

# **Test Report**

**Report No.:** MTi241108001-08E1

**Date of issue:** 2024-12-13

**Applicant:** Scanstrut Ltd.

**Product name:** Waterproof Magnetic Charger

SC-CW-14G, SC-CW-14G-001, SC-CW-14G-002, SC-CW-14G-003, SC-CW-14G-004, SC-CW-14G-

005, SC-CW-14G-006, SC-CW-14G-007

FCC ID: 2APUP-SCCW14G

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn



## Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

## **Table of contents**

| 1   | Gene                            | eral Description                                                                                                                   | 5  |  |  |
|-----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
|     | 1.1<br>1.2<br>1.3<br>1.4<br>1.5 | Description of the EUT  Description of test modes  Environmental Conditions  Description of support units  Measurement uncertainty |    |  |  |
| 2   | Sum                             | mary of Test Result                                                                                                                | 7  |  |  |
| 3   | Test                            | Facilities and accreditations                                                                                                      | 8  |  |  |
|     | 3.1                             | Test laboratory                                                                                                                    | 8  |  |  |
| 4   |                                 |                                                                                                                                    |    |  |  |
| 5   | Evaluation Results (Evaluation) |                                                                                                                                    |    |  |  |
|     | 5.1                             | Antenna requirement                                                                                                                |    |  |  |
| 6   | Radi                            | o Spectrum Matter Test Results (RF)                                                                                                | 11 |  |  |
|     | 6.1<br>6.2<br>6.3               | 20dB Occupied Bandwidth<br>Emissions in frequency bands (below 30MHz)<br>Emissions in frequency bands (30MHz - 1GHz)               | 15 |  |  |
| Pho | otogra                          | aphs of the test setup                                                                                                             | 23 |  |  |
| Pho | otoar                           | aphs of the EUT                                                                                                                    | 24 |  |  |



**Test Result Certification** Applicant: Scanstrut Ltd. Address: 14 Dart Business Park, Clyst St. George, Exeter, EX3 0QH UK Manufacturer: Scanstrut Ltd. Address: 14 Dart Business Park, Clyst St. George, Exeter, EX3 0QH UK **Product description** Product name: Waterproof Magnetic Charger Trademark: **SCANSTRUT** Model name: SC-CW-14G SC-CW-14G-001, SC-CW-14G-002, SC-CW-14G-003, SC-CW-14G-004, Series Model(s): SC-CW-14G-005, SC-CW-14G-006, SC-CW-14G-007 Standards: 47 CFR Part 15C Test Method: ANSI C63.10-2013 **Date of Test** 2024-11-13 to 2024-11-15 Date of test: Test result: **Pass** 

| Test Engineer |     | Modern Davy   |
|---------------|-----|---------------|
|               |     | (Maleah Deng) |
| Reviewed By   | • • | David. Cee    |
|               |     | (David Lee)   |
| Approved By   |     | leon chen     |
|               |     | (Leon Chen)   |



## 1 General Description

#### 1.1 Description of the EUT

| Product name:              | Waterproof Magnetic Charger                                                                             |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| Model name:                | SC-CW-14G                                                                                               |  |  |
| Series Model(s):           | SC-CW-14G-001, SC-CW-14G-002, SC-CW-14G-003, SC-CW-14G-004, SC-CW-14G-005, SC-CW-14G-006, SC-CW-14G-007 |  |  |
| Model difference:          | All the models are the same circuit and module, except the model name, color and outer packing.         |  |  |
| Electrical rating:         | Input: DC 12V/24V<br>Wireless Output: 5W,7.5W,10W,15W                                                   |  |  |
| Accessories:               | N/A                                                                                                     |  |  |
| Hardware version:          | DHR-MAG-01+02 V1.0                                                                                      |  |  |
| Software version:          | CV6037 V1.0                                                                                             |  |  |
| Test sample(s) number:     | MTi241108001-08S1001                                                                                    |  |  |
| RF specification           |                                                                                                         |  |  |
| Operating frequency range: | 115-205KHz(5W,7.5W,10W,15W(EPP)); 360kHz(15W(MPP))                                                      |  |  |
| Modulation type:           | ASK                                                                                                     |  |  |
| Antenna(s) type:           | Coil Antenna                                                                                            |  |  |

#### 1.2 Description of test modes

| No.                 | Emission test modes                                                          |
|---------------------|------------------------------------------------------------------------------|
| Mode1               | Wireless Output(5W)                                                          |
| Mode2               | Wireless Output(7.5W)                                                        |
| Mode3               | Wireless Output(10W)                                                         |
| Mode4               | Wireless Output(15W(EPP))                                                    |
| Mode5               | Wireless Output(15W(MPP))                                                    |
| Mode5               | Stand by                                                                     |
| Note: Both 12\/ and | 24V nower supply modes were tested, and only the worst 12V nower supply data |

Note: Both 12V and 24V power supply modes were tested, and only the worst 12V power supply data was represented.



#### 1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

| Temperature:          | 15°C ~ 35°C      |
|-----------------------|------------------|
| Humidity:             | 20% RH ~ 75% RH  |
| Atmospheric pressure: | 98 kPa ~ 101 kPa |

#### 1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Support equipment list        |            |            |                       |  |
|-------------------------------|------------|------------|-----------------------|--|
| Description Model             |            | Serial No. | Manufacturer          |  |
| wireless charging load YBZ1.1 |            | /          | YBZ                   |  |
| wireless charging load YBZ3.0 |            | /          | YBZ                   |  |
| Accumulator 6-QW-45(370)-L    |            | 1          | Camel Group Co., Ltd. |  |
| Support cable list            |            |            |                       |  |
| Description                   | Length (m) | From       | То                    |  |
| 1                             | 1          | 1          | 1                     |  |

#### 1.5 Measurement uncertainty

| Measurement                              | Uncertainty |
|------------------------------------------|-------------|
| Conducted emissions (AMN 150kHz~30MHz)   | ±3.1dB      |
| Occupied channel bandwidth               | ±3 %        |
| Radiated spurious emissions (9kHz~30MHz) | ±4.3dB      |
| Radiated spurious emissions (30MHz~1GHz) | ±4.7dB      |
| Temperature                              | ±1 °C       |
| Humidity                                 | ± 5 %       |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.



## 2 Summary of Test Result

| No. | Item                                        | Standard        | Requirement           | Result |
|-----|---------------------------------------------|-----------------|-----------------------|--------|
| 1   | Antenna requirement                         | 47 CFR Part 15C | 47 CFR Part 15.203    | Pass   |
| 2   | Conducted Emission at AC power line         | 47 CFR Part 15C | 47 CFR Part 15.207(a) | N/A    |
| 3   | 20dB Occupied Bandwidth                     | 47 CFR Part 15C | 47 CFR Part 15.215(c) | Pass   |
| 4   | Emissions in frequency bands (below 30MHz)  | 47 CFR Part 15C | 47 CFR Part 15.209    | Pass   |
| 5   | Emissions in frequency bands (30MHz - 1GHz) | 47 CFR Part 15C | 47 CFR Part 15.209    | Pass   |

Note: Since the EUT supplies power to the DC, emissions testing for AC power lines is not required.



### 3 Test Facilities and accreditations

#### 3.1 Test laboratory

| Test laboratory:       | Shenzhen Microtest Co., Ltd.                                                                                                         |  |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test site location:    | 101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China |  |  |  |
| Telephone:             | (86-755)88850135                                                                                                                     |  |  |  |
| Fax:                   | (86-755)88850136                                                                                                                     |  |  |  |
| CNAS Registration No.: | CNAS L5868                                                                                                                           |  |  |  |
| FCC Registration No.:  | 448573                                                                                                                               |  |  |  |
| IC Registration No.:   | 21760                                                                                                                                |  |  |  |
| CABID:                 | CN0093                                                                                                                               |  |  |  |



## 4 List of test equipment

|                                             | • • • • • • • • • • • • • • • • • • •      |                    |                |            |            |            |
|---------------------------------------------|--------------------------------------------|--------------------|----------------|------------|------------|------------|
| No.                                         | Equipment                                  | Manufacturer       | Model          | Serial No. | Cal. date  | Cal. Due   |
| Conducted Emission at AC power line         |                                            |                    |                |            |            |            |
| 1                                           | EMI Test Receiver                          | Rohde&schwarz      | ESCI3          | 101368     | 2024-03-20 | 2025-03-19 |
| 2                                           | Artificial mains network                   | Schwarzbeck        | NSLK 8127      | 183        | 2024-03-21 | 2025-03-20 |
| 3                                           | Artificial Mains Network                   | Rohde &<br>Schwarz | ESH2-Z5        | 100263     | 2024-03-20 | 2025-03-19 |
|                                             |                                            | 20dB Od            | cupied Bandwid | th         |            |            |
| 1                                           | Wideband Radio<br>Communication Tester     | Rohde&schwarz      | CMW500         | 149155     | 2024-03-20 | 2025-03-19 |
| 2                                           | ESG Series Analog<br>Ssignal Generator     | Agilent            | E4421B         | GB40051240 | 2024-03-21 | 2025-03-20 |
| 3                                           | PXA Signal Analyzer                        | Agilent            | N9030A         | MY51350296 | 2024-03-21 | 2025-03-20 |
| 4                                           | Synthesized Sweeper                        | Agilent            | 83752A         | 3610A01957 | 2024-03-21 | 2025-03-20 |
| 5                                           | MXA Signal Analyzer                        | Agilent            | N9020A         | MY50143483 | 2024-03-21 | 2025-03-20 |
| 6                                           | RF Control Unit                            | Tonscend           | JS0806-1       | 19D8060152 | 2024-03-21 | 2025-03-20 |
| 7                                           | Band Reject Filter Group                   | Tonscend           | JS0806-F       | 19D8060160 | 2024-03-21 | 2025-03-20 |
| 8                                           | ESG Vector Signal<br>Generator             | Agilent            | N5182A         | MY50143762 | 2024-03-20 | 2025-03-19 |
| 9                                           | DC Power Supply                            | Agilent            | E3632A         | MY40027695 | 2024-03-21 | 2025-03-20 |
|                                             | Emissions in frequency bands (below 30MHz) |                    |                |            |            |            |
| 1                                           | EMI Test Receiver                          | Rohde&schwarz      | ESCI7          | 101166     | 2024-03-20 | 2025-03-19 |
| 2                                           | Active Loop Antenna                        | Schwarzbeck        | FMZB 1519 B    | 00066      | 2024-03-23 | 2025-03-22 |
| 3                                           | Amplifier                                  | Hewlett-Packard    | 8447F          | 3113A06184 | 2024-03-20 | 2025-03-19 |
| Emissions in frequency bands (30MHz - 1GHz) |                                            |                    |                |            |            |            |
| 1                                           | EMI Test Receiver                          | Rohde&schwarz      | ESCI7          | 101166     | 2024-03-20 | 2025-03-19 |
| 2                                           | TRILOG Broadband<br>Antenna                | schwarabeck        | VULB 9163      | 9163-1338  | 2023-06-11 | 2025-06-10 |
| 3                                           | Active Loop Antenna                        | Schwarzbeck        | FMZB 1519 B    | 00066      | 2024-03-23 | 2025-03-22 |
| 4                                           | Amplifier                                  | Hewlett-Packard    | 8447F          | 3113A06184 | 2024-03-20 | 2025-03-19 |
|                                             |                                            |                    |                |            |            |            |



## 5 Evaluation Results (Evaluation)

#### 5.1 Antenna requirement

#### 5.1.1 Conclusion:

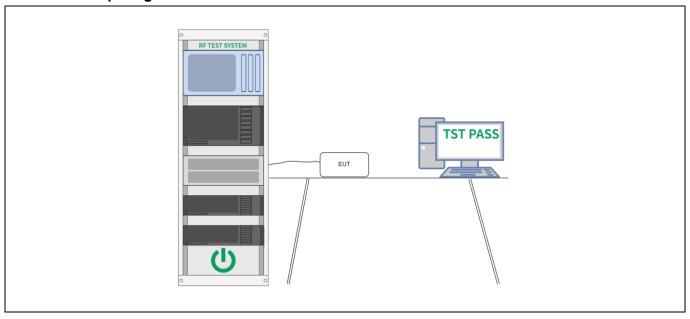
The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.



## 6 Radio Spectrum Matter Test Results (RF)

#### 6.1 20dB Occupied Bandwidth

| Test Requirement: | 47 CFR Part 15.215(c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Limit:       | Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Method:      | ANSI C63.10-2013, section 6.9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Procedure:        | a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB do |
|                   | shall be clearly labeled. Tabular data may be reported in addition to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

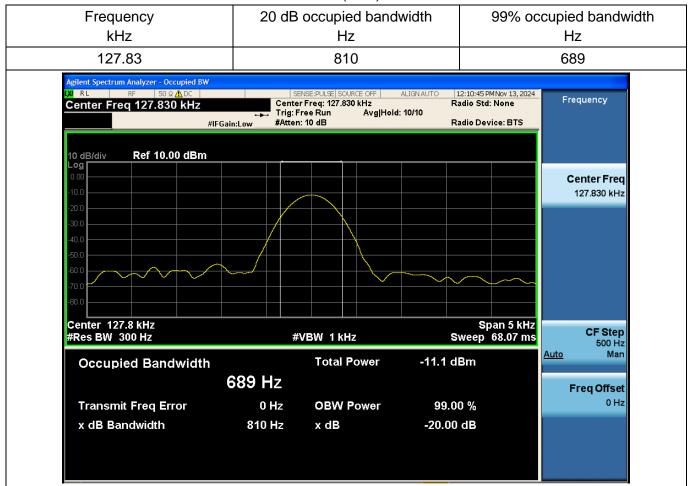



plot(s).

#### 6.1.1 E.U.T. Operation:

| Operating Environment: |                                                                                                                       |  |           |      |                       |         |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------|--|-----------|------|-----------------------|---------|--|--|
| Temperature: 26 °C     |                                                                                                                       |  | Humidity: | 54 % | Atmospheric Pressure: | 101 kPa |  |  |
| Pre test mode:         | Mode1, Mode2, Mode3, Mode4, Mode5, Mode6                                                                              |  |           |      |                       |         |  |  |
| Final test mode        | All of the listed pre-test mode were tested, only the data of the worst mode (Mode4, Mode5) is recorded in the report |  |           |      |                       |         |  |  |

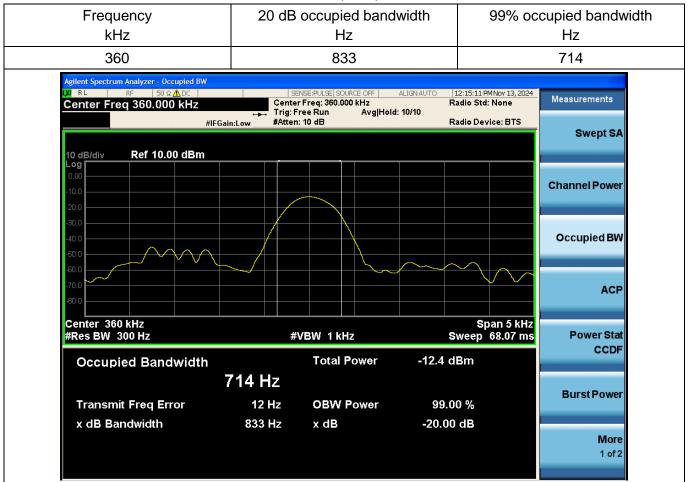
#### 6.1.2 Test Setup Diagram:






#### 6.1.3 Test Data:

**Note:** Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.


#### 15W(EPP)



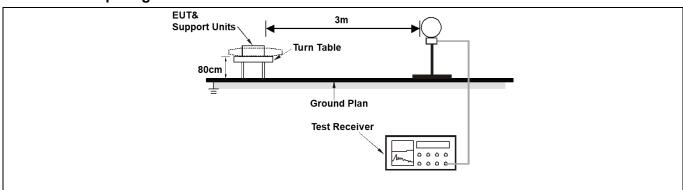


**Note:** Because the measured signal is CW-like, adjusting the RBW per C63.10 would not be practical since measurement bandwidth will always follow the RBW. The RBW is set to 300 Hz to perform the occupied bandwidth test.

#### 15W(MPP)

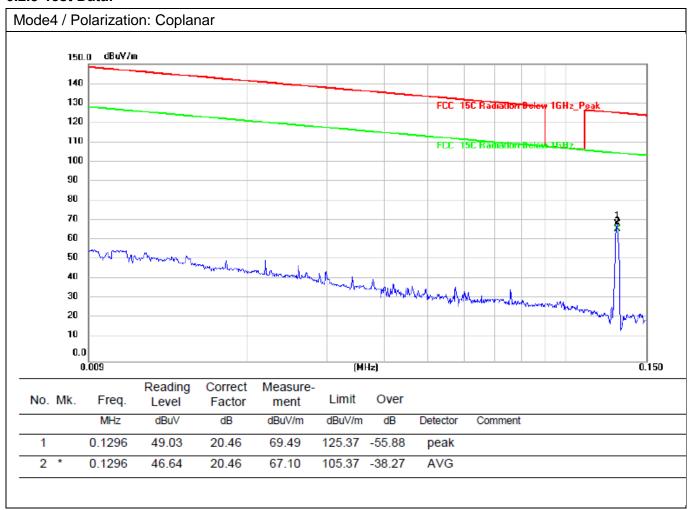





#### 6.2 Emissions in frequency bands (below 30MHz)

| Test Requirement: | 47 CFR Part 15.209                                                                                                                                                                                                                                                           |                                    |                                      |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| Test Limit:       | Frequency (MHz)                                                                                                                                                                                                                                                              | Field strength (microvolts/meter)  | Measuremen<br>t distance<br>(meters) |
|                   | 0.009-0.490                                                                                                                                                                                                                                                                  | 2400/F(kHz)                        | 300                                  |
|                   | 0.490-1.705                                                                                                                                                                                                                                                                  | 24000/F(kHz)                       | 30                                   |
|                   | 1.705-30.0                                                                                                                                                                                                                                                                   | 30                                 | 30                                   |
|                   | 30-88                                                                                                                                                                                                                                                                        | 100 **                             | 3                                    |
|                   | 88-216                                                                                                                                                                                                                                                                       | 150 **                             | 3                                    |
|                   | 216-960                                                                                                                                                                                                                                                                      | 200 **                             | 3                                    |
|                   | Above 960                                                                                                                                                                                                                                                                    | 500<br>n paragraph (g), fundamenta | 3                                    |
|                   | MHz or 470-806 MHz. at the band edges. ased on measurements the frequency bands 9–90 emission limits in these g an average detector. MHz, the field strength sed on average limits. It is all not exceed the by more than 20 dB under ation under paragraph exceed 2500 uth. |                                    |                                      |
| Test Method:      | ANSI C63.10-2013 sect                                                                                                                                                                                                                                                        | tion 6.4                           |                                      |
| Procedure:        | ANSI C63.10-2013 sect                                                                                                                                                                                                                                                        | ion 6.4                            |                                      |

#### 6.2.1 E.U.T. Operation:


| Operating Environment: |                                                                                                                       |      |                                          |      |                       |         |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------|------|------------------------------------------|------|-----------------------|---------|--|--|
| Temperature:           | erature: 22.5 °C                                                                                                      |      | Humidity:                                | 43 % | Atmospheric Pressure: | 101 kPa |  |  |
| Pre test mode:         |                                                                                                                       | Mode | Mode1, Mode2, Mode3, Mode4, Mode5, Mode6 |      |                       |         |  |  |
| Final test mode        | All of the listed pre-test mode were tested, only the data of the worst mode (Mode4, Mode5) is recorded in the report |      |                                          |      |                       |         |  |  |

#### 6.2.2 Test Setup Diagram:





#### 6.2.3 Test Data:



6

7

2.2015

5.4474

6.05

8.74

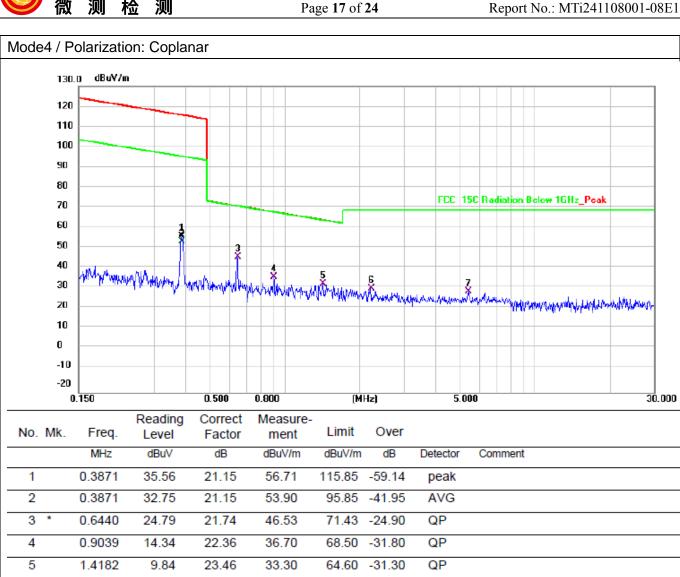
25.07

20.85

31.12

29.59

69.50


69.50

-38.38

-39.91

QP

QP



Page 18 of 24 Report No.: MTi241108001-08E1 Mode5 / Polarization: Coplanar 150.0 dBuV/m

| 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        |                 |             |         |                  |       |                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|--------|-----------------|-------------|---------|------------------|-------|------------------|
| 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        |                 | EC D        |         |                  | 101   | Iz_P <u>ea</u> k |
| 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        | FLL             | ISC Had     | liation | DCION            | , IGF | IZ_Peak          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        |                 |             |         |                  |       |                  |
| 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        | FCC             | 15C Rad     | iation  | <del>Delev</del> | -UGL  | Z                |
| 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        |                 |             |         |                  |       |                  |
| -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        |                 |             |         |                  |       |                  |
| -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        |                 |             |         |                  |       |                  |
| -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        |                 |             |         |                  |       |                  |
| -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        |                 |             |         |                  |       |                  |
| ļ   | May promise by John State of the State of th |                     |              |        |                 |             |         |                  |       |                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | who who all many he | Mrs. As as 1 |        |                 |             |         |                  |       |                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Mrs Charles  | Monney | <b>የ</b> የለብሲ ሲ | M           |         |                  |       |                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        | 941             | r Tabat Maw | hat/Mp. | Morry            | w.L.h | morning land     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        |                 |             |         |                  |       | ALL THE STREET   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        |                 |             |         |                  |       |                  |
| 0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |              |        |                 |             |         |                  |       |                  |
| 0.0 | 009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     | (MHz)        |        |                 |             |         |                  |       | 0                |

| No. | Mk. | Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |         |
|-----|-----|--------|------------------|-------|------------------|--------|--------|----------|---------|
|     |     | MHz    | dBuV             | dB    | dBuV/m           | dBuV/m | dB     | Detector | Comment |
| 1   |     | 0.1253 | 9.87             | 20.48 | 30.35            | 125.67 | -95.32 | peak     |         |
| 2   | *   | 0.1253 | 7.62             | 20.48 | 28.10            | 105.67 | -77.57 | AVG      |         |

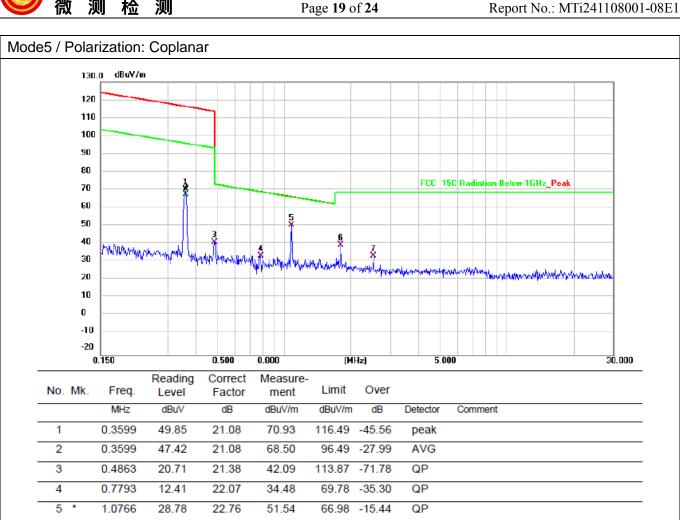
1.8000

2.5133

16.26

8.91

24.24


25.71

40.50

34.62

6

7



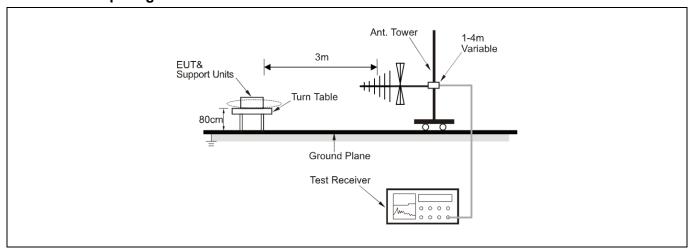
69.50 -29.00

69.50 -34.88

QP

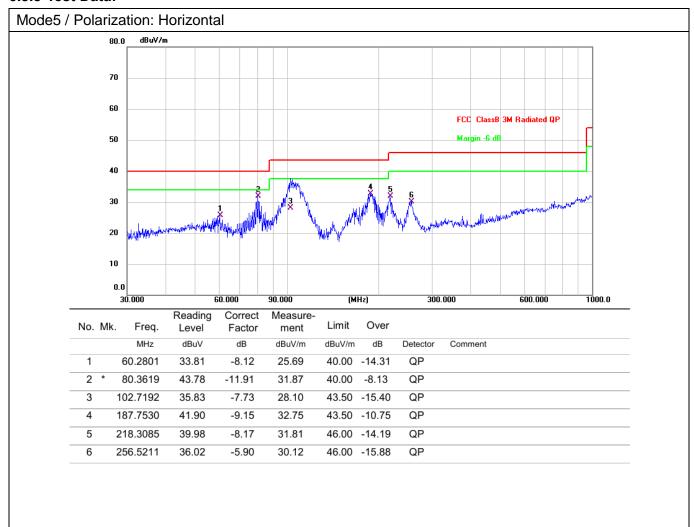
QP




#### 6.3 Emissions in frequency bands (30MHz - 1GHz)

| Test Requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47 CFR Part 15.209     |                                   |                                      |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|--------------------------------------|--|--|
| Test Limit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frequency (MHz)        | Field strength (microvolts/meter) | Measuremen<br>t distance<br>(meters) |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.009-0.490            | 2400/F(kHz)                       | 300                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.490-1.705            | 24000/F(kHz)                      | 30                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.705-30.0             | 30                                | 30                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30-88                  | 100 **                            | 3                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88-216                 | 150 **                            | 3                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 216-960                | 200 **                            | 3                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Above 960              | 500                               | 3                                    |  |  |
| intentional radiators operating under this section shall not be located frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 However, operation within these frequency bands is permitted under sections of this part, e.g., §§ 15.231 and 15.241.  In the emission table above, the tighter limit applies at the band edge The emission limits shown in the above table are based on measure employing a CISPR quasi-peak detector except for the frequency bat kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in three bands are based on measurements employing an average det As shown in § 15.35(b), for frequencies above 1000 MHz, the field slimits in paragraphs (a)and (b)of this section are based on average limits in paragraphs (a)and (b)of this section are based on average limits in paragraphs (a) and (b) of any emission shall not exceed the maximum permitted average limits specified above by more than 20 any condition of modulation. For point-to-point operation under paragraphs (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth. |                        |                                   |                                      |  |  |
| Test Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ANSI C63.10-2013 secti | on 6.5                            |                                      |  |  |
| Procedure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ANSI C63.10-2013 secti | on 6.5                            |                                      |  |  |

#### 6.3.1 E.U.T. Operation:


| Operating Environment: |                                                                                                                |                                          |  |      |                       |         |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|--|------|-----------------------|---------|--|--|
| Temperature:           | emperature: 22.5 °C                                                                                            |                                          |  | 43 % | Atmospheric Pressure: | 101 kPa |  |  |
| Pre test mode:         |                                                                                                                | Mode1, Mode2, Mode3, Mode4, Mode5, Mode6 |  |      |                       |         |  |  |
| Final test mode        | All of the listed pre-test mode were tested, only the data of the worst mode (Mode5) is recorded in the report |                                          |  |      |                       |         |  |  |

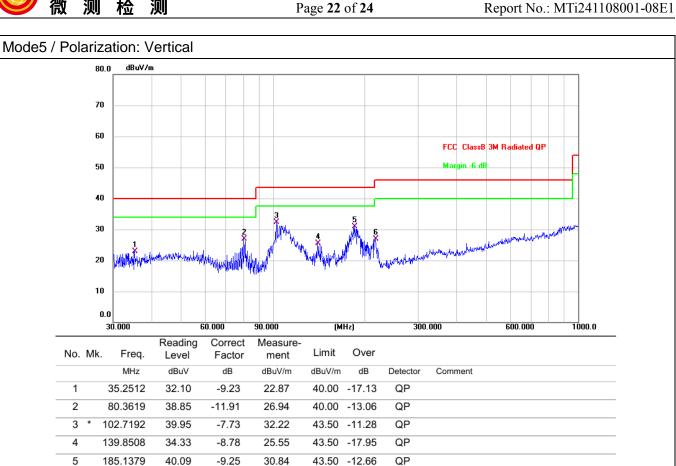
#### 6.3.2 Test Setup Diagram:





#### 6.3.3 Test Data:




6

217.5443

34.96

-8.12

26.84



46.00 -19.16

QP



## Photographs of the test setup

Refer to Appendix - Test Setup Photos



## Photographs of the EUT

Refer to Appendix - EUT Photos

----End of Report----