAC | IEEE
802.11ax (80MHz, MCS10, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 10742 | AAC | IEEE 802.11ax (80MHz, MCS11, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10743 | AAC | IEEE 802.11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10744 | AAC | IEEE 802.11ax (160MHz, MCS1, 90pc dc) | WLAN | 9.16 | ± 9.6 % | | 10745 | AAC | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10746 | AAC | IEEE 802.11ax (160MHz, MCS3, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10747 | AAC | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN | 9.04 | ± 9.6 % | | 10748 | AAC | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10749 | AAC | IEEE 802.11ax (160MHz, MCS6, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10750 | AAC | IEEE 802.11ax (160MHz, MCS7, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10751 | AAC | IEEE 802.11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10752 | AAC | IEEE 802.11ax (160MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10753 | AAC | IEEE 802.11ax (160MHz, MCS10, 90pc dc) | WLAN | 9.00 | | | 10754 | AAC | IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10755 | AAC | IEEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.64 | | | 10756 | AAC | IEEE 802.11ax (160MHz, MCS1, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10757 | AAC | IEEE 802.11ax (160MHz, MCS2, 99pc dc) | WLAN | | ± 9.6 % | | 10758 | AAC | IEEE 802.11ax (160MHz, MCS3, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10759 | AAC | IEEE 802.11ax (160MHz, MCS4, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10760 | AAC | IEEE 802.11ax (160MHz, MCS5, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10761 | AAC | IEEE 802.11ax (160MHz, MCS6, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10762 | AAC | IEEE 802.11ax (160MHz, MCS7, 99pc dc) | WLAN | 8.49 | | | 10763 | AAC | IEEE 802.11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10764 | AAC | IEEE 802.11ax (160MHz, MCS9, 99pc dc) | WLAN | | ± 9.6 % | | 0765 | AAC | IEEE 802.11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10766 | AAC | IEEE 802.11ax (160MHz, MCS11, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10767 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.51 | ± 9.6 % | | 0768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ± 9.6 % | | 0769 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | | 8.01 | ± 9.6 % | | 10770 | | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10771 | AAC | 5G NR (CP-OPDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10772 | - | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10773 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ± 9.6 % | | 10774 | AAC | | 5G NR FR1 TDD | 8.03 | ± 9.6 % | | 0775 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 0776 | AAC | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | | | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 0777 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 0778 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 0779 | AAC | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 0780 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 0781 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10782 | AAC | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10783 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | Page 19 of 22 | EX3DV4- SN:3619 | August 25, 2021 | |-----------------|-----------------| | | | | 10784 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ± 9.6 % | |-------|-----|---|---------------|------|---------| | 10785 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10786 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10787 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.44 | ± 9.6 % | | 10788 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10789 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10790 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10791 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.83 | ± 9.6 % | | 10792 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.92 | ± 9.6 % | | 10793 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.95 | ± 9.6 % | | 10794 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10795 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ± 9.6 % | | 10796 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10797 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10798 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10799 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TOD | 7.89 | ± 9.6 % | | 10802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ± 9.6 % | | 10803 | AAE | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10805 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | | | 10806 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | | ± 9.6 % | | 10812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10817 | AAD | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | | 8.35 | ± 9.6 % | | 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 % | | 10821 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10823 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10824 | | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10827 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10828 | AAD | | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10829 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10830 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ± 9.6 % | | 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ± 9.6 % | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ± 9.6 % | | | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ± 9.6 % | | 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | | AAE | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ± 9.6 % | | 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ± 9.6 % | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ± 9.6 % | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ± 9.6 % | | 10843 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.49 | ± 9.6 % | | 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6% | | 10855 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10859 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | Page 20 of 22 | 10860 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | |-------|-----|--|---------------|------|---------| | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10863 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10864 | AAE | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30
kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ± 9.6 % | | 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ± 9.6 % | | 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10872 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ± 9.6 % | | 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6,61 | ± 9.6 % | | 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.39 | ± 9.6 % | | 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ± 9.6 % | | 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 84QAM, 120 tHz) | 5G NR FR2 TDD | 8.38 | ± 9.6 % | | 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ±9.6% | | 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.96 | ± 9.6 % | | 10883 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ± 9.6 % | | 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ± 9.6 % | | 10885 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.35 | ± 9.6 % | | 10889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ± 9.6 % | | 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ± 9.6 % | | 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ± 9.6 % | | 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10897 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ± 9.6 % | | 10898 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ±9.6% | | 10899 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10900 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10901 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10902 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10903 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10905 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10906 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10907 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.78 | ± 9.6 % | | 10908 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10909 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.96 | ± 9.6 % | | 10910 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10911 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10912 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10913 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10914 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ± 9.6 % | | 10915 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10916 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10917 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10918 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10919 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10920 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10921 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | Certificate No: EX3-3619_Aug21 Page 21 of 22 | EX3DV4 SN:3619 | August 25, 2021 | |----------------|-----------------| | | | | 100 | | | | | | |-------|--------|--|---------------|-------|---------| | 10922 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ± 9.6 % | | 10923 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10924 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10925 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ± 9.6 % | | 10926 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10927 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10928 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10929 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10930 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10931 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6% | | 10932 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6% | | 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6% | | 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10935 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10936 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10937 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ± 9.6 % | | 10938 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10939 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ± 9.6 % | | 10940 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ± 9.6 % | | 10941 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10942 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10943 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ± 9.6 % | | 10944 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.81 | ± 9.6 % | | 10945 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10946 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10947 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10948 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10949 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10950 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10951 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | | | 10952 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ± 9.6 % | | 10953 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.15 | ± 9.6 % | | 10954 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 4110 | ± 9.6 % | | 10955 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ± 9.6 % | | 10956 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | 10957 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ± 9.6 % | | 10958 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ± 9.6 % | | 10959 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | | 8.61 | ± 9.6 % | | 10960 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 KHz) | 5G NR FR1 FDD | 8.33 | ± 9.6 % | | 10961 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ± 9.6 % | | 10962 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NE FR1 TDD | 9.36 | ± 9.6 % | | 10963 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NE FR1 TDD | 9.40 | ± 9.6 % | | 10964 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | | 9.55 | ± 9.6 % | | 10965 | 1.2.2 | | 5G NR FR1 TDD | 9.29 | ± 9.6 % | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)
5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | 10967 | 7.0.10 | | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10968 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ± 9.6 % | | | AAB | 5G NR DL (CP-OFDM, TM
3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ± 9.6 % | | 10972 | AAB | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 11.59 | ± 9.6 % | | 10973 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 9.06 | ± 9.6 % | | 10974 | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) | 5G NR FR1 TDD | 10.28 | ± 9.6 % | ⁶ Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EX3-3619_Aug21 Page 22 of 22 ## APPENDIX D DIPOLE CALIBRATION CERTIFICATES Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Report No.: SZNS211213-64525E-SAA Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BACL USA Certificate No: D1900V2-5d231_Jan20 | CALIBRATION CI | ERTIFICATE | | | |-------------------------------------|------------------------------------|--|----------------------------| | Object | D1900V2 - SN:50 | d231 | | | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Sou | irces between 0.7-3 GHz | | Calibration date: | January 14, 2020 | | | | | | ional standards, which realize the physi
probability are given on the following pag | | | All calibrations have been conducte | ed in the closed laborato | ry facility: environment temperature (22 | ± 3)°C and humidity < 70%. | | Calibration Equipment used (M&TE | | y taomy. Givionitant temperature (EE | 20,000,000,000,000 | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-19 (No. EX3-7349_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | | Claudio Leubler | Laboratory Technician | USI | | Calibrated by: | | | | | | Katja Pokovic | Technical Manager | elles | | Calibrated by: | Katja Pokovic | Technical Manager | Issued: January 15, 2020 | Certificate No: D1900V2-5d231_Jan20 Page 1 of 6 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d231_Jan20 Page 2 of 6 #### **Measurement Conditions** | DASY Version | DASY5 | V52.10.3 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.4 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.96 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.9 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d231_Jan20 Page 3 of 6 #### Report No.: SZNS211213-64525E-SAA #### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.5 Ω + 4.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.9 dB | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.200 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D1900V2-5d231_Jan20 Page 4 of 6 #### DASY5 Validation Report for Head TSL Date: 14.01.2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d231 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$; $\varepsilon_r = 41.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.6, 8.6, 8.6) @ 1900 MHz; Calibrated: 31.12.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 110.0 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.7 W/kg #### SAR(1 g) =
9.96 W/kg; SAR(10 g) = 5.19 W/kg Smallest distance from peaks to all points 3 dB below = 9.8 mm Ratio of SAR at M2 to SAR at M1 = 53.9% Maximum value of SAR (measured) = 15.6 W/kg 0 dB = 15.6 W/kg = 11.93 dBW/kg Page 5 of 6 Certificate No: D1900V2-5d231_Jan20 #### Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d231_Jan20 Page 6 of 6 ### ***** END OF REPORT *****