

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY Version	DASY52	52.8.8.1222
extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
istance Dipole Center - TSL	10 mm	with Spacer
oom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.70 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.8 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.14 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.6 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.83 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	39.6 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.24 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.1 mW /g ± 20.4 % (k=2)

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.6Ω- 3.68jΩ	
Return Loss	- 26.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	44.4Ω- 6.17jΩ
Return Loss	- 21.1dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.321 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by		SPEAG	

Date: 11.03.2015

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d147 Communication System: UID 0, CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1800 MHz; $\sigma = 1.388 \text{ S/m}$; $\epsilon r = 38.94$; $\rho = 1000 \text{ kg/m}3$

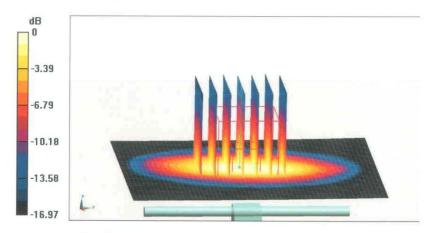
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.13, 8.13, 8.13); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

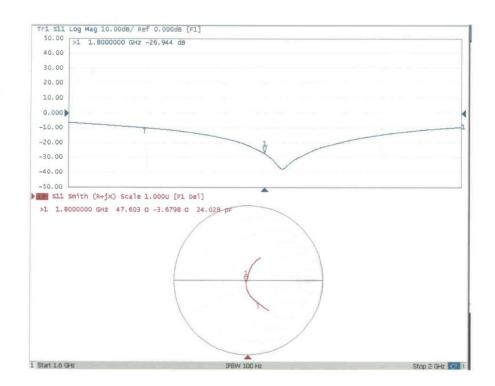

dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.6 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 17.7W/kg

SAR(1 g) = 9.7 W/kg; SAR(10 g) = 5.14 W/kg

Maximum value of SAR (measured) = 13.9 W/kg


0 dB = 13.9 W/kg = 11.43 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 11.03.2015

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d147 Communication System: UID 0, CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; $\sigma = 1.512$ S/m; $\epsilon_r = 54.19$; $\rho = 1000$ kg/m³

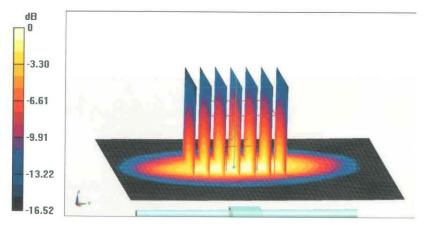
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.88, 7.88, 7.88); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

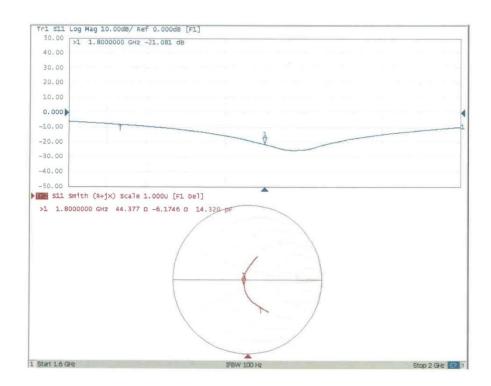
Reference Value = 96.79 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.83 W/kg; SAR(10 g) = 5.24 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

0 dB = 13.9 W/kg = 11.43 dBW/kg


Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

1900 MHz Dipole Calibration Certificate

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Client

CTTL(South Branch)

Certificate No:

Z15-97179

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d088

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

November 4, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Power sensor NRP-Z91	101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
Reference Probe EX3DV4	SN 3617	26-Aug-15(SPEAG,No.EX3-3617_Aug15)	Aug -16
DAE4	SN 777	26-Aug-15(SPEAG,No.DAE4-777_Aug15)	Aug -16
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	02-Feb-15 (CTTL, No.J15X00729)	Feb-16
Network Analyzer E5071C	MY46110673	03-Feb-15 (CTTL, No.J15X00728)	Feb-16

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	是包
Reviewed by:	Qi Dianyuan	SAR Project Leader	Sor
Approved by:	Lu Bingsong	Deputy Director of the laboratory	The Mistra

Issued: November 8, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z15-97179

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY52	52.8.8.1222
Advanced Extrapolation	
Triple Flat Phantom 5.1C	
10 mm	with Spacer
dx, dy, dz = 5 mm	
1900 MHz ± 1 MHz	
	Advanced Extrapolation Triple Flat Phantom 5.1C 10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.6 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	40.8 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.22 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.54 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	41.1 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.33 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.3 mW /g ± 20.4 % (k=2)

Page 3 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.7Ω+ 7.33jΩ	
Return Loss	- 22.4dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.9Ω+ 5.36jΩ	
Return Loss	- 25.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	.303 ns
----------------------------------	---------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG	Manufactured by	SPEAG
-----------------------	-----------------	-------

Date: 11.04.2015

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.385$ S/m; $\epsilon r = 40.56$; $\rho = 1000$ kg/m3

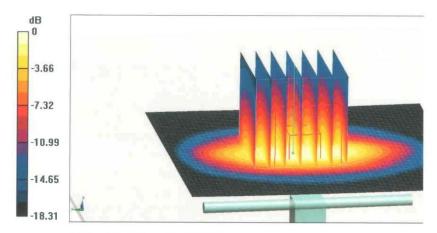
Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(8.07, 8.07, 8.07); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

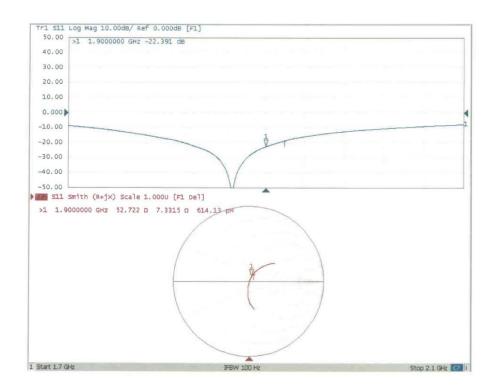
Reference Value = 100.6 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 18.9W/kg

SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.22 W/kg

Maximum value of SAR (measured) = 14.5 W/kg

Page 5 of 8


0 dB = 14.5 W/kg = 11.61 dBW/kg

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Date: 11.04.2015

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d088 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.536 S/m; ϵ_r = 54.05; ρ = 1000 kg/m³

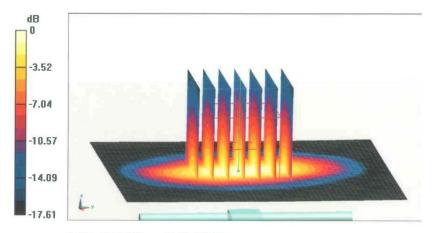
Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.74, 7.74, 7.74); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

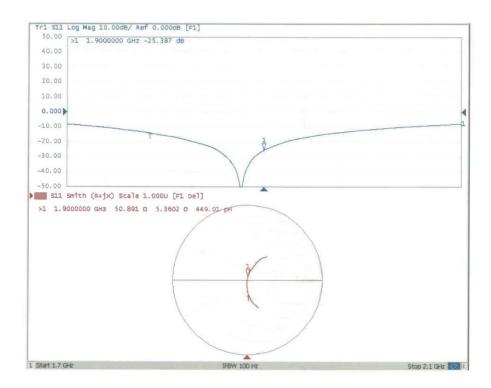
Reference Value = 96.09 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 10.3 W/kg; SAR(10 g) = 5.33 W/kg

Maximum value of SAR (measured) = 14.9 W/kg

0 dB = 14.9 W/kg = 11.73 dBW/kg


Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

2450 MHz Dipole Calibration Certificate

0

CTTL(South Branch)

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 <u>Http://www.chinattl.cn</u>

Certificate No:

Z15-97180

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 873

Calibration Procedure(s)

FD-Z11-2-003-01

Calibration Procedures for dipole validation kits

Calibration date:

October 30, 2015

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
101919	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
101547	01-Jul-15 (CTTL, No.J15X04256)	Jun-16
SN 3617	26-Aug-15(SPEAG,No.EX3-3617_Aug15)	Aug-16
SN 777	26-Aug-15(SPEAG,No.DAE4-777_Aug15)	Aug-16
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	02-Feb-15 (CTTL, No.J15X00729)	Feb-16
MY46110673	03-Feb-15 (CTTL, No.J15X00728)	Feb-16
	101919 101547 SN 3617 SN 777 ID# MY49071430	101919 01-Jul-15 (CTTL, No.J15X04256) 101547 01-Jul-15 (CTTL, No.J15X04256) SN 3617 26-Aug-15(SPEAG,No.EX3-3617_Aug15) SN 777 26-Aug-15(SPEAG,No.DAE4-777_Aug15) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 02-Feb-15 (CTTL, No.J15X00729)

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	起
Reviewed by:	Qi Dianyuan	SAR Project Leader	EB
Approved by:	Lu Bingsong	Deputy Director of the laboratory	The wife

Issued: November 6, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z15-97180

Page 1 of 8

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with

s p e CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Measurement Conditions

DASY Version	DASY52	52.8.8.1222
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.5 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.01 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.1 mW /g ± 20.4 % (k=2)

Body TSL parameters
The following parameters and calculations were applied

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.1 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	52.3 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	6.07 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.4 mW /g ± 20.4 % (k=2)

Page 3 of 8

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.4Ω+ 3.42jΩ	
Return Loss	- 26.6dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.5Ω+ 6.53jΩ	
Return Loss	- 23.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.265 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: Z15-97180

Page 4 of 8

Date: 10.30.2015

In Collaboration with

S D B B G

CALIBRATION LABORATORY

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.816$ S/m; $\epsilon = 40.14$; $\rho = 1000$ kg/m³

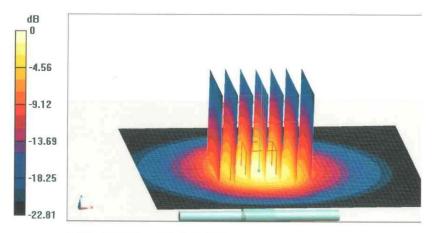
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.24, 7.24, 7.24); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 106.1 V/m; Power Drift = 0.05 dB

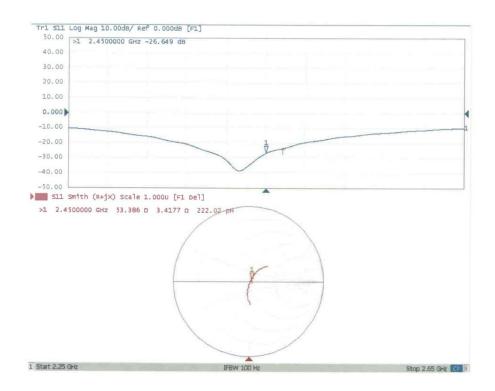
Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.01 W/kg

Maximum value of SAR (measured) = 20.1 W/kg

0 dB = 20.1 W/kg = 13.03 dBW/kg

Certificate No: Z15-97180


Page 5 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com Http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Date: 10.30.2015

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 873

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.936 S/m; ϵ_r = 53.11; ρ = 1000 kg/m³

Phantom section: Center Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(7.35, 7.35, 7.35); Calibrated: 8/26/2015;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn777; Calibrated: 8/26/2015
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.0 V/m; Power Drift = 0.02 dB

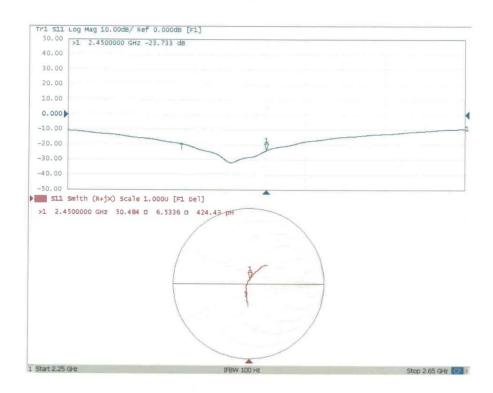
Peak SAR (extrapolated) = 26.3 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.07 W/kg

Maximum value of SAR (measured) = 19.5 W/kg

0 dB = 19.5 W/kg = 12.90 dBW/kg

Certificate No: Z15-97180


Page 7 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

ANNEX J SPOT CHECK TEST

As the test lab for Coolpad 3622A from Yulong Computer Telecommunication Scientific (Shenzhen) Co., Ltd., we, CTTL Shenzhen, declare on our sole responsibility that, according to "Justification Letter" provided by applicant, only the Spot check test should be performed. The test results are as below.

J.1 Internal Identification of EUT used during the spot check test

EUT ID*	IMEI	HW Version	SW Version
EUT3	IMEI 1:861325036797859	P2	091.00.160130

^{*}EUT ID: is used to identify the test sample in the lab internally.

J.2 Measurement results

SAR Values (GSM 850 MHz - Head)

Frequency		Side	Test	Battery SN	Reported S	AR(1g) (W/kg)
MHz	Ch.	Side	Position	Dallery Siv	Original data	Spot check data
824.2	128	Right	Touch	CPLD-390	0.13	0.05

SAR Values (GSM 850 MHz - Body)

Freque	ncy	Test	Spacing	Battery SN	Reported S	SAR(1g) (W/kg)
MHz	Ch.	Position	(mm)	Dallery Siv	Original data	Spot check data
824.2	128	Rear	10	CPLD-390	0.29	0.15

SAR Values (PCS1900 MHz - Head)

Frequency		Side	Test	Battery SN	Reported S	AR(1g) (W/kg)
MHz	Ch.	Side	Position	Dallery Siv	Original data	Spot check data
1880	661	Left	Touch	CPLD-390	0.34	0.16

SAR Values (PCS1900 MHz - Body)

Freque	ncy	Test	Spacing	Battery SN	Reported S	SAR(1g) (W/kg)
MHz	Ch.	Position	(mm)	Ballery Siv	Original data	Spot check data
1880	661	Bottom	10	CPLD-390	1.03	0.28

SAR Values (WCDMA850 MHz - Head)

Frequency		Side	Test	Potton/CN	Reported SAR(1g) (W/kg)	
MHz	Ch.	Side	Position	Battery SN	Original data	Spot check data
826.4	4132	Right	Touch	CPLD-390	0.12	0.03

SAR Values (WCDMA850 MHz - Body)

Frequency		Test	Spacing	Battery SN	Reported SAR(1g) (W/kg)	
MHz	Ch.	Position	(mm)	Dallery Siv	Original data	Spot check data
826.4	4132	Rear	10	CPLD-390	0.18	0.06

SAR Valu	ues (WCI	DMA1900 M	Hz - Head)					
Frequency		C:de	Test Potton CN	Reported SAR(1g) (W/kg)				
MHz	Ch.	Side	Position Battery SN	Original data	Spot check data			
1907.6	9538	Left	Touch	CPLD-390	0.45	0.32		
SAR Valu	ues (WCI	DMA1900 M	Hz - Body)					
Frequency		Test	Spacing	Dotton: CN	Reported SAR(1g) (W/kg)			
MHz	Ch.	Position	(mm)	Battery SN	Original data	Spot check data		
1907.6	9538	Bottom	10	CPLD-390	1.10	0.79		
SAR Values (WCDMA1700 MHz - Head)								
Frequ	ency	C:da	Test	Dattam: CN	Reported S	AR(1g) (W/kg)		
MHz	Ch.	Side	Position	Battery SN	Original data	Spot check data		
1752.6	1513	Left	Touch	CPLD-390	0.58	0.45		
SAR Valu	ues (WCI	DMA1700 M	Hz - Body)					
Frequ	ency	Test	Spacing	Datta ON	Reported SAR(1g) (W/kg)			
MHz	Ch.	Position	(mm)	Battery SN	Original data	Spot check data		
1752.6	1513	Bottom	10	CPLD-390	1.00	0.80		
SAR Valu	SAR Values (LTE Band 2- Head)							
Frequency		Cida	Test	Dallas ON	Reported SAR(1g) (W/kg)			
MHz	Ch.	Side	Position	Battery SN	Original data	Spot check data		
1860	18700	Left	Touch	CPLD-390	0.45	0.41		
SAR Valu	ues (LTE	Band 2- Bo	dy)		•			
Frequ	ency	Test	Spacing	Datta ON	Reported SAR(1g) (W/kg)			
MHz	Ch.	Position	(mm)	Battery SN	Original data	Spot check data		
1860	18700	Bottom	10	CPLD-390	1.10	0.73		
SAR Valu	ues (LTE	Band 4- He	ad)					
Frequ	ency	Test		Dettem: CN	Reported SAR(1g) (W/kg)			
MHz	Ch.	Side	Position	Battery SN	Original data	Spot check data		
1860	18700	Left	Touch	CPLD-390	0.42	0.56		
SAR Valu	ues (LTE	Band 4- Bo	dy)		•			
Frequ	ency	Test	Spacing	Dattery CN	Reported S	SAR(1g) (W/kg)		
MHz	Ch.	Position	(mm)	Battery SN	Original data	Spot check data		
1860	18700	Bottom	10	CPLD-390	0.64	0.56		
SAR Valu	ues (LTE	Band 12- H	ead)					
Frequ	ency	Cida	Test	Dotto::: CN	Reported S	SAR(1g) (W/kg)		
MHz	Ch.	Side	Position	Battery SN	Original data	Spot check data		
711	23130	Right	Touch	CPLD-390	0.28	0.25		
					•	•		

CAD Values	/I TE Dan	d 10 Dady)
SAR Values	(LIE Ban	a 12- Boay)

Frequency		Test	Spacing	Battery SN	Reported SAR(1g) (W/kg)	
MHz	Ch.	Position	(mm)	ballery SIN	Original data	Spot check data
711	23130	Rear	10	CPLD-390	0.77	0.44

SAR Values (WiFi2.45G- Head)

Frequency		Side	Test	Battery SN	Reported SAR(1g) (W/kg)	
MHz	Ch.	Side	Position	ballery Siv	Original data	Spot check data
2412	1	Left	Touch	CPLD-390	0.81	0.62

SAR Values (WiFi2.45G - Body)

Frequency		Test	Spacing	Battery SN	Reported SAR(1g) (W/kg)	
MHz	Ch.	Position	(mm)	Dallery Sin	Original data	Spot check data
2412	1	Rear	10	CPLD-390	0.28	0.12

GSM 850 Right Cheek Low

Date/Time: 2016-11-8 Electronics: DAE4 Sn786 Medium: Head 835 MHz

Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.896 \text{ S/m}$; $\varepsilon_r = 41.079$; $\rho = 1000 \text{ kg/m}^3$

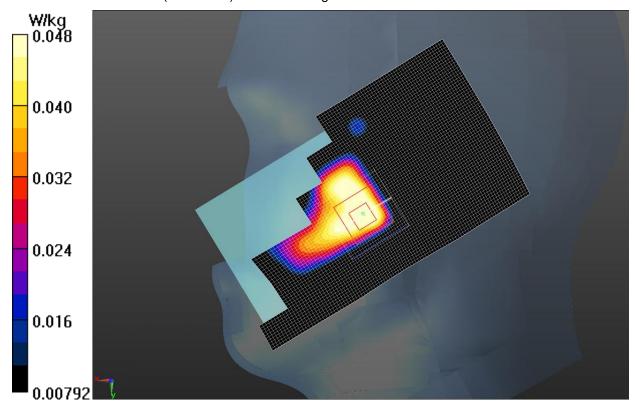
Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: GSM Frequency: 824.2 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3633 ConvF(9.15, 9.15, 9.15);

Right Cheek Low/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0603 W/kg


Right Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.501 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 0.0600 W/kg

SAR(1 g) = 0.045 W/kg; SAR(10 g) = 0.035 W/kg

Maximum value of SAR (measured) = 0.0482 W/kg

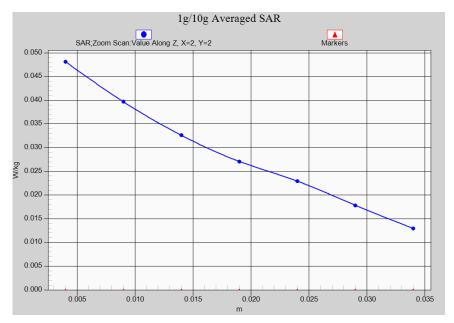


Fig.J-1: Z-Scan at power reference point (GSM 850 MHz CH128)

GSM 850 Body Rear Low

Date/Time: 2016-11-8 Electronics: DAE4 Sn786 Medium: Body 835 MHz

Medium parameters used (extrapolated): f = 824.2 MHz; $\sigma = 0.952 \text{ S/m}$; $\varepsilon_r = 53.751$; $\rho = 1000 \text{ kg/m}^3$

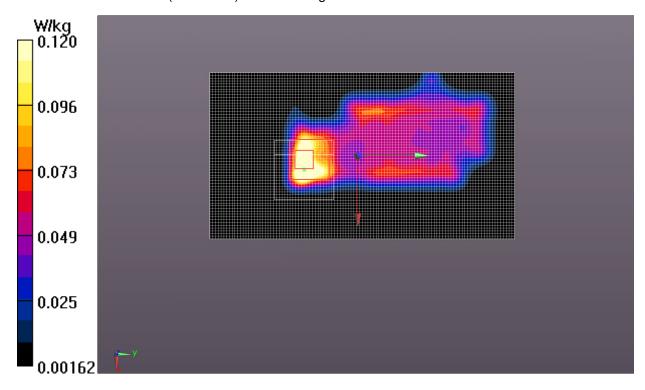
Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: 4 slot GPRS Frequency: 824.2 MHz Duty Cycle: 1:2

Probe: EX3DV4 - SN3633 ConvF(9.15, 9.15, 9.15);

Rear side Low/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.241 W/kg


Rear side Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.164 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.245 W/kg

SAR(1 g) = 0.114 W/kg; SAR(10 g) = 0.054 W/kg

Maximum value of SAR (measured) = 0.120 W/kg

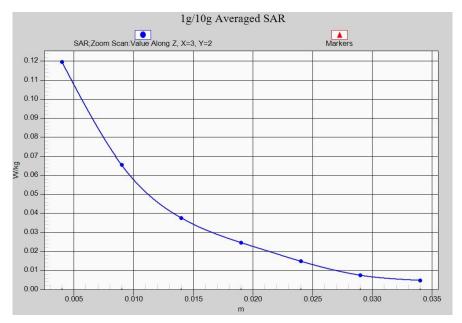


Fig.J-2:Z-Scan at power reference point (GSM 850 MHz CH128)

GSM1900 Left Cheek Middle

Date/Time: 2016-11-7 Electronics: DAE4 Sn786 Medium: Head 1900 MHz

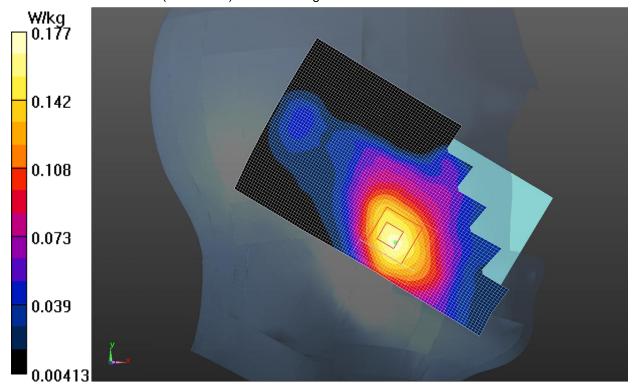
Medium parameters used: f = 1880 MHz; σ = 1.415 S/m; ϵ_r = 38.633; ρ = 1000 kg/m³

Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: GSM Frequency: 1880 MHz Duty Cycle: 1:8.3

Probe: EX3DV4 - SN3633 ConvF(7.49, 7.49, 7.49);

Left Cheek Middle/Area Scan (61x111x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.171 W/kg


Left Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.104 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.270 W/kg

SAR(1 g) = 0.149 W/kg; SAR(10 g) = 0.094 W/kg

Maximum value of SAR (measured) = 0.177 W/kg

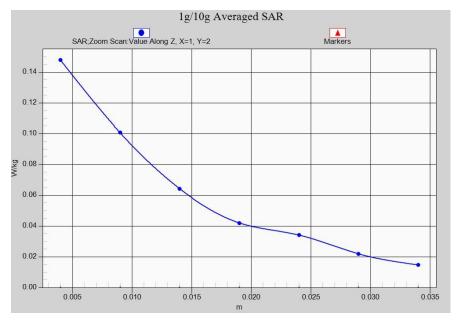


Fig.J-3:Z-Scan at power reference point (GSM 1900 MHz CH661)

GSM1900 Body Bottom Middle

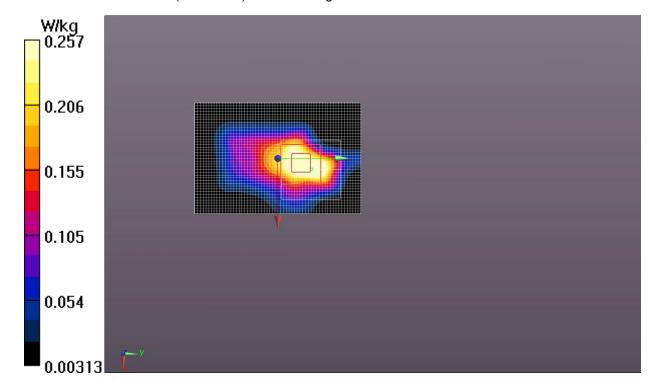
Date/Time: 2016-11-7 Electronics: DAE4 Sn786 Medium: Body 1900 MHz

Medium parameters used: f = 1880 MHz; σ = 1.546 S/m; ϵ_r = 52.287; ρ = 1000 kg/m³

Ambient Temperature:22.0°C Liquid Temperature:21.5°C

Communication System: 4 slot GPRS Frequency: 1880 MHz Duty Cycle: 1:2

Probe: EX3DV4 - SN3633 ConvF(7.24, 7.24, 7.24);


Bottom side Middle/Area Scan (41x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.334 W/kg

Bottom side Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.554 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.402 W/kg

SAR(1 g) = 0.246 W/kg; SAR(10 g) = 0.134 W/kg Maximum value of SAR (measured) = 0.257 W/kg

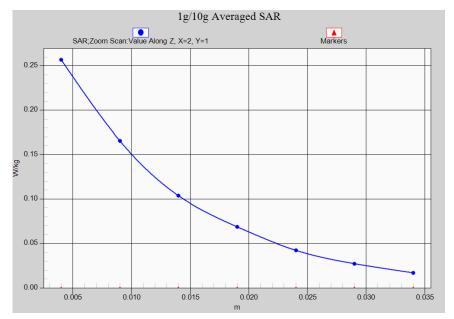


Fig.J-4:Z-Scan at power reference point (GSM 1900 MHz CH661)