

FCC/ISED - TEST REPORT

Report Number	68.950.21.0001.01 Date of Issue: 2021-02-01			
Model	HKTWS158, KOSS TWS250i			
Product Type	TRUE WIRELESS EARBUDS			
Applicant	Koss Corporation			
Address	4129 N. Port Washington Avenue, Milwaukee, WI, 53212,			
	United States Of America			
Manufacturer	Koss Corporation			
Address	4129 N. Port Washington Avenue, Milwaukee, WI, 53212,			
	United States Of America			
Test Result	■ Positive □ Negative			
Total pages including Appendices	63			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1	Tab	le of Contents	2
2	Deta	ails about the Test Laboratory	3
3	Des	cription of the Equipment Under Test	4
4	Sum	nmary of Test Standards	5
5	Sum	nmary of Test Results	6
6	Gen	neral Remarks	7
7	Test	t Setups	8
8	Syst	tems test configuration	9
9	Tec	hnical Requirement	10
ę	9.1	Conducted peak output power and e.i.r.p.	10
ę	9.2	20 dB bandwidth and 99% Occupied Bandwidth	17
ę	9.3	Carrier Frequency Separation	27
ę	9.4	Number of hopping frequencies	30
ę	9.5	Dwell Time	32
ę	9.6	Spurious RF conducted emissions	36
ę	9.7	Band edge testing	47
ę	9.8	Spurious radiated emissions for transmitter	52
10	Test	t Equipment List	62
11	Syst	tem Measurement Uncertainty	63

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name:	TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12&13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District, Shenzhen City, 518052, P. R. China
FCC Designation Number:	CN5009
FCC Registration	514049
IC Registration Number:	10320A
Telephone: Fax:	86 755 8828 6998 86 755 8828 5299

Report Version:

Revision	Release Date	History/Memo.
N/A	2021-02-01	Initial Release

3 Description of the Equipment Under Test

Product:	TRUE WIRELESS EARBUDS
Model no.:	HKTWS158, KOSS TWS250i
FCC ID:	L76- TWS250I
IC:	10021A- TWS250I
PMN:	HKTWS158, KOSS TWS250i
HVIN:	HKTWS158, KOSS TWS250i
Rating:	3.7VDC, 50mAh (Supply by rechargeable battery)
RF Transmission Frequency:	2402MHz-2480MHz
No. of Operated Channel:	79
Modulation:	GFSK, π/4-DQPSK, 8DPSK
Antenna Type:	Internal antenna
Antenna Gain:	0.75dBi
Description of the EUT:	The Equipment Under Test (EUT) is a TRUE WIRELESS EARBUDS with Bluetooth BDR+EDR function. The difference among all Models is only model name. Unless otherwise specified the model HKTWS158 was chosen as the representative model to perform full tests, and model: KOSS TWS250i was deemed to fulfil relevant requirements without further testing. The left earbud is identical with right earbud, so all the RF tests were applied on only one side.

4 Summary of Test Standards

Test Standards					
FCC Part 15 Subpart C PART 15 - RADIO FREQUENCY DEVICES					
10-1-2019 Edition	Subpart C - Intentional Radiators				
RSS-Gen General Requirements for the Certification of Radio Apparatus					
Issue 5, Amendment 1,	Issue 5, Amendment 1,				
March 2019	March 2019				
RSS-247 Issue 2	Digital Transmission Systems (DTSS), Frequency Hopping Systems				
February 2017	(FHSS) and License-Exempt Local Area Network (LE-LAN) Devices				

All the test methods were according to Public Notice DA 00-705 -Frequency Hopper Spread Spectrum Test Procedure, KDB558074 D01 v05r02 and ANSI C63.10-2013.

5 Summary of Test Results

	Technical Requirements				
FCC Part 15 Subp	art C/ RSS-247 Issue 2/R	SS-Gen Issue 5	-		
Test Condition	Test Condition				
§15.207	RSS-GEN 8.8	Conducted emission AC power port		N/A	
§15.247(b)(1)	RSS-247 Clause 5.4(b)	Conducted peak output power and e.i.r.p.	Site 1	PASS	
§15.247(e)	RSS-247 Clause 5.2(b)	Power spectral density		N/A	
§15.247(a)(2)	RSS-247 Clause 5.2(a)	6dB bandwidth		N/A	
§15.247(a)(1)	RSS-247 Clause 5.1(a) & RSS-Gen 6.7	20dB bandwidth and 99% Occupied Bandwidth	Site 1	PASS	
§15.247(a)(1)	RSS-247 Clause 5.1(b)	Carrier frequency separation	Site 1	PASS	
§15.247(a)(1)(iii)	RSS-247 Clause 5.1(d)	e 5.1(d) Number of hopping frequencies		PASS	
§15.247(a)(1)(iii)	RSS-247 Clause 5.1(d)	Dwell Time	Site 1	PASS	
§15.247(d)	RSS-247 Clause 5.5	Spurious RF conducted emissions	Site 1	PASS	
§15.247(d)	RSS-247 Clause 5.5	Band edge	Site 1	PASS	
§15.247(d) & §15.209 & §15.205	RSS-247 Clause 5.5 & RSS-GEN 6.13 RSS-GEN 8.9 RSS-GEN 8.10	Spurious radiated emissions for transmitter and receiver	Site 1	PASS	
§15.203	RSS-GEN 6.8	Antenna requirement	See note 2	PASS	

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an internal antenna, which gain is 0.75dBi. In accordance to §15.203 and RSS-GEN 6.8, it is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: L76- TWS250I, IC: 10021A- TWS250I, complies with Section 15.205, 15.209, 15.247 of the FCC Part 15, Subpart C and RSS-247 issue 2 and RSS-Gen issue 5 rules.

The Equipment Under Test (EUT) is a TRUE WIRELESS EARBUDS with Bluetooth BDR+EDR function.

SUMMARY:

All tests according to the regulations cited on page 6 were

- Performed
- □ Not Performed

The Equipment Under Test

- - **Fulfills** the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date:	2021-01-10
Testing Start Date:	2021-01-10
Testing End Date:	2021-01-29

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by:

sher 2hi

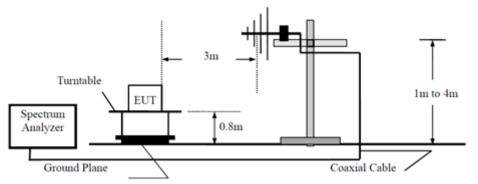
John Zhi Project Manager

SUD

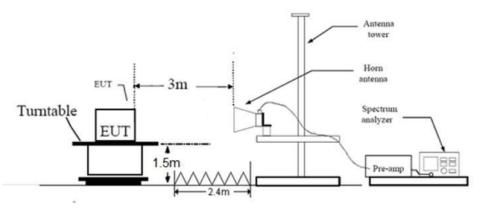
~ Cm.

Joe Gu

Project Engineer


ree them

Tested by:


Tree Zhan Test Engineer

7 Test Setups

7.1 Radiated test setups Below 1GHz

Above 1GHz

7.2 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

Name	Model	Manufacturer	S/N	Cal Due Date
Notebook	X220	Lenovo		

The system was configured to hopping mode and non-hopping mode.

Hopping mode: typical working mode (normal hopping status)

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.

9 Technical Requirement

9.1 Conducted peak output power and e.i.r.p.

Test Method

- The EUT was placed on 0.8m height table, the RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- Use the following spectrum analyzer settings: Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel RBW > the 20dB bandwidth of the emission being measured, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

Limits

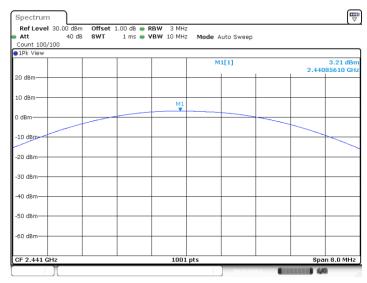
For

Conducted Peak Output Power:

	Frequency Range MHz	Limit W	Limit dBm
	2400-2483.5	≤1	≤30
e.i.r.p.:			
		l :	I :
	Frequency Range	Limit	Limit
	MHz	W	dBm
	2400-2483.5	≤4	≤36

Conducted peak output power

Bluetooth Mode GFSK modulation Test Result				
Frequency	Conducted Peak Output Power	Antenna Gain	EIRP	Result
MHz	dBm	dBi	dBm	
Low channel 2402MHz	3.36	0.75	4.11	Pass
Middle channel 2441MHz	3.21	0.75	3.96	Pass
High channel 2480MHz	2.37	0.75	3.12	Pass

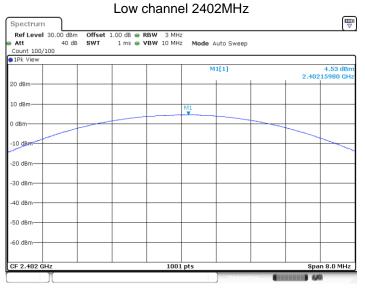

Spectrum	LOW	channel 240		Ē
Ref Level 30.00 dBm Att 40 dE Count 100/100			Auto Sweep	
1Pk View			M1[1]	3.36 dBn
20 dBm			+ +	2.40221580 GH
10 dBm		M1		
) dBm				
-10 dBm				
-20 dBm				
-30 dBm				
40 dBm				
-50 dBm				
-60 dBm				
CF 2.402 GHz		1001 pts		Span 8.0 MHz
		•	Measuring	444

Low channel 2402MHz

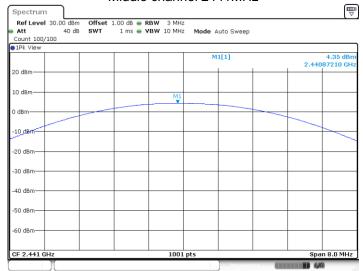
Date: 15.JAN.2021 09:35:53

Middle channel 2441MHz

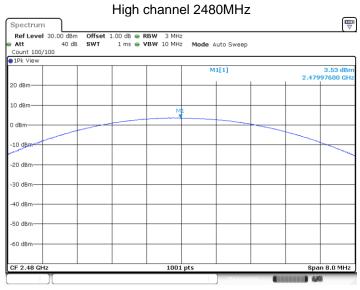
Date: 15.JAN.2021 09:36:10


High channel 2480MHz Spectrum RefLevel 30.00 dBm Att 40 dB Offset 1.00 dB ● RBW 3 MHz SWT 1 ms ● VBW 10 MHz Mode Auto Sweep Count 100/100 ●1Pk Viev M1[1] 2.37 dBr 90410 GH 2.479 20 dBm 10 dBm M1 0 dBm -10 dBm -20 dBm -30 dBm 40 dB -50 dBm -60 dBm 1001 pts CF 2.48 G 8.0 MHz 1.430

Date: 15.JAN.2021 09:36:25


Bluetooth Mode $\pi/4$ -DQPSK modulation Test Result

Frequency	Conducted Peak Output Power	Antenna Gain	EIRP	Result
MHz	dBm	dBi	dBm	
Low channel 2402MHz	4.53	0.75	5.28	Pass
Middle channel 2441MHz	4.35	0.75	5.10	Pass
High channel 2480MHz	3.53	0.75	4.28	Pass


Date: 15.JAN.2021 09:36:57

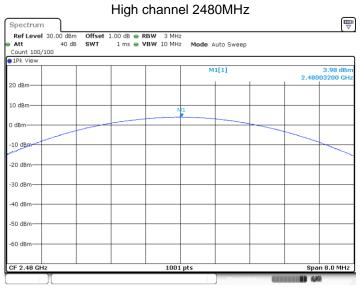
Middle channel 2441MHz

Date: 15.JAN.2021 09:37:10

Date: 15.JAN.2021 09:37:24

	Bluetooth Mode 8D	DPSK modulation T	est Result	
Frequency	Conducted Peak Output Power	Antenna Gain	EIRP	Result
MHz	dBm	dBi	dBm	
Low channel 2402MHz	4.88	0.75	5.63	Pass
Middle channel 2441MHz	4.81	0.75	5.56	Pass
High channel 2480MHz	3.98	0.75	4.73	Pass

Low channel 2402MHz Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 1Pk View Offset 1.00 dB ⊕ RBW 3 MHz SWT 1 ms ⊕ VBW 10 MHz Mode Auto Sweep 4.88 dBn 2.40201600 GH M1[1] 20 dBm 10 dBm 0 dBn -10 dBm -20 dBm -30 dBm -40 dBm -50 dBr -60 dBm 1001 pts Span 8.0 MHz CF 2.402 GHz LX.


Date: 15.JAN.2021 09:37:44

Middle channel 2441MHz

Date: 15.JAN.2021 09:37:54

Date: 15.JAN.2021 09:38:02

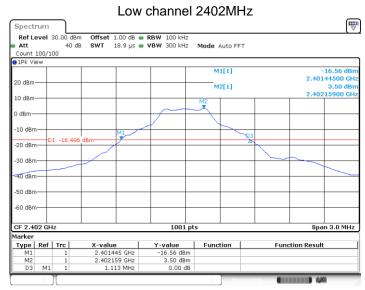
9.2 20 dB bandwidth and 99% Occupied Bandwidth

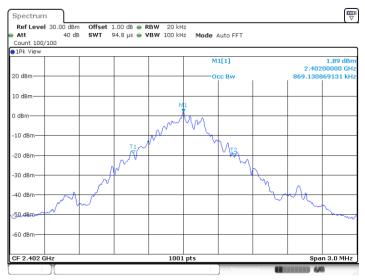
Test Method

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit [kHz]


N/A


20 dB bandwidth and 99% Occupied Bandwidth

Bluetooth Mode GFSK Modulation test result

Frequen	cy 20 dB Ba	ndwidth 99% Ban	dwidth Limi	t Result
MHz	kH	lz kH	z kHz	
2402	111	13 869	9	Pass
2441	111	19 866	6 	Pass
2480	111	19 860	6	Pass

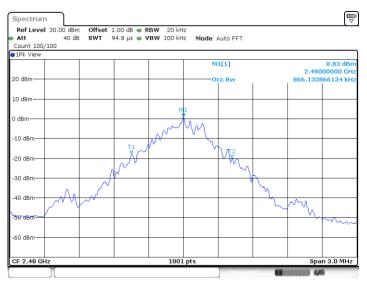
Date: 15.JAN.2021 09:10:13


Date: 15.JAN.2021 09:10:24

Att Count	100/1	40 (00	∃B SWT 18.9 µs ∈	• VBW 300 kHz	Mode Auto FF	T	
∋1Pk Vi	e₩						
					M1[1]		-17.00 dBi 2.44043600 GH
20 dBm·	+				M2[1]		2.44043600 GH 3.04 dBi
					to a first		2.44083800 GH
10 dBm·				M2			
0 dBm—					\sim		
-10 dBm	∩+-		M1,				
		1 -16.95				~23	
-20 dBm	די					_	
-30 dBm		~					
	-	~~~					
-40 dBm	-+-						
-50 dBm	<u>ו</u> וי						
-60 dBm							
-00 0011	'						
CF 2.4	41 GH	Iz		1001 pt	s		Span 3.0 MHz
Marker							
Туре	Ref	Trc	X-value	Y-value	Function	Fu	nction Result
M1		1	2.440436 GHz	-17.00 dBm			
M2 D3	M1	1	2.440838 GHz 1.119 MHz	3.04 dBm -0.21 dB			

Middle channel 2441MHz

Date: 15.JAN.2021 09:12:01


Date: 15. JAN. 2021 09: 12: 11

High channel 2480MHz

Date: 15.JAN.2021 09:13:29

Date: 15.JAN.2021 09:13:40

20 dB bandwidth and 99% Occupied Bandwidth

Frequency 20 dB Bandwidth 99% Bandwidth Limit Result MHz kHz kHz kHz 1374 Pass 2402 1169 ---2441 1368 1166 Pass --2480 1368 1166 Pass ---

Bluetooth Mode $\pi/4$ -DQPSK Modulation test result

	evel	30.00 dB					
Att Count	100/1	40 d 00	iB SWT 18.9 μs 🖷	VBW 300 kHz	Mode Auto FFT		
∋1Pk Vi	ew						
					M1[1]		-17.07 dB 2.40131300 GF
20 dBm	+				M2[1]		2.40131300 G
10 dBm							2.40200300 GH
				M2	~		
0 dBm—	-		+		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-10 dBm	<u> </u>						
	D	1 -16.86	5 dBm			23	
-20 dBrr	n – F						
-30 dBm	∩— -						~
10.10			1				
-40 dBr							
-50 dBm	∩+-						
-60 dBm							
-00 ubii	'						
CF 2.4	02 GH	lz		1001 pt:	s		Span 3.0 MH
1arker							
Type M1	Ref	Trc 1	2.401313 GHz	Y-value -17.07 dBm	Function	Functi	on Result
M1 M2		1	2.401313 GHz	3.13 dBm			
D3	M1	1	1.374 MHz	0.10 dB			

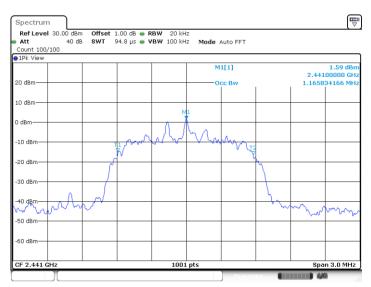
Low channel 2402MHz

Date: 15.JAN.2021 09:15:51

Date: 15.JAN.2021 09:16:02

Report Number: 68.950.21.0001.01

Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 PIPk View Offset 1.00 dB ● RBW 100 kHz SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT 40 dB M1[1] 16.92 0 2.44030700 GF 3.19 dB 20 dBr M2[1] 2.440 33500 GH 10 dBm M2 0 dBn -10 dBr 11 -20 dB -30 dBm -40 dBm -50 dBm -60 dBm CF 2.441 GHz Span 3.0 MHz 1001 pts larkei
 Type
 Ref
 Trc

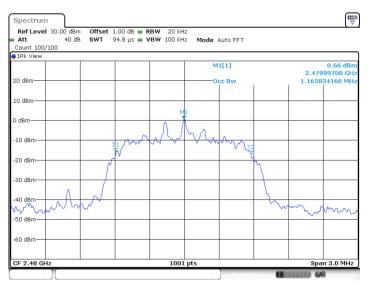

 M1
 1

 M2
 1

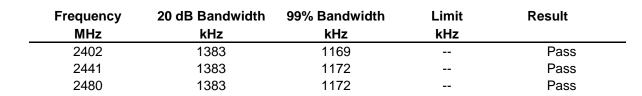
 D3
 M1
 1
Y-value -16.92 dBm 3.19 dBm 0.05 dB X-value 2.440307 GHz 2.440835 GHz 1.368 MHz Function Function Result

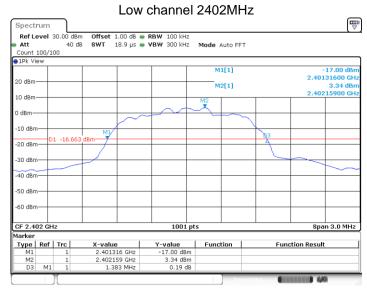
Middle channel 2441MHz

Date: 15.JAN.2021 09:17:47

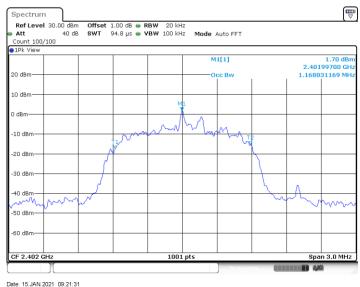

Date: 15.JAN.2021 09:17:58

Att Count		30.00 dB 40 c 00		VBW 300 kHz	Mode Auto FFT		
∋1Pk Vi	ew						
					M1[1]		-17.75 dBn 2.47930700 GH
20 dBm	+				M2[1]		2.47930700 GH
					(install		2.47983800 GH
10 dBm				M2			
0 dBm-					~		
o abiii							
-10 dBm	n-+-					\rightarrow	
		1 -17.68	4 dBm			<u>\</u> Q3	
-20 dBr	ידי	1 -17.00	4 ubiii				
-30 dBm							
-30 UBI	' 						
-40 dBm							
-50 dBrr	∩——						
-60 dBm	+-י						
CF 2.4	8 GHz	:		1001 pt	s		Span 3.0 MHz
Marker	D -(Nuclear 1	M	Europhic I	-	
Type M1	Ket	Trc 1	2.479307 GHz	Y-value -17.75 dBm	Function	Fun	ction Result
M2		1	2.479838 GHz	2.32 dBm			
D3	M1	1	1.368 MHz	-0.10 dB			


High channel 2480MHz


Date: 15.JAN.2021 09:19:16

Date: 15.JAN.2021 09:19:27



Bluetooth Mode 8DPSK Modulation test result

Date: 15.JAN.2021 09:21:20

Report Number: 68.950.21.0001.01

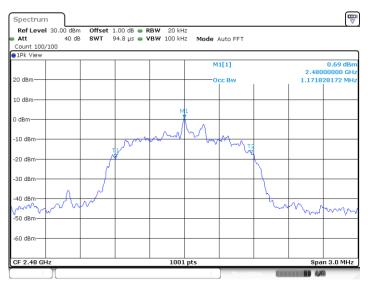
Middle channel 2441MHz Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 PIPk View Offset 1.00 dB ● RBW 100 kHz SWT 18.9 µs ● VBW 300 kHz Mode Auto FFT 40 dB M1[1] 17.21 d 2.44031000 GH 3.00 dB 20 dBr M2[1] 2.440 3800 GH 10 dBm M2 0 dBn -10 dBr M1 -20 dB -30 dBm -40 dBm -50 dBm -60 dBm CF 2.441 GHz Span 3.0 MHz 1001 pts larkei
 Type
 Ref
 Trc

 M1
 1

 M2
 1

 D3
 M1
 1
X-value 2.44031 GHz 2.440838 GHz 1.383 MHz Y-value -17.21 dBm 3.00 dBm -0.02 dB Function Function Result

Date: 15.JAN.2021 09:23:42


Date: 15.JAN.2021 09:23:53

Att Count		40 d 00	m Offset 1.00 dB iB SWT 18.9 µs е	VBW 300 kHz	Mode Auto FF	г	
∋1Pk Vi	e₩						
					M1[1]		-18.17 dBn 2.47931000 GH
20 dBm	+				M2[1]		2.47931000 GH
					matri		2.47983800 GH
10 dBm	-			M2			
0 dBm-					\sim		
U UBIII-			\sim		Sur-	~	
-10 dBn	n——					<u> </u>	
			MJ			03	
-20 dBn	ī P	1 -17.85	8 dBm			<u> </u>	
-30 dBn	<u>ו</u> רי	~					
-40 dBn	-r						
-40 UBI	-						
-50 dBn	-						
00 000	·						
-60 dBn	∩——						
CF 2.4	8 GHz	:		1001 pt	s		Span 3.0 MHz
Marker							
Туре	Ref	Trc	X-value	Y-value	Function	Fund	tion Result
M1		1	2.47931 GHz	-18.17 dBm			
M2 D3	M1	1	2.479838 GHz 1.383 MHz	2.14 dBm 0.11 dB			

High channel 2480MHz

Date: 15.JAN.2021 09:25:17

Date: 15.JAN.2021 09:25:28

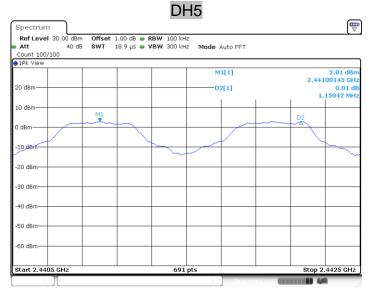
9.3 Carrier Frequency Separation

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. By using the Max-Hold function record the separation of two adjacent channels.
- 3. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

Limit kHz


 \geq 25KHz or 2/3 of the 20 dB bandwidth which is greater

Carrier Frequency Separation

TestMode	Channel	Result[MHz]	Limit[MHz]	Verdict
DH5	Нор	1.159	>=0.740	PASS
2DH5	Нор	1.162	>=0.904	PASS
3DH5	Нор	1.159	>=0.908	PASS

Date: 15.JAN.2021 09:26:40

2DH5

Count 100/100 1Pk View			
20 dBm	D2	[1] [1]	2.82 dBr 2.44083623 GH -0.01 d 1.16232 MH
10 dBm			
0 dBm	~~~~		\sim
20 dBm			
30 dBm			
40 dBm			
50 dBm			

Date: 15.JAN.2021 09:30:52

3DH5

Ref Level 30.00 de			BW 100 kHz				
Att 40 Count 100/100	db SWT	18.9 hz 😑 🖊	BW 300 kHz	Mode Auto FFT			
1Pk View							
				M1[1]			2.77 dB
20 dBm				D2[1]			99855 GF -0.10 d 15942 MF
10 dBm					_		
0 dBm	M1					D2	
o ubii			~~~~	~~~~	~		~~~
-10 dBm							
-20 dBm							
00 dB							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
Start 2.4405 GHz		1	691 p	ots		Stop 2	.4425 GHz

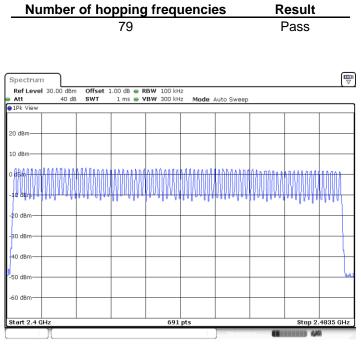
Date: 15.JAN.2021 09:32:06

9.4 Number of hopping frequencies

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 2. Set the spectrum analyzer on Max-Hold Mode, and then keep the EUT in hopping mode.
- 3. Record all the signals from each channel until each one has been recorded.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit


Limit number ≥15

Number of hopping frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status), and the total hopping channels is constant for the all modulation mode according with the Bluetooth Core Specification. Here GFSK modulation mode was used to show compliance.

Date: 15.JAN.2021 09:26:53

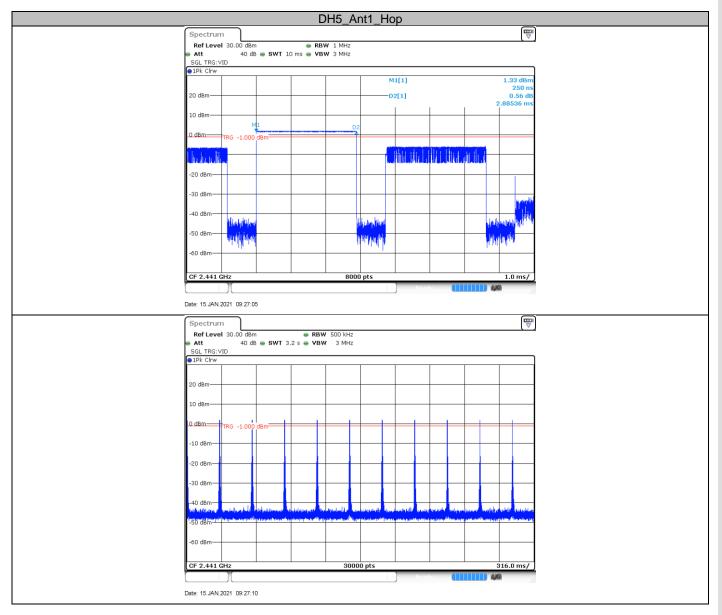
9.5 Dwell Time

Test Method

- 1. Connect EUT antenna terminal to the spectrum analyzer with a low loss cable. Equipment mode: Spectrum analyzer
- 2. RBW: 1MHz; VBW: 1MHz; SPAN: Zero Span
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 4. Measure the Dwell Time by spectrum analyzer Marker function.
- 5. Repeat above procedures until all frequencies measured were complete.

Limit

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

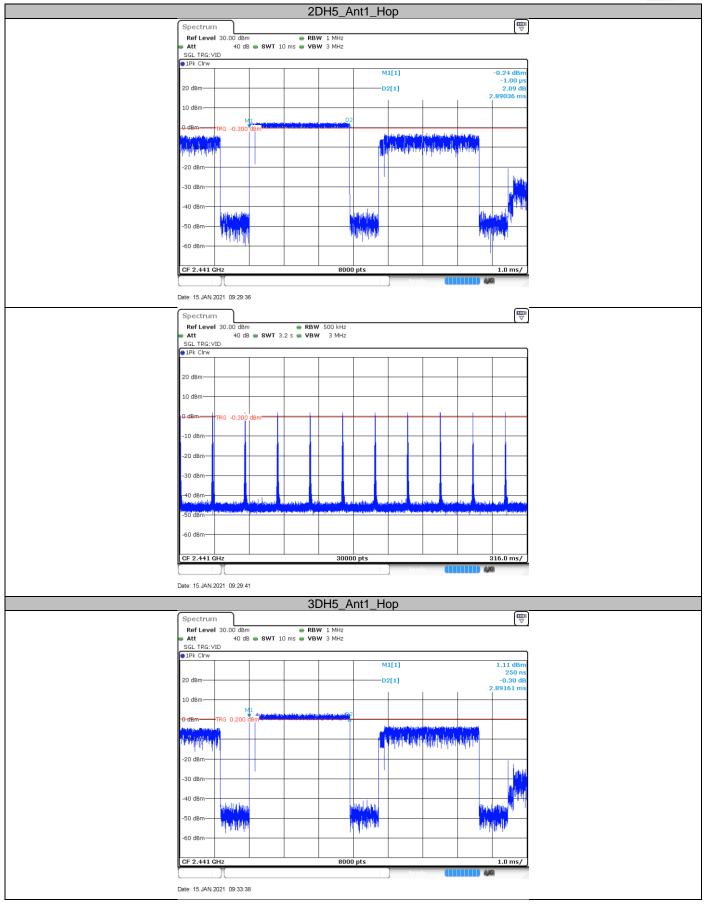

Dwell Time

Dwell time

The maximum dwell time shall be 0.4 s.

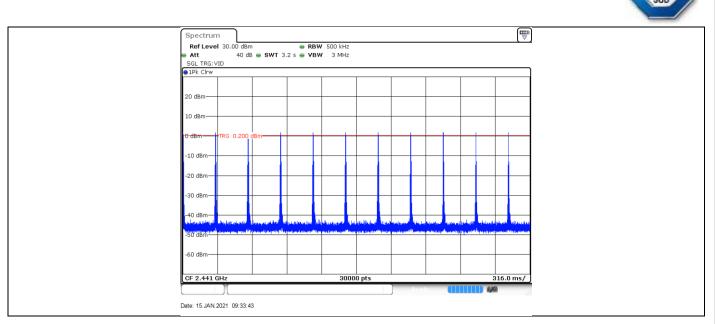
The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows: The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 79 [ch] = 31.6 [s*ch];

TestMode	Channel	BurstWidth (ms)	TotalHops	Result(s)	Limit(s)	Verdict
DH5	Нор	2.89	110	0.317	<=0.4	PASS
2DH5	Нор	2.89	110	0.318	<=0.4	PASS
3DH5	Нор	2.89	110	0.318	<=0.4	PASS


Test Result

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China

Report Number: 68.950.21.0001.01



EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China

Page 34 of 63

Report Number: 68.950.21.0001.01

9.6 Spurious RF conducted emissions

Test Method

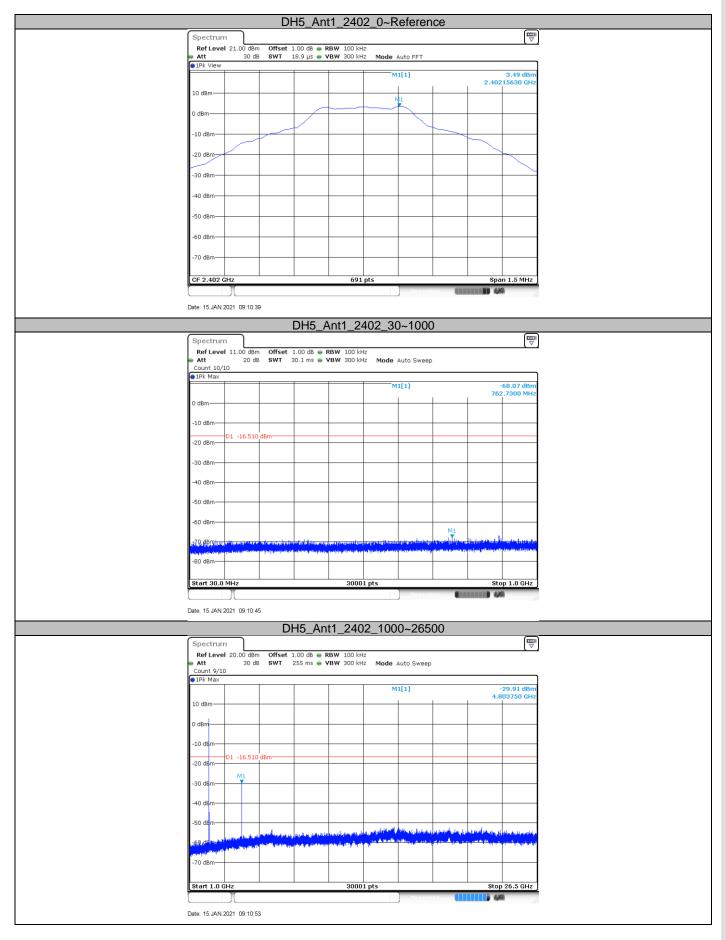
- 1. Use the following spectrum analyzer settings:
- Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span. RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

Limit

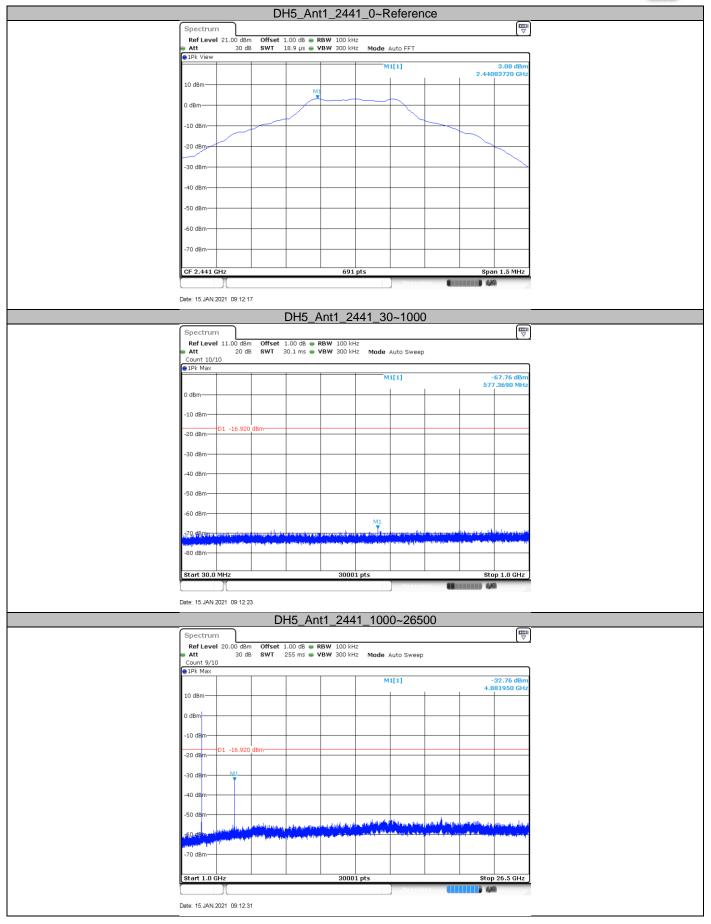
Frequency Range	Limit (dBc)
MHz	

30-25000

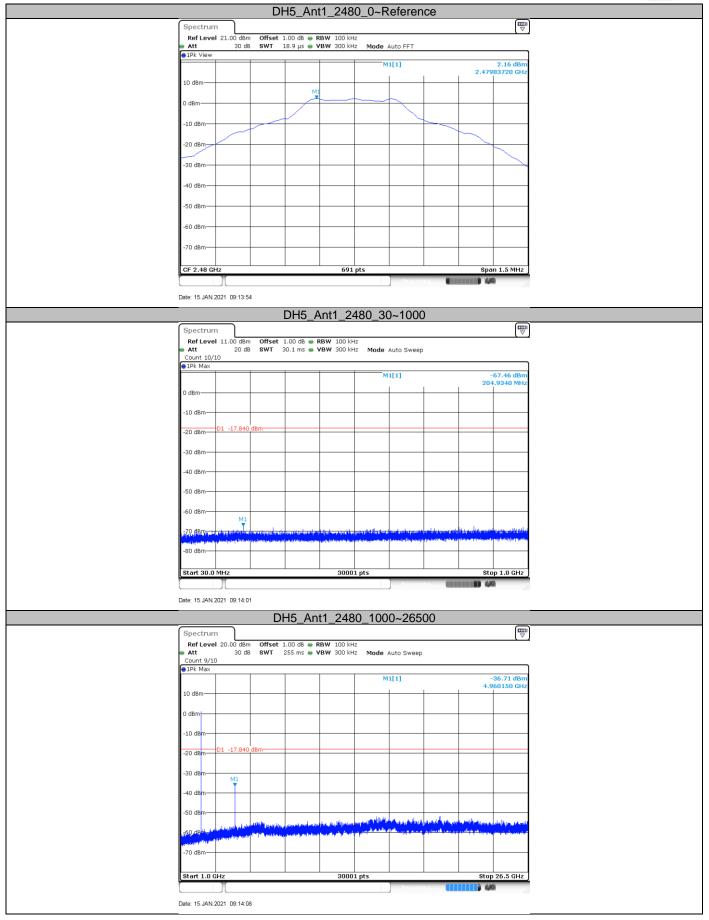
-20



Spurious RF conducted emissions

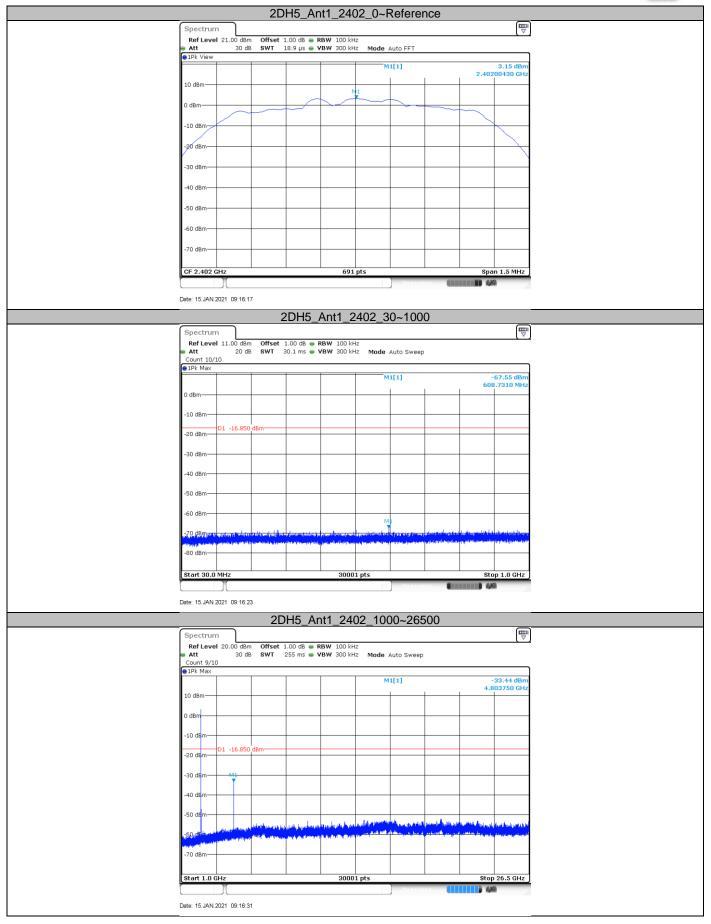

TestMode	Antenna	Channel (MHz)	FreqRange(MHz)	RefLevel	Result(dBm)	Limit(dBm)	Verdict
			Reference	3.49(dBm)	3.49		PASS
		2402	30~1000	30~1000(MHz)	-68.07	<=-16.51	PASS
			1000~26500	1000~26500(MHz)	-30	<=-16.51	PASS
			Reference	3.08(dBm)	3.08		PASS
DH5	Ant1	2441	30~1000	30~1000(MHz)	-67.76	<=-16.92	PASS
			1000~26500	1000~26500(MHz)	-32.76	<=-16.92	PASS
			Reference	2.16(dBm)	2.16		PASS
		2480	30~1000	30~1000(MHz)	-67.46	<=-17.84	PASS
			1000~26500	1000~26500(MHz)	-36.71	<=-17.84	PASS
			Reference	3.15(dBm)	3.15		PASS
		2402	30~1000	30~1000(MHz)	-67.55	<=-16.85	PASS
			1000~26500	1000~26500(MHz)	-33.44	<=-16.85	PASS
			Reference	3.20(dBm)	3.20		PASS
2DH5	Ant1	2441	30~1000	30~1000(MHz)	-67.62	<=-16.8	PASS
			1000~26500	1000~26500(MHz)	-34.89	<=-16.8	PASS
			Reference	2.22(dBm)	2.22		PASS
		2480	30~1000	30~1000(MHz)	-67.1	<=-17.78	PASS
			1000~26500	1000~26500(MHz)	-39.41	<=-17.78	PASS
			Reference	3.33(dBm)	3.33		PASS
		2402	30~1000	30~1000(MHz)	-68.77	<=-16.67	PASS
			1000~26500	1000~26500(MHz)	-32.23	<=-16.67	PASS
			Reference	2.99(dBm)	2.99		PASS
3DH5	5 Ant1 2441	2441	30~1000	30~1000(MHz)	-68.34	<=-17.01	PASS
			1000~26500	1000~26500(MHz)	-36.73	<=-17.01	PASS
			Reference	2.05(dBm)	2.05		PASS
		2480	30~1000	30~1000(MHz)	-68.12	<=-17.95	PASS
			1000~26500	1000~26500(MHz)	-40	<=-17.95	PASS

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China Page 38 of 63



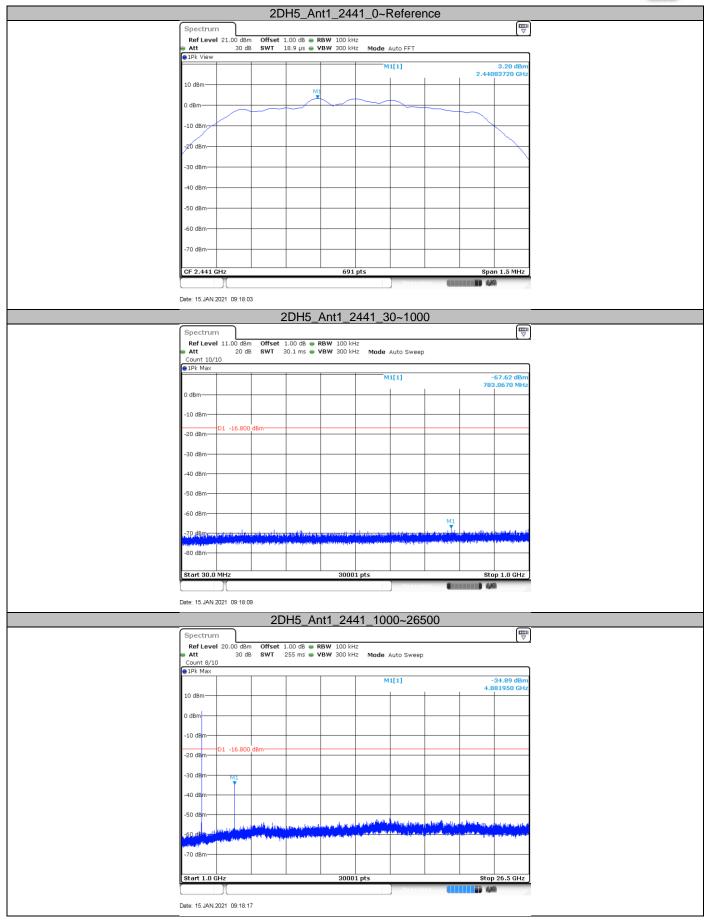
EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China

Page 39 of 63



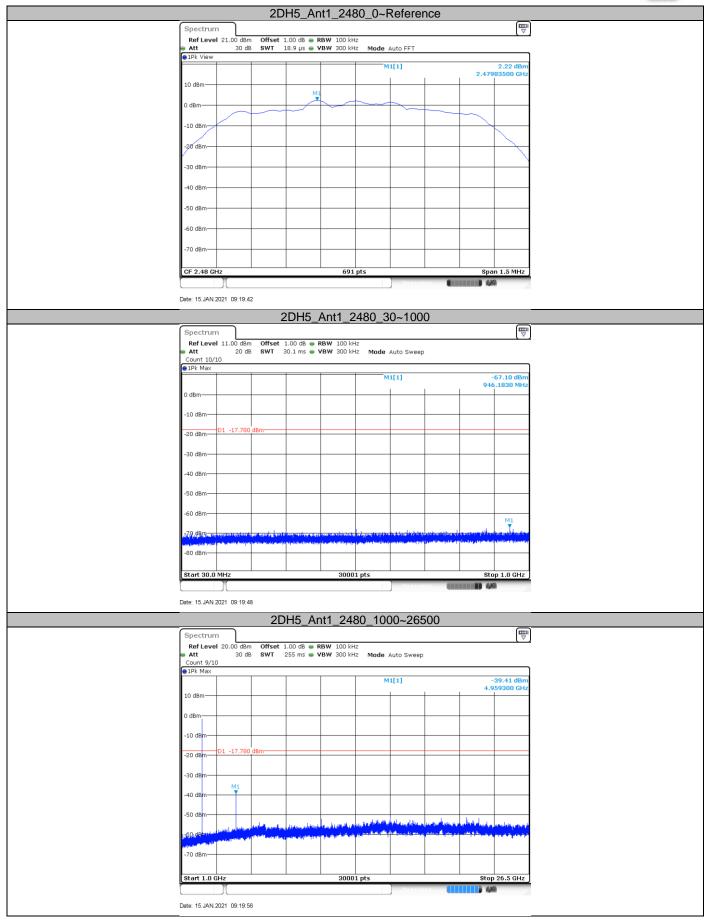
EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China

Page 40 of 63



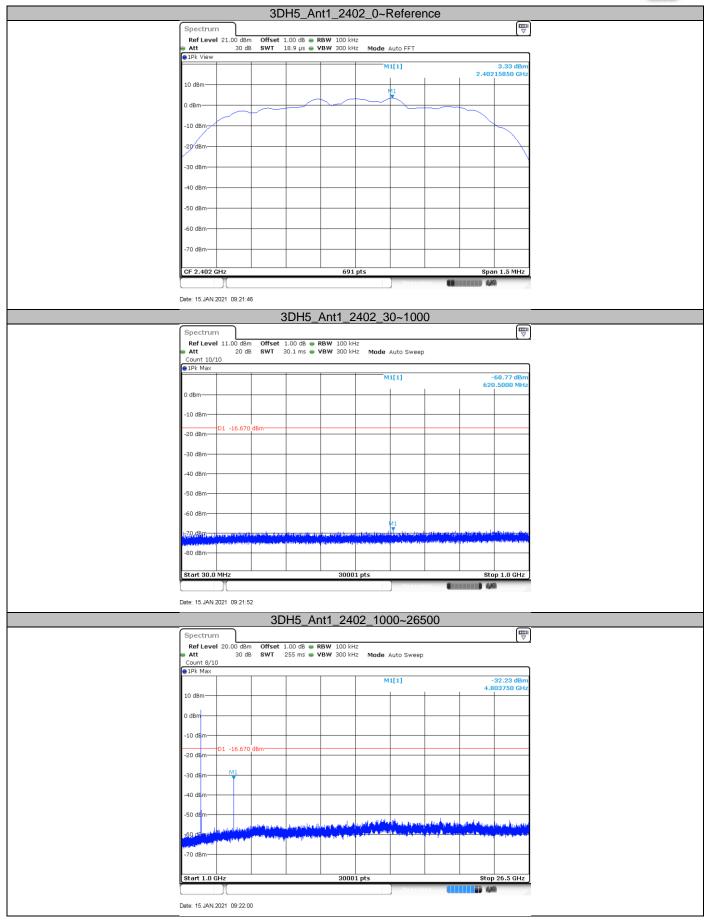
EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China

Page 41 of 63



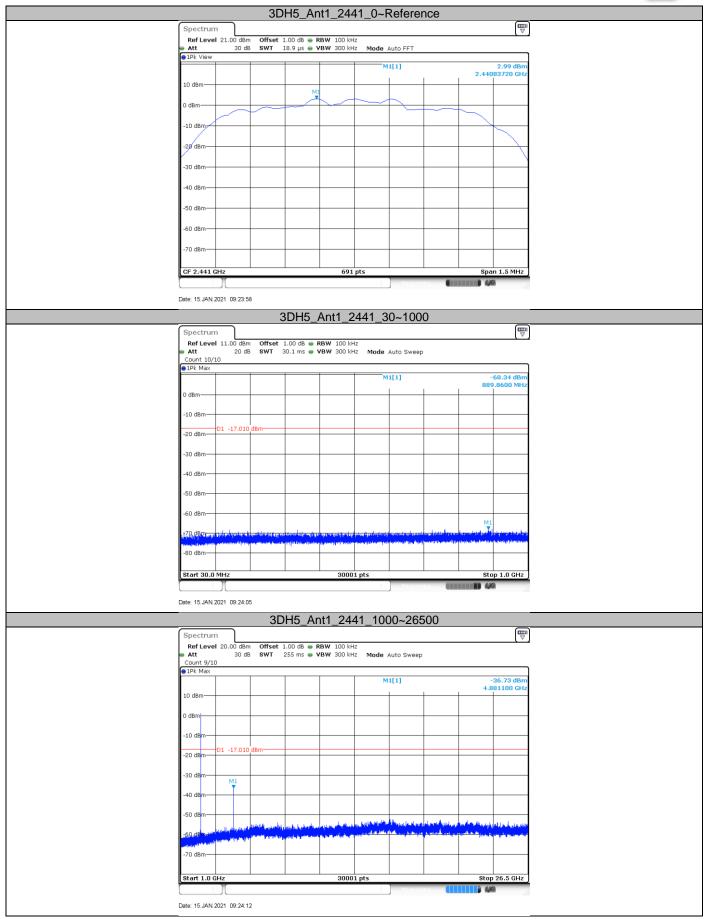
EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China

Page 42 of 63



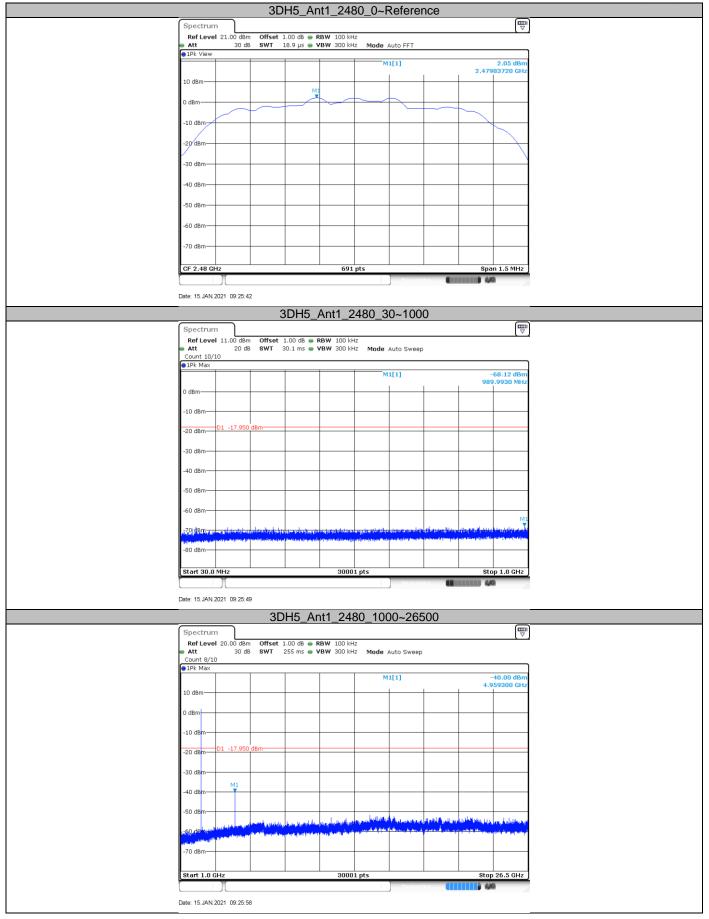
EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China

Page 43 of 63



EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China

Page 44 of 63



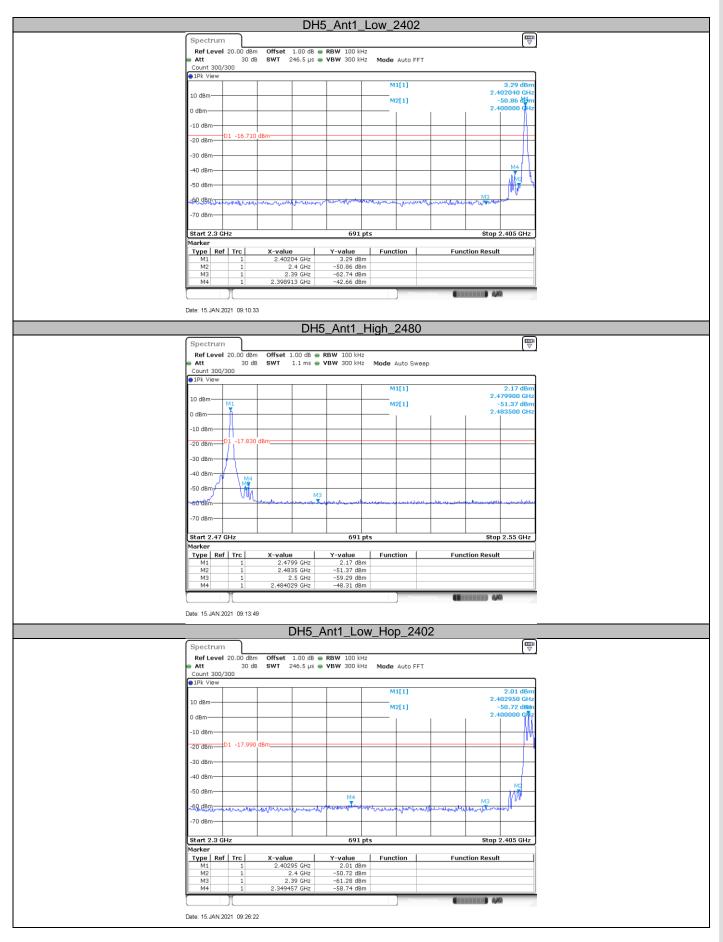
EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China

Page 45 of 63

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China

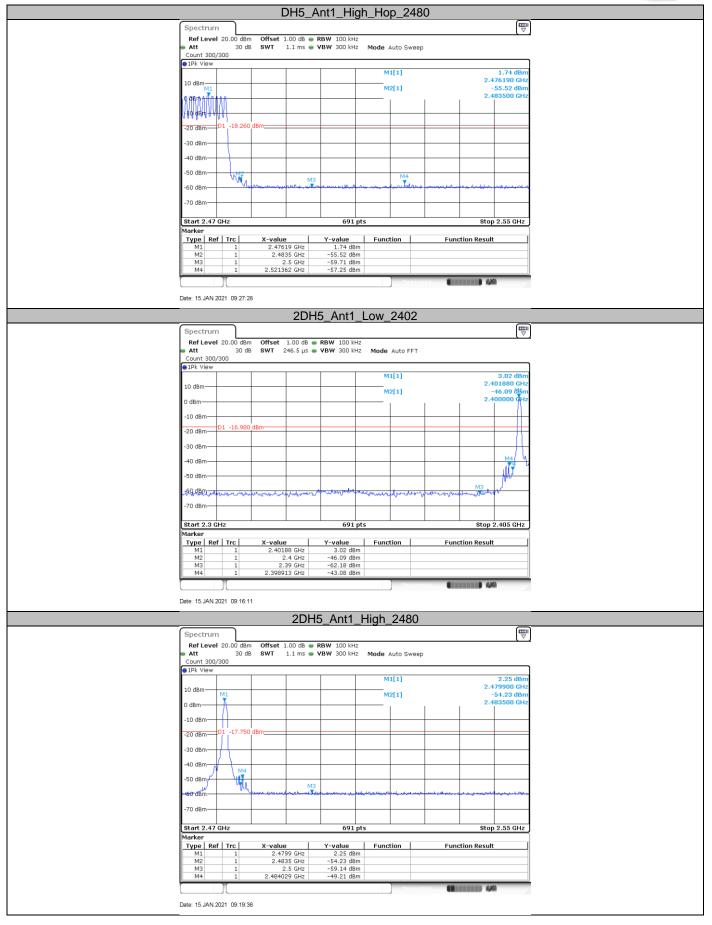
Page 46 of 63

9.7 Band edge testing

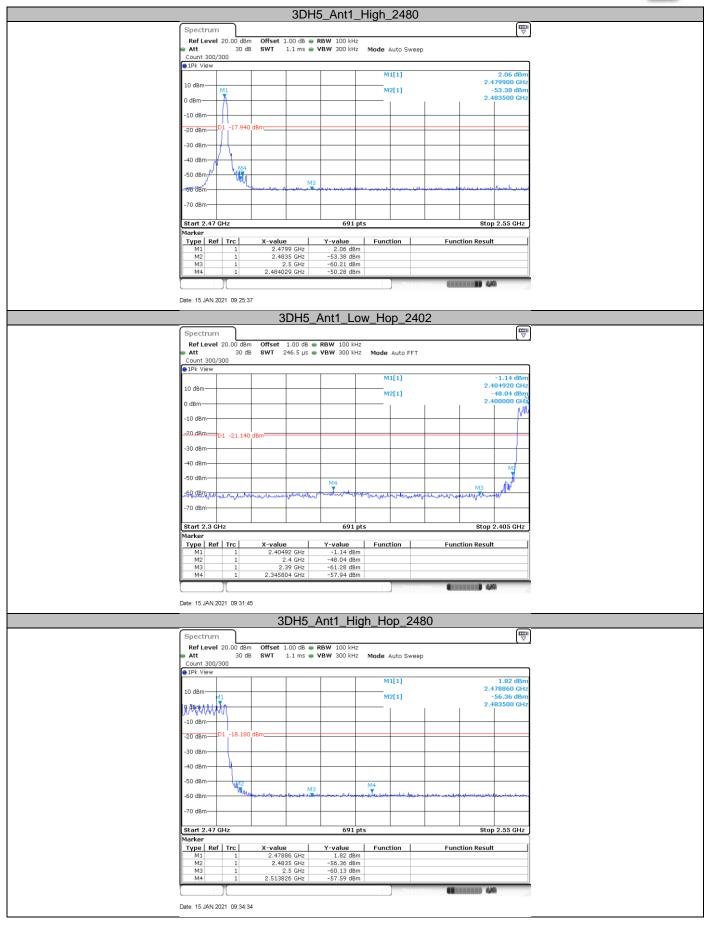

Test Method

- Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section. .
- 4 Repeat the test at the hopping off and hopping on mode, submit all the plots.

Limit:


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.


EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China Page 48 of 63


EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China Page 49 of 63

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China Page 50 of 63

EMC_SZ_FR_21.00FCC Release 2014-03-20 TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch Building 12 & 13, Zhiheng Wisdomland Business Park, Nantou Checkpoint Road 2, Nanshan District Shenzhen 518052, P.R. China Page 51 of 63

9.8 Spurious radiated emissions for transmitter

Test Method

1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.

2: The EUT was set 3 meters away from the interference – receiving antenna, which was mounted on the top of a variable – height antenna tower.

3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto,

Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement ,Sweep = auto,

Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW=10Hz, Sweep = auto, Detector function = peak, Trace = max hold. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.

If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correct factor, derived from the appropriate the duty cycle calculation.

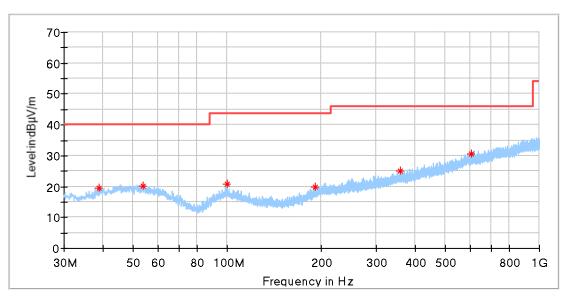
The setting method can refer to DA00-705.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

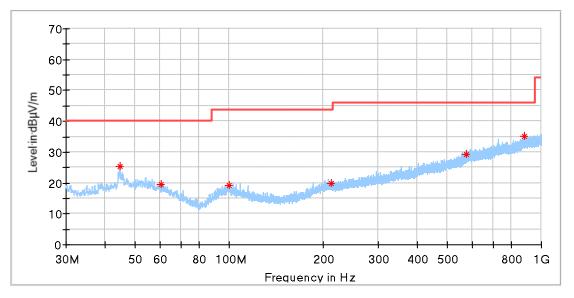
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

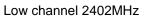


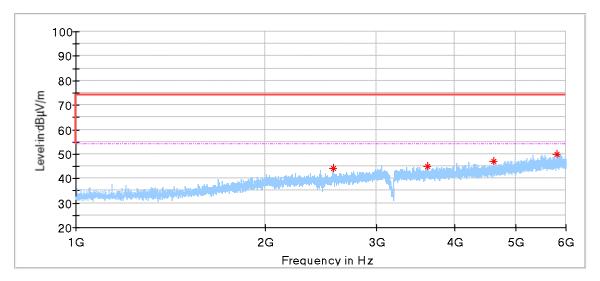
Spurious radiated emissions for transmitter

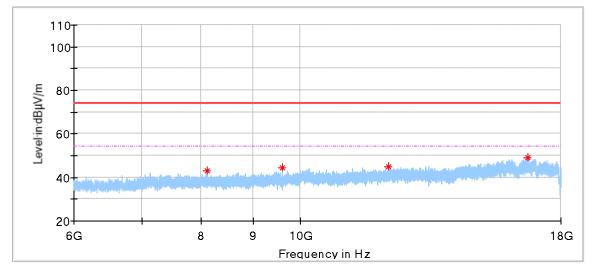
According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit. The only worse case (GFSK mode) test result is listed in the report.


Transmitting spurious emission test result as below:

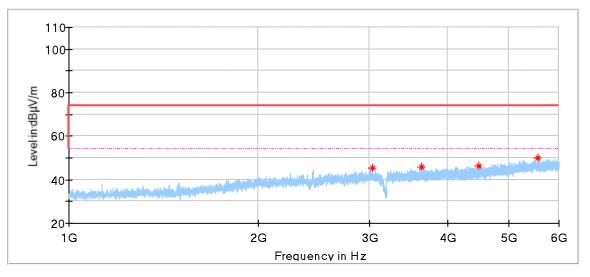
Below 1G:



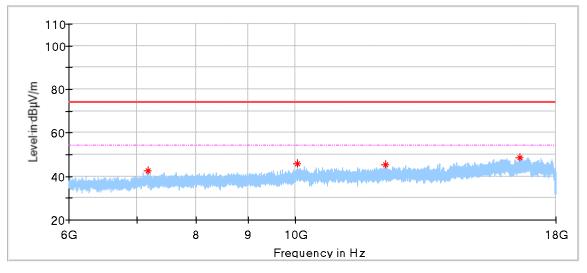

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
38.851250	19.49	40.00	20.51	100.0	Н	31.0	16.21
53.704375	20.12	40.00	19.88	200.0	Н	192.0	17.68
100.021875	20.72	40.00	19.28	100.0	Н	106.0	16.25
190.959375	19.86	40.00	20.14	200.0	Н	130.0	15.61
358.951250	24.94	47.00	22.06	200.0	н	175.0	20.59
606.786250	30.67	47.00	16.33	200.0	Н	9.0	25.69



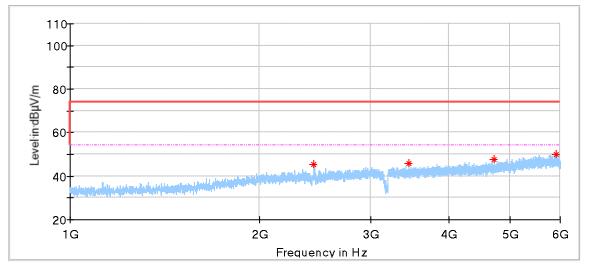
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
44.792500	25.29	40.00	14.71	100.0	V	4.0	17.66
60.312500	19.63	40.00	20.37	200.0	V	146.0	16.76
100.082500	19.19	40.00	20.81	100.0	V	338.0	16.24
211.450625	19.95	40.00	20.05	100.0	V	293.0	16.60
576.776875	29.16	47.00	17.84	200.0	V	356.0	24.91
883.660625	35.25	47.00	11.75	200.0	V	3.0	29.25

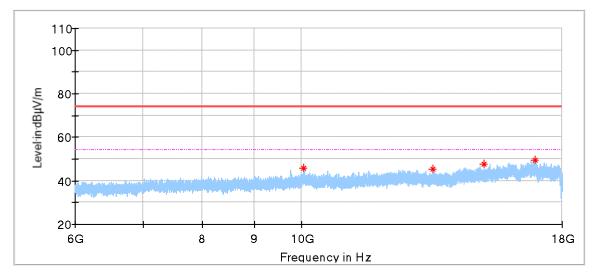


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2567.000000	44.32	74.00	29.68	100.0	Н	121.0	-2.71
3622.500000	45.22	74.00	28.78	100.0	Н	0.0	0.07
4614.000000	47.06	74.00	26.94	100.0	Н	317.0	2.54
5816.000000	49.80	74.00	24.20	100.0	Н	350.0	5.16

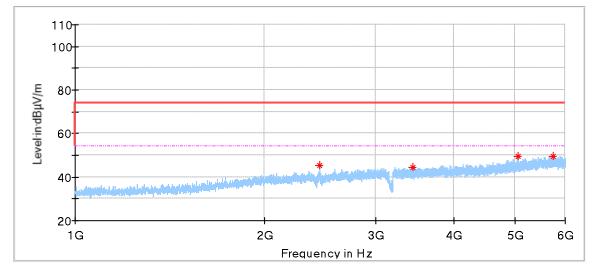


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
8104.000000	42.90	74.00	31.10	150.0	Н	188.0	6.51
9612.000000	44.64	74.00	29.36	150.0	Н	72.0	7.50
12195.000000	45.07	74.00	28.93	150.0	Н	211.0	8.83
16710.000000	48.99	74.00	25.01	150.0	Н	211.0	15.93

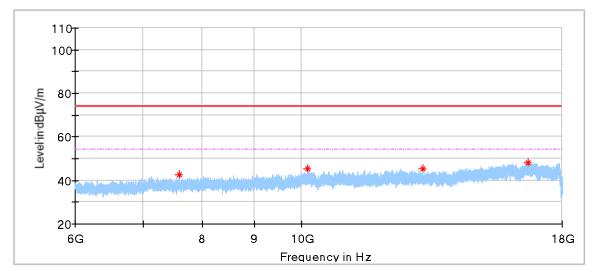

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
3038.000000	45.17	74.00	28.83	150.0	V	213.0	-1.28
3636.500000	45.94	74.00	28.06	150.0	V	9.0	0.04
4468.000000	46.35	74.00	27.65	150.0	V	352.0	2.33
5557.500000	49.82	74.00	24.18	150.0	V	54.0	4.41


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
7166.500000	42.39	74.00	31.61	150.0	٧	125.0	4.91
10041.500000	45.75	74.00	28.25	150.0	V	197.0	9.12
12247.000000	45.42	74.00	28.58	150.0	V	0.0	9.00
16576.500000	48.78	74.00	25.22	150.0	V	11.0	15.72

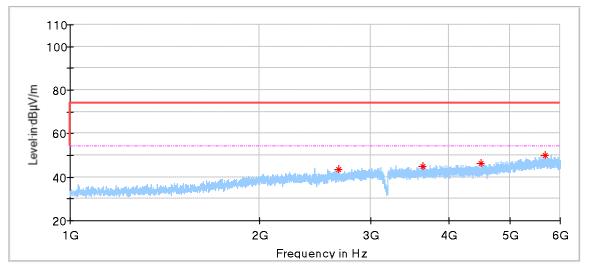
Middle channel 2441MHz

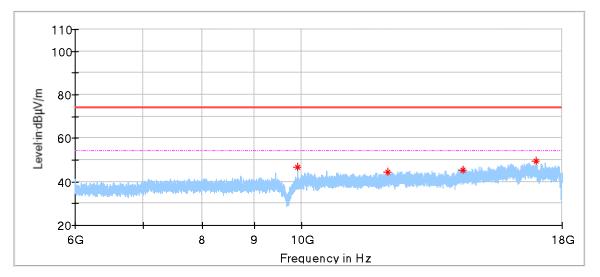


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2440.000000	45.52	74.00	28.48	100.0	Н	164.0	-3.09
3453.500000	45.84	74.00	28.16	100.0	Н	345.0	-0.49
4705.500000	47.57	74.00	26.43	100.0	Н	0.0	2.59
5905.500000	50.07	74.00	23.93	100.0	Н	117.0	5.51

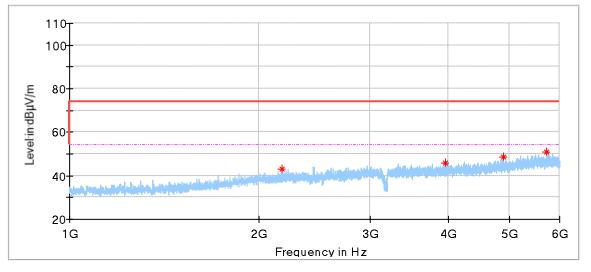


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
10048.500000	45.70	74.00	28.30	150.0	Н	216.0	9.19
13433.000000	45.32	74.00	28.68	150.0	н	263.0	9.80
15075.000000	47.47	74.00	26.53	150.0	Н	75.0	12.02
16936.000000	49.49	74.00	24.51	150.0	Н	0.0	16.48

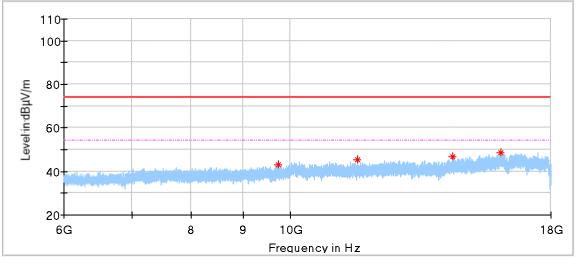

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2443.000000	45.19	74.00	28.81	150.0	V	85.0	-3.08
3441.500000	44.62	74.00	29.38	150.0	V	117.0	-0.49
5047.000000	49.41	74.00	24.59	150.0	V	226.0	3.02
5734.000000	49.68	74.00	24.32	150.0	V	65.0	5.00


Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
7584.000000	42.60	74.00	31.40	150.0	V	347.0	5.49
10136.000000	45.26	74.00	28.74	150.0	V	0.0	9.11
13141.500000	45.35	74.00	28.65	150.0	V	347.0	9.22
16667.000000	48.08	74.00	25.92	150.0	V	163.0	15.86

High channel 2480MHz



Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2670.000000	43.77	74.00	30.23	150.0	V	101.0	-2.40
3628.500000	45.15	74.00	28.85	150.0	V	218.0	0.06
4488.500000	46.19	74.00	27.81	150.0	V	326.0	2.32
5669.500000	50.20	74.00	23.80	150.0	V	302.0	4.69



Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
9916.500000	46.68	74.00	27.32	150.0	Н	302.0	8.07
12160.000000	44.56	74.00	29.44	150.0	Н	347.0	8.72
14374.500000	45.24	74.00	28.76	150.0	Н	140.0	11.03
16968.500000	49.33	74.00	24.67	150.0	Н	71.0	16.44

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2177.000000	43.21	74.00	30.79	100.0	Н	194.0	-3.77
3957.500000	45.82	74.00	28.18	100.0	Н	23.0	1.28
4882.000000	48.62	74.00	25.38	100.0	Н	331.0	2.85
5726.000000	50.76	74.00	23.24	100.0	Н	299.0	4.95

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
9726.000000	43.16	74.00	30.84	150.0	٧	266.0	7.75
11644.500000	45.15	74.00	28.85	150.0	٧	0.0	8.38
14435.000000	46.65	74.00	27.35	150.0	٧	0.0	11.08
16077.500000	48.82	74.00	25.18	150.0	v	11.0	14.81

Remark:

- Data of measurement within frequency range18-26GHz are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so test data does not present in this report,
- (2) Level= Reading Level + Correction Factor
- (3) Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

10 Test Equipment List

Radiated Emission Test

Description	Manufacturer	Model no.	Equipment ID	Serial no.	cal interval (year)	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 26	68-4-74-14- 002	101269	1	2021-6-29
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9162	68-4-80-19- 003	284	1	2021-2-24
Wave Guide Antenna	ETS	3117	68-4-80-19- 001	00218954	1	2021-6-15
Pre-amplifier	Rohde & Schwarz	SCU 18F	68-4-29-19- 001	100745	1	2021-12-14
Pre-amplifier	Rohde & Schwarz	SCU 08F2	68-4-29-19- 004	08400018	1	2021-12-14
Sideband Horn Antenna	Q-PAR	QWH-SL- 18-40-K-SG	68-4-80-14- 008	12827	1	2021-8-5
Pre-amplifier	Rohde & Schwarz	SCU 40A	68-4-29-14- 002	100432	1	2021-7-30
3m Semi- anechoic chamber	TDK	9X6X6	68-4-90-19- 006		3	2022-12-29
Test software	Rohde & Schwarz	EMC32	68-4-90-19- 006-A01	Version10.35. 02	N/A	N/A

RF Conducted Test

Description	Manufacturer	Model no.	Equipment ID	Serial no.	cal interval (year)	cal. due date
Signal Analyzer	Rohde & Schwarz	FSV40	68-4-74-14- 004	101030	1	2021-6-21

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty					
Test Items	Extended Uncertainty				
Radiated Spurious Emission 30MHz-1000MHz	Horizontal: 4.70dB; Vertical: 4.67dB;				
Radiated Spurious Emission 1000MHz-18000MHz	Horizontal: 4.65dB; Vertical: 4.63dB;				
Radiated Spurious Emission 18000MHz-40000MHz	Horizontal: 4.51dB; Vertical: 4.50dB;				
Conducted RF test with TS 8997	RF Power Conducted: 1.31dB Frequency test involved: 0.6×10 ⁻⁷ or 1%				

---THE END OF REPORT---