

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No.....: CTA24101801202 FCC ID.....: 2BLDP-CT211

Compiled by

(position+printed name+signature) .: File administrators Jinghua Xiao

Supervised by

(position+printed name+signature) .: Project Engineer Xudong Zhang

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue: Oct. 25, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name......ShenZhen DZinno Technology Co. ,Ltd.

1403,14th Floor, Building 4, Phase 2, Tian'an Yungu Industrial Park,

China

Test specification:

Standard FCC Part 15.247

TRF Originator.....: Shenzhen CTA Testing Technology Co., Ltd.

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: Dual-lens Camera

Trade Mark: N/A

Manufacturer: ShenZhen DZinno Technology Co. ,Ltd.

Model/Type reference: CT213

Listed ModelsCT212, CT211

Modulation Type: CCK/DSSS/OFDM

Operation Frequency.....: From 2412 - 2462MHz

Rating DC 5.0V From external circuit

Result: PASS

Report No.: CTA24101801202 Page 2 of 36

TEST REPORT

Equipment under Test **Dual-lens Camera**

Model /Type CT213

Listed Models CT212, CT211

CTATESTING **Applicant** ShenZhen DZinno Technology Co. ,Ltd.

Address 1403,14th Floor, Building 4, Phase 2, Tian'an Yungu Industrial Park,

> Gangtou Community, Bantian Street, Longgang District, Shenzhen, China CTATESTING

Manufacturer ShenZhen DZinno Technology Co., Ltd.

1403,14th Floor, Building 4, Phase 2, Tian'an Yungu Industrial Park, Address

	Gangtou Community	y, Bantian Street, Longgang District, Shenzhen, China
CTAT	ESI.,	NG
	Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 36 Report No.: CTA24101801202

Contents

		TATESTING	ontents	
		TAIL		
	1.1	TEST STANDARDS		4
	The state of the s	TEGT GTANDARDG		ING
	•	CHMMARY		-ESTII"
	<u>2</u>	SUMMARY		
			Carlo Cir	
	2.1	General Remarks		5
	2.2	Product Description		5 C
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment und	der Test (EUT)	5
	2.5	EUT operation mode		6
	2.6	Block Diagram of Test Setup		6
, 0 .	2.7	Related Submittal(s) / Grant (s)		6
1	2.8	Modifications		6
	•	TEGT FAVUE CHMENT		-
	<u>3</u>	TEST ENVIRONMENT	·····	<u></u>
				CTATESTING 7
	3.1	Address of the test laboratory		7
	3.2	Test Facility		7
	3.3	Environmental conditions		7
	3.4	Test Description		8
	3.5	Statement of the measurement uncerta	intv	8
	3.6	Equipments Used during the Test	,	9
	0.0	Equipmento occur during the root		· ·
	<u>4</u>	TEST CONDITIONS AND RES	<u> ULTS</u>	<u> 11</u>
			rer CTA	
	4.1	AC Power Conducted Emission		CTING 11
	4.2	Radiated Emission		14 14
	4.3	Maximum Peak Conducted Output Pow	or and	20
	4.3 4.4	Power Spectral Density	GI CI	20 21
	4.4 4.5	6dB Bandwidth		24
	4.6	Out-of-band Emissions		27
				21
	4.7	Antenna Requirement		34
	S1"			
CTATE	5	TEST SETUP PHOTOS OF TH	E EUT	35
		STILL		_
	•	DUOTOO OF THE FUT		2.2
	<u>6</u>	PHOTOS OF THE EUT		<u></u>
			TESI	
			CTATESTI	CTA TESTING
				ESTIN
				TATES
G				

Page 4 of 36 Report No.: CTA24101801202

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB558074 D01 v05r02: Guidance for Compliance Measurements on Digital Transmission Systems (DTS), Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under CTATE §15.247 of The FCC rules.

Report No.: CTA24101801202 Page 5 of 36

SUMMARY 2

2.1 General Remarks

2.1 General Remarks		
Date of receipt of test sample	: Oct. 18, 2024	
Testing commenced on	: Oct. 18, 2024	
Testing concluded on	: Oct. 25, 2024	

2.2 Product Description

Product Name:	Dual-lens Camera
Model/Type reference:	CT213
Power supply:	DC 5.0V From external circuit
Adapter information (Auxiliary test supplied by test Lab) :	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
Hardware version:	HD10JP_MB_VA
Software version:	8011.006.04.01
testing sample ID:	CTA241018012-1# (Engineer sample) CTA241018012-2# (Normal sample)
WIFI:	
Supported type:	802.11b/802.11g/802.11n(H20)
Modulation:	802.11b: DSSS 802.11g/802.11n(H20): OFDM
Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
Channel number:	802.11b/802.11g/802.11n(H20): 11
Channel separation:	5MHz
Antenna type:	External antenna
Antenna gain:	2.00 dBi
2.3 Equipment Under Power supply system	TE3

2.3 Equipment Under Test

Power supply system utilised

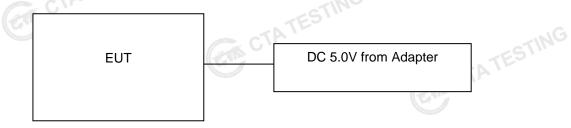
2.3 Equipment Under Test Power supply system utilised	t		CTATES!		CTATEST	
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz	
		0	12 V DC	0	24 V DC	
-ING		•	Other (specified in blank bel	ow)		

DC 5.0V From external circuit

Short description of the Equipment under Test (EUT) CTATESTING

This is a Dual-lens Camera.

For more details, refer to the user's manual of the EUT.


Page 6 of 36 Report No.: CTA24101801202

EUT operation mode

The application provider specific test software (AT command) to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement. IEEE 802.11b/g/n: Eleven channels are provided to the EUT.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	Modern	ALC: NO
6	2437		(80)
TING 7	2442		221111111

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 36 Report No.: CTA24101801202

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
	On the second
Atmospheric pressure:	950-1050mbar

Conducted testing:

onducted testing:		_
Temperature:	25 ° C	
1		
Humidity:	44 %	
-ESIII		
Atmospheric pressure:	950-1050mbar	.NG
Carlo Cir		STIME
AC Power Conducted Emission		CATE
Temperature:	24 ° C	\
		l

AC Power Conducted Emission

AC Power Conducted Emission	1
Temperature:	24 ° C
	CAN
Humidity:	44 %
Atmospheric pressure:	950-1050mbar
	CTATESTING

Report No.: CTA24101801202 Page 8 of 36

3.4 Test Description

	FCC PART 15.247				
	FCC Part 15.207 AC Power Conducted Emission				
	FCC Part 15.247(a)(2) 6dB Bandwidth		PASS		
	FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS		
	FCC Part 15.247(b)	Maximum Peak Conducted Output Power	PASS		
	FCC Part 15.247(e)	Power Spectral Density	PASS		
CTATES	FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS		
	FCC Part 15.247(d)	Band Edge	PASS		
	FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS		

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Ite	ems	Mode	Data Rate	Channel
Maximum Peak Conducted Output Power Power Spectral Density		11b/DSSS	1 Mbps	1/6/11
6dB Bandwidth		11g/OFDM	6 Mbps	1/6/11
Spurious RF conducted emission Radiated Emission 9KHz~1GHz& Radiated Emission 1GHz~10 th Harmonic		11n(20MHz)/OFDM	6.5Mbps	1/6/11
	GAN.	11b/DSSS	1 Mbps	1/11
Band Edge	The same of the sa	11g/OFDM	6 Mbps	1/11
		11n(20MHz)/OFDM	6.5Mbps	1/11

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	1	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)

Page 9 of 36 Report No.: CTA24101801202

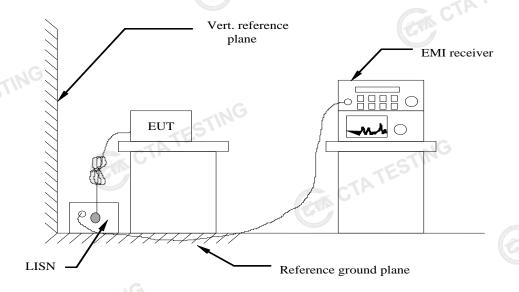
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

This uncertainty represents an expanded uncertainty expressed at approximately the 95% GTA CTATESTING confidence level using a coverage factor of k=2.

Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date		
-TE	STINGLISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02		
CTATE	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02		
1	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02		
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02		
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02		
(G	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02		
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02		
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02		
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02		
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02		
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16		
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12		
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16		
CTATE	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2026/10/16		
,	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02		
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02		
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02		
G	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02		
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02		
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02		
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02		
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02		
	-	No wear.	·		-			

Report No.: CTA24101801202 Page 10 of 36


	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	CTING					SIA
CTATE		CTATESTING				
Ì		CTATES				

Report No.: CTA24101801202 Page 11 of 36

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

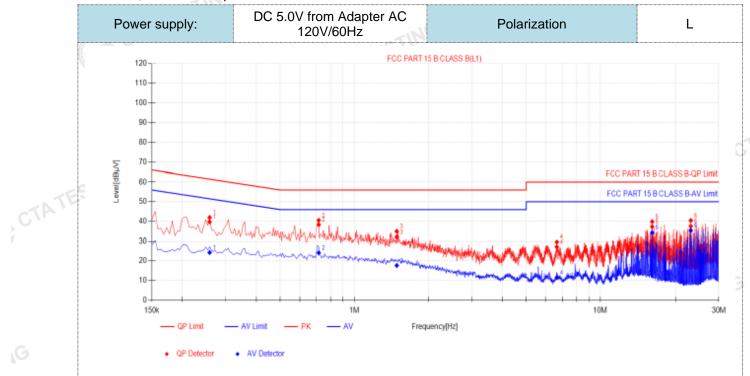
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

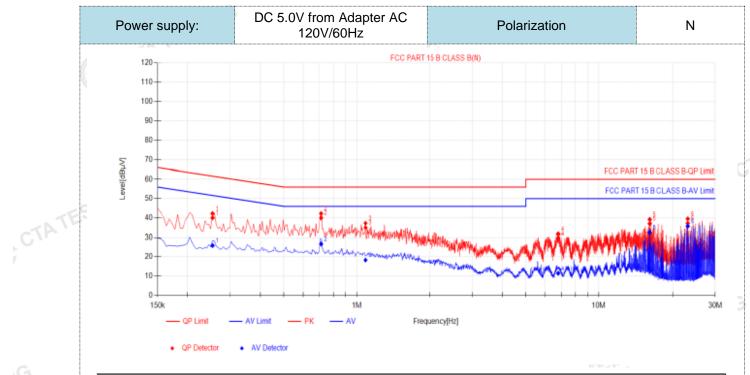

Frequency range (MHz)	Limit (dBuV)			
Frequency range (MHz)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the freque	ncy.			

Remark:

1. All modes of 802.11b/g/n were tested at Low, Middle, and High channel; only the worst result of 802.11b CH11 was reported as below:

Report No.: CTA24101801202 Page 12 of 36

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



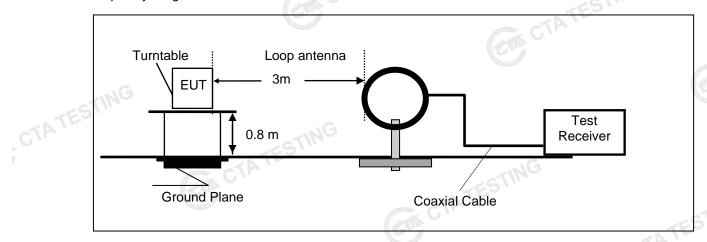
Final Data List											
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.258	9.94	29.79	39.73	61.50	21.77	14.39	24.33	51.50	27.17	PASS
2	0.717	9.92	28.37	38.29	56.00	17.71	14.26	24.18	46.00	21.82	PASS
3	1.4865	9.90	22.20	32.10	56.00	23.90	7.81	17.71	46.00	28.29	PASS
4	6.6525	10.24	16.95	27.19	60.00	32.81	1.29	11.53	50.00	38.47	PASS
5	16.2285	10.33	26.96	37.29	60.00	22.71	23.86	34.19	50.00	15.81	PASS
6	23.127	10.48	27.04	37.52	60.00	22.48	24.83	35.31	50.00	14.69	PASS

Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

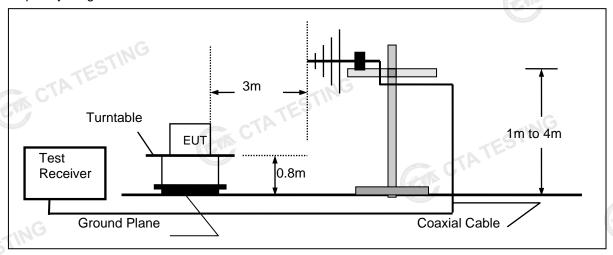
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTATESTING

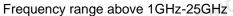
Report No.: CTA24101801202 Page 13 of 36

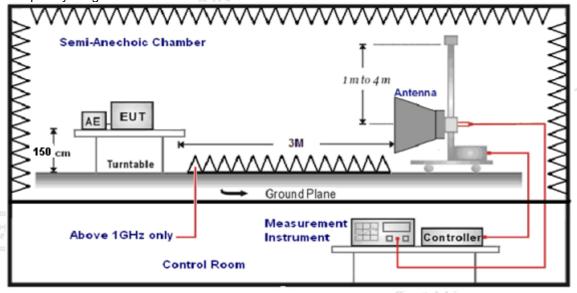
NO.	Freq.	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dΒμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.2535	10.01	30.02	40.03	61.64	21.61	15.87	25.88	51.64	25.76	PASS
2	0.7125	10.07	29.97	40.04	56.00	15.96	16.63	26.70	46.00	19.30	PASS
3	1.086	10.15	24.83	34.98	56.00	21.02	8.19	18.34	46.00	27.66	PASS
4	6.792	10.39	19.22	29.61	60.00	30.39	1.10	11.49	50.00	38.51	PASS
5	16.2285	10.45	26.53	36.98	60.00	23.02	22.04	32.49	50.00	17.51	PASS
6	23.127	10.65	26.58	37.23	60.00	22.77	25.02	35.67	50.00	14.33	PASS


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTATEST

Report No.: CTA24101801202 Page 14 of 36


4.2 Radiated Emission


TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Report No.: CTA24101801202 Page 15 of 36

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving 3. antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	(CAL
9KHz-30MHz	Active Loop Antenna	3	The state of the s
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

	Test Frequency range	Test Receiver/Spectrum Setting	Detector
V	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
Ī	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
ſ	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

FS = RA + AF + CL - AG	CTATESTING
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

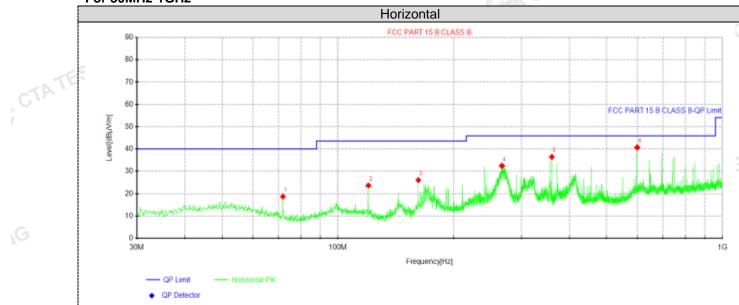
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)	
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
0.49-1.705 3		20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
1.705-30	3	20log(30)+ 40log(30/3)	30	
30-88	3	40.0	100	
88-216	3	43.5	150	
216-960	3	46.0	200	
Above 960	3	54.0	500	

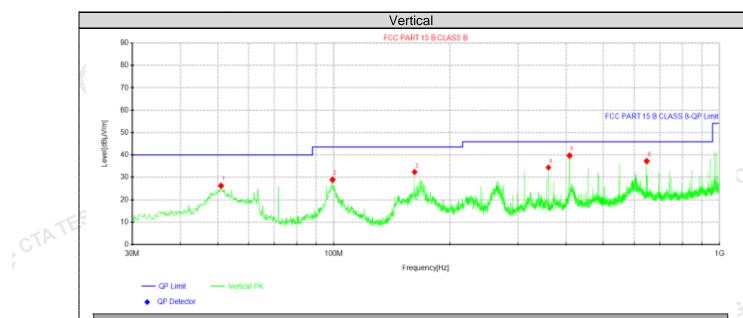

Report No.: CTA24101801202 Page 16 of 36

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Suspected Data List										
	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolorita
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
	1	71.9525	33.93	18.70	-15.23	40.00	21.30	100	91	Horizontal
	2	119.967	37.55	23.69	-13.86	43.50	19.81	100	45	Horizontal
	3	161.92	41.71	26.14	-15.57	43.50	17.36	100	254	Horizontal
	4	266.922	44.13	32.41	-11.72	46.00	13.59	100	81	Horizontal
	5	360.042	47.09	36.54	-10.55	46.00	9.46	100	242	Horizontal
	6	599.996	46.60	40.69	-5.91	46.00	5.31	100	277	Horizontal

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA TESTING

Report No.: CTA24101801202 Page 17 of 36

Susp	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polorit.
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	50.9762	37.56	26.33	-11.23	40.00	13.67	100	69	Vertical
2	99.2338	42.07	28.99	-13.08	43.50	14.51	100	162	Vertical
3	161.92	47.89	32.32	-15.57	43.50	11.18	100	269	Vertical
4	360.042	44.99	34.44	-10.55	46.00	11.56	100	69	Vertical
5	408.057	49.82	39.71	-10.11	46.00	6.29	100	3	Vertical
6	648.011	42.75	37.32	-5.43	46.00	8.68	100	302	Vertical

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 18 of 36 Report No.: CTA24101801202

For 1GHz to 25GHz

Note:

1. 802.11b/802.11g/802.11n (H20) Mode all have been tested, only worse case 802.11b mode is reported

(above 1GHz)

Frequency(MHz):		2412		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	61.80	PK	74	12.20	66.16	32.4	5.11	41.87	-4.36
4824.00	45.10	AV	54	8.90	49.46	32.4	5.11	41.87	-4.36
7236.00	53.77	PK	74	20.23	54.40	36.58	6.43	43.64	-0.63
7236.00	43.05	AV	54	10.95	43.68	36.58	6.43	43.64	-0.63

Frequency(MHz):		2412		Polarity:		VERTICAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	60.37	PK	74	13.63	64.73	32.4	5.11	41.87	-4.36
4824.00	43.62	AV	54	10.38	47.98	32.4	5.11	41.87	-4.36
7236.00	51.87	PK	74	22.13	52.50	36.58	6.43	43.64	-0.63
7236.00	41.68	AV	54	12.32	42.31	36.58	6.43	43.64	-0.63

Frequency(MHz):		2437		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	61.18	PK	74	12.82	65.13	32.56	5.34	41.85	-3.95
4874.00	44.54	AV	54	9.46	48.49	32.56	5.34	41.85	-3.95
7311.00	53.35	PK	74	20.65	53.71	36.54	6.81	43.71	-0.36
7311.00	42.64	AV	54	11.36	43.00	36.54	6.81	43.71	-0.36

Frequency(MHz):		2437		Polarity:		VERTICAL			
Frequency	Emission Level		Limit Margin	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor	
(N/IH-7)	_	Vei V/m)	(dBuV/m)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4874.00	59.48	PΚ	74	14.52	63.43	32.56	5.34	41.85	-3.95
4874.00	42.68	AV	54	11.32	46.63	32.56	5.34	41.85	-3.95
7311.00	51.57	PK	74	22.43	51.93	36.54	6.81	43.71	-0.36
7311.00	41.14	AV	54	12.86	41.50	36.54	6.81	43.71	-0.36

Frequency(MHz):		2462		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	60.51	PK	74	13.49	63.97	32.73	5.64	41.83	-3.46
4924.00	43.73	AV	54	10.27	47.19	32.73	5.64	41.83	-3.46
7386.00	52.06	PK	74	21.94	52.12	36.5	7.23	43.79	-0.06
7386.00	42.27	PK	54	11.73	42.33	36.5	7.23	43.79	-0.06

Freque	Frequency(MHz):			2462		Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4924.00	58.13	PK	74	15.87	61.59	32.73	5.64	41.83	-3.46	
4924.00	41.96	AV	54	12.04	45.42	32.73	5.64	41.83	-3.46	
7386.00	50.27	PK	74	23.73	50.33	36.5	7.23	43.79	-0.06	
7386.00	40.46	PK	54	13.54	40.52	36.5	7.23	43.79	-0.06	

Page 19 of 36 Report No.: CTA24101801202

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV

Results of Band Edges Test (Radiated)

1. 802.11b/802.11g/802.11n (H20) Mode all have been tested, only worse case 802.11b mode is reported

Frequency(MHz):		24	12	Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.66	PK	74	12.34	72.08	27.42	4.31	42.15	-10.42
2390.00	43.11	AV	54	10.89	53.53	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	12	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.64	PK	74	14.36	70.06	27.42	4.31	42.15	-10.42
2390.00	41.76	AV	54	12.24	52.18	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2462		Polarity:		Н	IORIZONT <i>A</i>	\L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.19	PK	74	13.81	70.30	27.7	4.47	42.28	-10.11
2483.50	42.73	AV	54	11.27	52.84	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	62	Pola	rity:	VERTICAL		
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	58.60	PK	74	15.40	68.71	27.7	4.47	42.28	-10.11
2483.50	41.04	AV	54	12.96	51.15	27.7	4.47	42.28	-10.11

Note:

- Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor. 1)
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit.
- RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Report No.: CTA24101801202 Page 20 of 36

4.3 Maximum Peak Conducted Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

Test Results

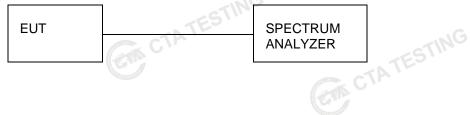
Test Results		CTATE		
Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result
	01	14.91	CVA	
802.11b	06	14.51	30.00	Pass
CTING	11	14.77		
TATES	01	14.41		
802.11g	06	14.12	30.00	Pass
	11 C	13.47	GTING	
	01	14.35	CTATES	
802.11n(HT20)	06	14.02	30.00	Pass
	11	13.45		C

Note:

- Measured output power at difference data rate for each mode and recorded worst case for each mode.
- 2) Test results including cable loss.
- 3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20;

Report No.: CTA24101801202 Page 21 of 36

Power Spectral Density

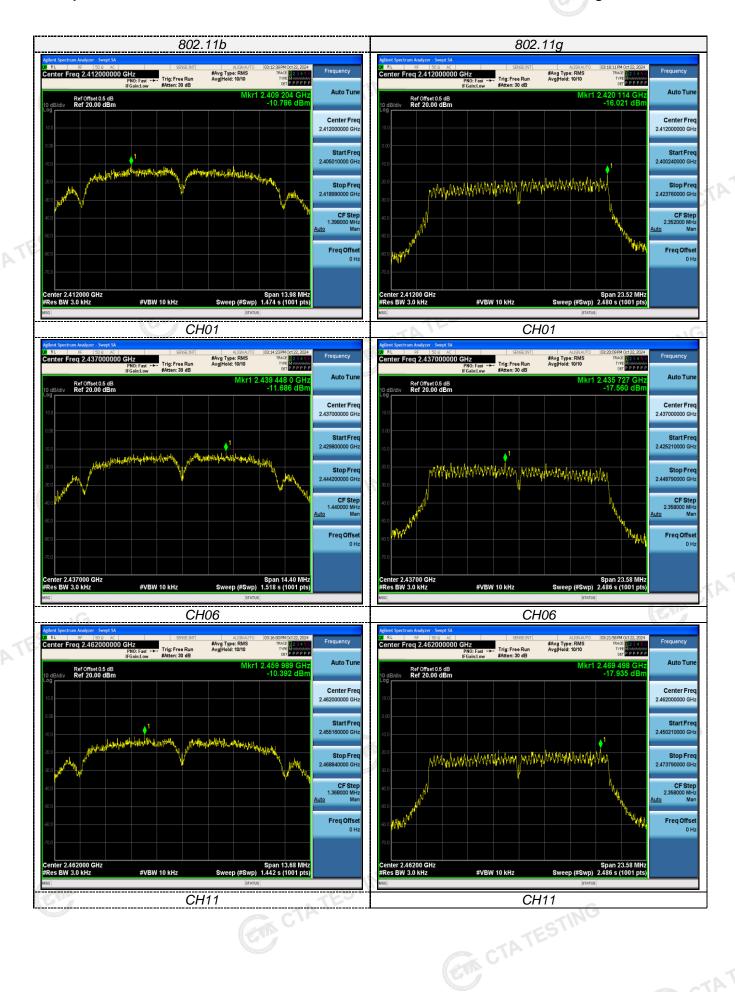

Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

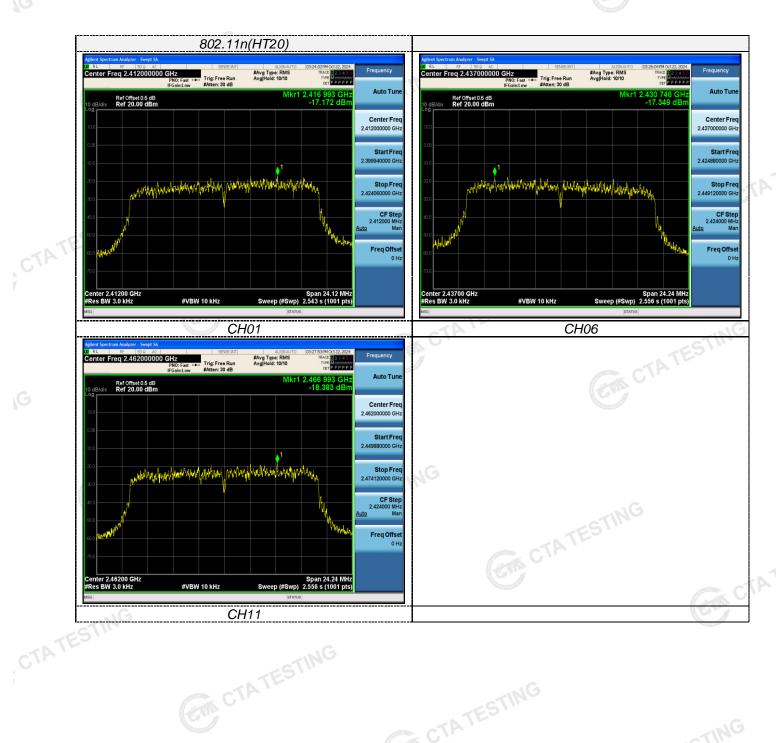
Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTATESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration


Test Results

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
511	01	-10.79			
802.11b	06	-11.69	8.00	Pass	
	-10.39				
	01	-16.02	ING		
802.11g	06	-17.56	8.00	Pass	
	11	-17.94			
	01	-17.17		Pass	
802.11n(HT20)	06	-17.35	8.00		
	11	-18.38	Elas W	C/L	


Note:

- Measured peak power spectrum density at difference data rate for each mode and recorded worst case 1) for each mode.
- Test results including cable loss; 2)
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 3)

Please refer to following plots;

Report No.: CTA24101801202 Page 23 of 36

Report No.: CTA24101801202 Page 24 of 36

4.5 6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		CTA TES!		TATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	01	9.320	The second street	
802.11b	06	9.600	≥500	Pass
GTIN	11	9.120		
TES	01	15.680		
802.11g	06	15.720	≥500	Pass
S. VIII	11	15.720	NG.	
	01 C	16.080	STING	
802.11n(HT20)	06	16.160	≥500	Pass
	11	16.160		


Note:

- Measured peak power spectrum density at difference data rate for each mode and recorded worst case 1) for each mode.
- 2) Test results including cable loss;
- 3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20;

Please refer to following plots;

Report No.: CTA24101801202 Page 26 of 36

Report No.: CTA24101801202 Page 27 of 36

Out-of-band Emissions

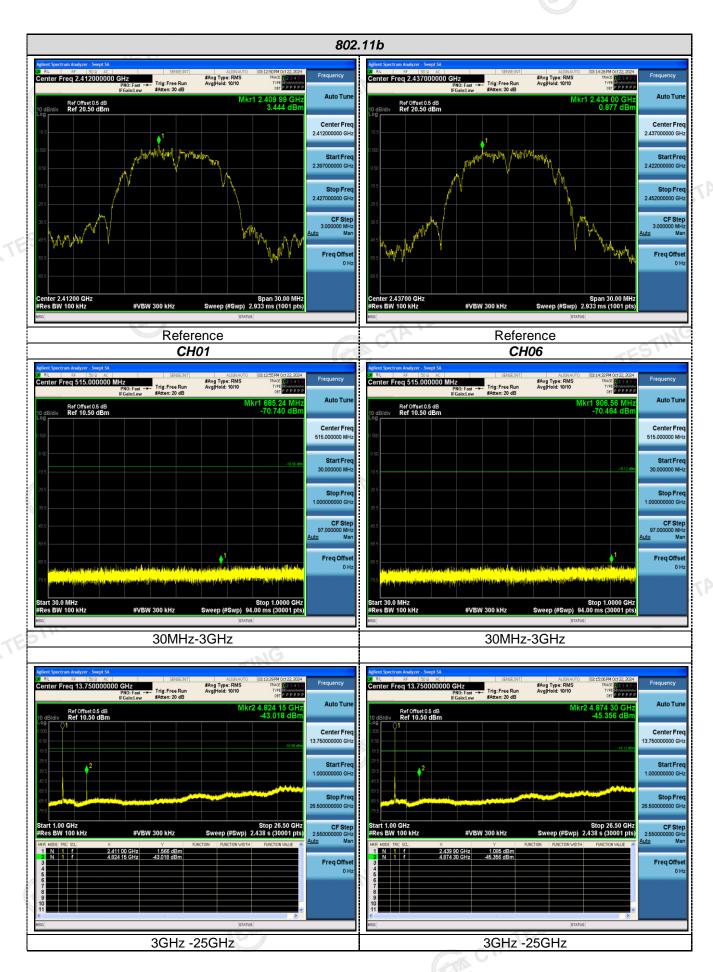
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration



Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. And record the worst data in the report.

Test plot as follows: CTATESTING

Report No.: CTA24101801202 Page 28 of 36

