



# **FCC Radio Test Report**

FCC ID: GSSVS20541

**Report No.** : BTL-FCC-2-2501T005

**Equipment**: WPD-900

Model Name : VS20541, WPD-900-RX

Brand Name : ViewSonic

**Applicant**: ViewSonic Corporation

Address : 10 Pointe Dr. Suite 200. Brea, CA 92821 United States

Radio Function : WLAN 2.4 GHz

FCC Rule Part(s) : FCC CFR Title 47, Part 15, Subpart C (15.247)

Measurement Procedure(s)

: ANSI C63.10-2013

Date of Receipt : 2025/1/6

**Date of Test** : 2025/1/6~2025/2/25

**Issued Date** : 2025/3/19

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by :

Ray Chen, Engineer

Approved by :

Sam Chuang, Director

Tallac MRA
Testing Labo
0659

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan

Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl\_qa@newbtl.com

Project No.: 2501T005 Page 1 of 82 Report Version: R00



#### **Declaration**

**BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

**BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** assumes no responsibility for the data provided by the Customer, any statements, inferences or generalizations drawn by the customer or others from the reports issued by **BTL**.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

**BTL**'s laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

#### Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Project No.: 2501T005 Page 2 of 82 Report Version: R00





#### **CONTENTS REVISION HISTORY** 5 SUMMARY OF TEST RESULTS 6 1.1 **TEST FACILITY** 7 MEASUREMENT UNCERTAINTY 7 1.2 1.3 **TEST ENVIRONMENT CONDITIONS** 7 1.4 **DUTY CYCLE** 8 2 **GENERAL INFORMATION** 9 2.1 **DESCRIPTION OF EUT** 9 **TEST MODES** 2.2 11 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.3 12 2.4 SUPPORT UNITS 13 3 AC POWER LINE CONDUCTED EMISSIONS TEST 14 3.1 LIMIT 14 3.2 TEST PROCEDURE 14 **TEST SETUP** 3.3 15 **TEST RESULT** 15 3.4 RADIATED EMISSIONS TEST 4 16 4.1 LIMIT 16 4.2 **TEST PROCEDURE** 17 4.3 **TEST SETUP** 17 4.4 **EUT OPERATING CONDITIONS** 19 4.5 TEST RESULT - BELOW 30 MHZ 19 4.6 TEST RESULT - 30 MHZ TO 1 GHZ 19 4.7 TEST RESULT - ABOVE 1 GHZ 19 5 **BANDWIDTH TEST** 20 5.1 LIMIT 20 5.2 TEST PROCEDURE 20 5.3 **TEST SETUP** 20 **EUT OPERATING CONDITIONS** 5.4 20 5.5 **TEST RESULT** 20 6 **OUTPUT POWER TEST** 21 6.1 LIMIT 21 6.2 TEST PROCEDURE 21 6.3 **TEST SETUP** 21 **EUT OPERATING CONDITIONS** 6.4 21 6.5 **TEST RESULT** 21 POWER SPECTRAL DENSITY 22 7 7.1 LIMIT 22 7.2 **TEST PROCEDURE** 22 7.3 **TEST SETUP** 22 7.4 22 **EUT OPERATING CONDITIONS** 7.5 **TEST RESULT** 22 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST 8 23 8.1 LIMIT 23 TEST PROCEDURE 23 8.2 8.3 **TEST SETUP** 23 **EUT OPERATING CONDITIONS** 8.4 23



| 8.5    | TEST    | RESULT                               | 23 |
|--------|---------|--------------------------------------|----|
| 9      | LIST OF | MEASURING EQUIPMENTS                 | 24 |
| 10     | EUT TES | ST PHOTO                             | 26 |
| 11     | EUT PHO | DTOS                                 | 26 |
|        |         |                                      |    |
| APPEND | IX A    | AC POWER LINE CONDUCTED EMISSIONS    | 27 |
| APPEND | IX B    | RADIATED EMISSIONS - 30 MHZ TO 1 GHZ | 29 |
| APPEND | IX C    | RADIATED EMISSIONS - ABOVE 1 GHZ     | 31 |
| APPEND | IX D    | BANDWIDTH                            | 73 |
| APPEND | IX E    | OUTPUT POWER                         | 76 |
| APPEND | IX F    | POWER SPECTRAL DENSITY               | 77 |
| APPEND | IX G    | ANTENNA CONDUCTED SPURIOUS EMISSIONS | 80 |
|        |         |                                      |    |

Project No.: 2501T005 Page 4 of 82 Report Version: R00



# **REVISION HISTORY**

| Report No.         | Version | Description      | Issued Date | Note  |
|--------------------|---------|------------------|-------------|-------|
| BTL-FCC-2-2501T005 | R00     | Original Report. | 2025/3/19   | Valid |

Project No.: 2501T005 Page 5 of 82 Report Version: R00

# **SUMMARY OF TEST RESULTS**

Test procedures according to the technical standards.

| Standard(s) Section           | Description                         | Result | Remark |
|-------------------------------|-------------------------------------|--------|--------|
| 15.207                        | AC Power Line Conducted Emissions   | Pass   |        |
| 15.205<br>15.209<br>15.247(d) | Radiated Emissions                  | Pass   |        |
| 15.247(a)                     | Bandwidth                           | Pass   |        |
| 15.247(b)                     | Output Power                        | Pass   |        |
| 15.247(e)                     | Power Spectral Density              | Pass   |        |
| 15.247(d)                     | Antenna conducted Spurious Emission | Pass   |        |
| 15.203                        | Antenna Requirement                 | Pass   |        |

## NOTE:

"N/A" denotes test is not applicable in this Test Report.
 The report format version is TP.1.1.1.

Project No.: 2501T005 Page 6 of 82 Report Version: R00

#### 1.1 TEST FACILITY

The test locations stated below are under the TAF Accreditation Number 0659. The satellite facilities under the test firm used to collect the test data in this report are: No. 91, Ln. 298, Wengong 1st Rd., Guishan Dist., Taoyuan City 333001, Taiwan

## 1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $\mathbf{y} \pm \mathbf{U}$ , where expanded uncertainty  $\mathbf{U}$  is based on a standard uncertainty multiplied by a coverage factor of  $\mathbf{k} = \mathbf{2}$ , providing a level of confidence of approximately  $\mathbf{95}$  %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2  $\mathbf{U}_{cispr}$  requirement.

A. AC power line conducted emissions test:

| Test Site | Method | Measurement Frequency Range | U (dB) |
|-----------|--------|-----------------------------|--------|
| C01       | CISPR  | 150 kHz ~ 30MHz             | 3.4    |

#### B. Radiated emissions test:

| Test Site | Method | Measurement Frequency Range | U (dB) |
|-----------|--------|-----------------------------|--------|
|           |        | 0.009 GHz ~ 0.03 GHz        | 3.2    |
|           |        | 30 MHz ~ 1000 MHz           | 6.0    |
| CB02      | CISPR  | 1 GHz ~ 6 GHz               | 3.8    |
|           |        | 6 GHz ~ 18 GHz              | 3.8    |
|           |        | 18 GHz ~ 40GHz              | 3.7    |

## C. Conducted test:

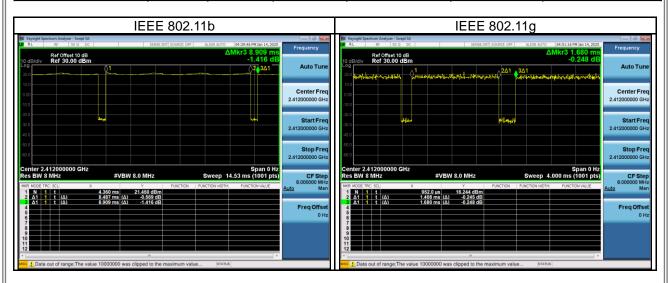
| Test Item                    | U, (dB) |
|------------------------------|---------|
| Occupied Bandwidth           | 1.0502  |
| Output power                 | 1.0406  |
| Power Spectral Density       | 1.0502  |
| Conducted Spurious emissions | 1.1484  |
| Conducted Band edges         | 1.0518  |

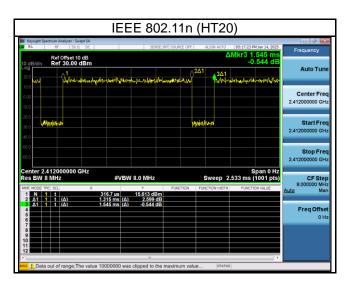
## NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

## 1.3 TEST ENVIRONMENT CONDITIONS

| Test Item                         | <b>Environment Condition</b> | Test Voltage | Tested by                |
|-----------------------------------|------------------------------|--------------|--------------------------|
| AC Power Line Conducted Emissions | 20-25 °C, 55-62 %            | AC 120V      | Rui Huang<br>Nero Hsieh  |
| Radiated emissions below 1 GHz    | Refer to data                | AC 120V      | Nero Hsieh               |
| Radiated emissions above 1 GHz    | Refer to data                | AC 120V      | Nero Hsieh<br>Jason Yang |
| Bandwidth                         | 21 °C, 62 %                  | AC 120V      | Nero Hsieh               |
| Output Power                      | 21 °C, 62 %                  | AC 120V      | Nero Hsieh               |
| Power Spectral Density            | 21 °C, 62 %                  | AC 120V      | Nero Hsieh               |


Project No.: 2501T005 Page 7 of 82 Report Version: R00




## 1.4 DUTY CYCLE

If duty cycle is  $\geq$  98 %, duty factor is not required. If duty cycle is < 98 %, duty factor shall be considered.

| Remark              | Delta 1 |         |             | Delta 2         | On Time/Period | 10 log(1/Duty Cycle) |
|---------------------|---------|---------|-------------|-----------------|----------------|----------------------|
| Mode                | ON      | Numbers | On Time (B) | Period (ON+OFF) | Duty Cycle     | Duty Factor          |
| iviode              | (ms)    | (ON)    | (ms)        | (ms)            | (%)            | (dB)                 |
| IEEE 802.11b        | 8.487   | 1       | 8.487       | 8.909           | 95.26%         | 0.21                 |
| IEEE 802.11g        | 1.408   | 1       | 1.408       | 1.680           | 83.81%         | 0.77                 |
| IEEE 802.11n (HT20) | 1.315   | 1       | 1.315       | 1.545           | 85.11%         | 0.70                 |
|                     |         |         |             |                 |                |                      |





Project No.: 2501T005 Page 8 of 82 Report Version: R00



## 2 GENERAL INFORMATION

## 2.1 DESCRIPTION OF EUT

|                       | III and     |
|-----------------------|-------------------------------------------------|
| Equipment             | WPD-900                                         |
| Model Name            | VS20541, WPD-900-RX                             |
| Brand Name            | ViewSonic                                       |
| Mode Difference       | Different models distribute to different areas. |
| Power Source          | Supplied from USB port.                         |
| Power Rating          | DC 5V/ 0.5A                                     |
| Operation Band        | 2400 MHz ~ 2483.5 MHz                           |
| Operation Frequency   | 2412 MHz ~ 2462 MHz                             |
|                       | IEEE 802.11b: DSSS                              |
| Modulation Technology | IEEE 802.11g: OFDM                              |
|                       | IEEE 802.11n: OFDM                              |
|                       | IEEE 802.11b: 11/5.5/2/1 Mbps                   |
| Transfer Rate         | IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps        |
|                       | IEEE 802.11n: up to 72.2 Mbps                   |
|                       | IEEE 802.11b: 18.16 dBm (0.0655 W)              |
| Output Power (Max).   | IEEE 802.11g: 15.21 dBm (0.0332 W)              |
|                       | IEEE 802.11n (HT20): 15.34 dBm (0.0342 W)       |
| Test Software Version | RTL8723FU MV Version 0.0001.1020.2018           |
| Test Model            | VS20541                                         |
| Sample Status         | Engineering Sample                              |
| EUT Modification(s)   | N/A                                             |

#### NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

## (2) Channel List:

| (Z) Offarition Liot.                                            |                    |         |                    |         |                    |  |  |  |
|-----------------------------------------------------------------|--------------------|---------|--------------------|---------|--------------------|--|--|--|
| CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n (HT20) |                    |         |                    |         |                    |  |  |  |
| Channel                                                         | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |  |  |  |
| 01                                                              | 2412               | 05      | 2432               | 09      | 2452               |  |  |  |
| 02                                                              | 2417               | 06      | 2437               | 10      | 2457               |  |  |  |
| 03                                                              | 2422               | 07      | 2442               | 11      | 2462               |  |  |  |
| 04                                                              | 2427               | 08      | 2447               | -       | -                  |  |  |  |

## (3) Table for Filed Antenna:

| Antenna | Brand Name                                        | Model Name  | Type | Frequency (MHz) | Gain (dBi) |
|---------|---------------------------------------------------|-------------|------|-----------------|------------|
| 1       | Shenzhen<br>RedbirdTek<br>Technology Co.,<br>Ltd. | ANT-PCB-011 | PIFA | 2400-2483.5     | -0.8       |

## Note:

- (a) The EUT incorporates a CDD function. Physically, the EUT provides one completed transmitters and receivers (1T1R)
- (b) Directional Gain=-0.8 dBi. (The value is declared by manufacturer.) < 6dBi.

For Power Spectral Density

The Direction Gain is less than 6dBi, so power spectral density limits will not be reduced.

(c) For Output Power

For Nant= 1<5, Direction Gain=  $G_{ANT} + 0 = -0.8 + 0 = -0.8$ 

The Direction Gain is less than 6dBi, so output power limits will not be reduced.

Project No.: 2501T005 Page 9 of 82 Report Version: R00



(4) The above Antenna information is derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

(5)

| TX Mode Operating Mode | 1TX        |
|------------------------|------------|
| IEEE 802.11b           | V (Ant. 1) |
| IEEE 802.11g           | V (Ant. 1) |
| IEEE 802.11n (HT20)    | V (Ant. 1) |

Project No.: 2501T005 Page 10 of 82 Report Version: R00

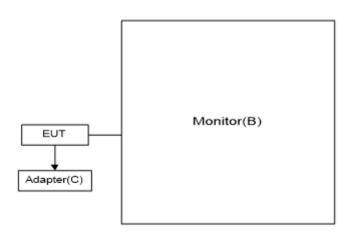
## 2.2 TEST MODES

| Test Items                                   | Test mode                   | Channel  | Note     |
|----------------------------------------------|-----------------------------|----------|----------|
| AC power line conducted emissions            | Normal/Idle                 | -        | -        |
| Transmitter Radiated Emissions (below 1GHz)  | TX Mode_IEEE 802.11b        | 06       | -        |
| - W - B - II - I - I - I                     | TX Mode_IEEE 802.11b        |          |          |
| Transmitter Radiated Emissions (above 1GHz)  | TX Mode_IEEE 802.11g        | 01/11    | Bandedge |
| (45575 15112)                                | TX Mode_IEEE 802.11n (HT20) |          |          |
| T B I                                        | TX Mode_IEEE 802.11b        |          | Harmonic |
| Transmitter Radiated Emissions (above 1GHz)  | TX Mode_IEEE 802.11g        | 01/06/11 |          |
| (abovo Foriz)                                | TX Mode_IEEE 802.11n (HT20) |          |          |
| T B I                                        | TX Mode_IEEE 802.11b        |          |          |
| Transmitter Radiated Emissions (above 18GHz) | TX Mode_IEEE 802.11g        | 01/06/11 | Harmonic |
| (45000 100112)                               | TX Mode_IEEE 802.11n (HT20) |          |          |
| Bandwidth &                                  | TX Mode_IEEE 802.11b        |          |          |
| Output Power & Power Spectral Density &      | TX Mode_IEEE 802.11g        | 01/06/11 | -        |
| Antenna conducted Spurious Emission          | TX Mode_IEEE 802.11n (HT20) |          |          |

## NOTE:

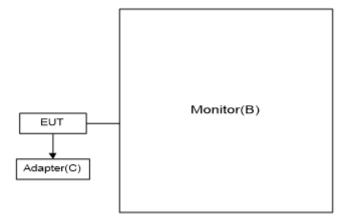
- (1) For radiated emission band edge test, both Vertical and Horizontal are evaluated, but only the worst case (Horizontal) is recorded.
- (2) All X, Y and Z axes are evaluated, but only the worst case (Y axis) is recorded.

Project No.: 2501T005 Page 11 of 82 Report Version: R00




# 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.


AC power line conducted emissions





## **Radiated Emissions**

## VS20541



Project No.: 2501T005 Page 12 of 82 Report Version: R00



# 2.4 SUPPORT UNITS

| Item | Equipment      | Brand | Model No.    | Remarks                |
|------|----------------|-------|--------------|------------------------|
| В    | 27" 4K Monitor | DELL  | P2723QE      | Furnished by test lab. |
| С    | Adapter        | 20W   | GS-W18A0922A | Furnished by test lab. |

| Ι. |      |                |              |        |          |                        |
|----|------|----------------|--------------|--------|----------|------------------------|
|    | Item | Cable Type     | Ferrite Core | Length | Shielded | Remarks                |
|    | 1    | extension cord | NO           | N/A    | NO       | Furnished by test lab. |

Project No.: 2501T005 Page 13 of 82 Report Version: R00



#### 3 AC POWER LINE CONDUCTED EMISSIONS TEST

#### 3.1 LIMIT

| Frequency  | Limit (dBμV) |           |  |
|------------|--------------|-----------|--|
| (MHz)      | Quasi-peak   | Average   |  |
| 0.15 - 0.5 | 66 - 56 *    | 56 - 46 * |  |
| 0.50 - 5.0 | 56           | 46        |  |
| 5.0 - 30.0 | 60           | 50        |  |

#### NOTE:

(1) The tighter limit applies at the band edges.

(2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

(3) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

| Reading Level |   | Correct Factor |   | Measurement Value |
|---------------|---|----------------|---|-------------------|
| (dBµV)        |   | (dB)           |   | (dBµV)            |
| 38.22         | + | 3.45           | = | 41.67             |

| Measurement Value |   | Limit Value |   | Margin Level |
|-------------------|---|-------------|---|--------------|
| (dBµV)            |   | (dBµV)      |   | (dB)         |
| 41.67             | - | 60          | = | -18.33       |

The following table is the setting of the receiver.

| Receiver Parameter | Setting  |
|--------------------|----------|
| Attenuation        | 10 dB    |
| Start Frequency    | 0.15 MHz |
| Stop Frequency     | 30 MHz   |
| IF Bandwidth       | 9 KHz    |

#### 3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).

All other support equipment were powered from an additional LISN(s).

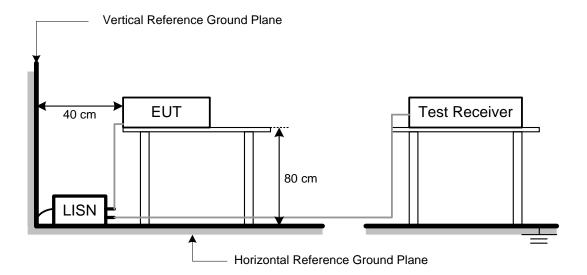
The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- c. Excess I/O cables that are not connected to a peripheral shall be bundled in the center.

The end of the cable will be terminated, using the correct terminating impedance.

The overall length shall not exceed 1 m.

- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


#### NOTE:

- (1) In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

Project No.: 2501T005 Page 14 of 82 Report Version: R00



## 3.3 TEST SETUP



# 3.4 TEST RESULT

Please refer to the **APPENDIX A**.



## **4 RADIATED EMISSIONS TEST**

## **4.1 LIMIT**

In case the emission fall within the restricted band specified on 15.205, then the 15.209 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSIONS MEASUREMENT (9 kHz to 1000 MHz)

| Frequency<br>(MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) |
|--------------------|-----------------------------------|-------------------------------|
| 0.009~0.490        | 2400/F(KHz)                       | 300                           |
| 0.490~1.705        | 24000/F(KHz)                      | 30                            |
| 1.705~30.0         | 30                                | 30                            |
| 30~88              | 100                               | 3                             |
| 88~216             | 150                               | 3                             |
| 216~960            | 200                               | 3                             |
| 960~1000           | 500                               | 3                             |

LIMITS OF RADIATED EMISSIONS MEASUREMENT (Above 1000 MHz)

| Frequency<br>(MHz) |      | Emissions<br>V/m) | Measurement Distance |  |
|--------------------|------|-------------------|----------------------|--|
| (IVITIZ)           | Peak | Average           | (meters)             |  |
| Above 1000         | 74   | 54                | 3                    |  |

## NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m) =20log Emission level (uV/m).
- (4) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain (if use)

Margin Level = Measurement Value - Limit Value

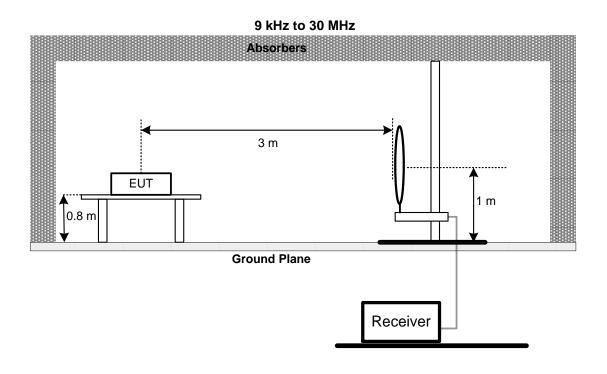
Calculation example:

| Reading Level<br>(dBµV) |   | Correct Factor (dB/m) |   | Measurement Value<br>(dBµV/m) |
|-------------------------|---|-----------------------|---|-------------------------------|
| 19.11                   | + | 2.11                  | = | 21.22                         |
|                         |   |                       |   |                               |
| Measurement Value       |   | Limit Value           |   | Margin Level                  |

|   | Measurement Value |   | Limit Value |   | Margin Level |
|---|-------------------|---|-------------|---|--------------|
|   | (dBµV/m)          |   | (dBµV/m)    |   | (dB)         |
| Ī | 21.22             | - | 40          | = | -18.78       |

| Spectrum Parameter            | Setting                |
|-------------------------------|------------------------|
| Attenuation                   | Auto                   |
| Start Frequency               | 1000 MHz               |
| Stop Frequency                | 10th carrier harmonic  |
| RBW / VBW                     | 1MHz / 3MHz for Peak,  |
| (Emission in restricted band) | 1MHz / 1/T for Average |

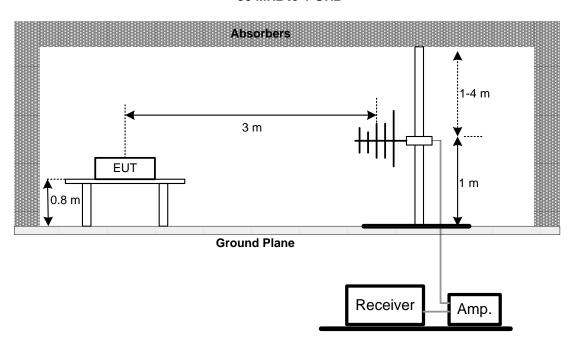
| Spectrum Parameter     | Setting                           |
|------------------------|-----------------------------------|
| Attenuation            | Auto                              |
| Start ~ Stop Frequency | 9KHz~90KHz for PK/AVG detector    |
| Start ~ Stop Frequency | 90KHz~110KHz for QP detector      |
| Start ~ Stop Frequency | 110KHz~490KHz for PK/AVG detector |
| Start ~ Stop Frequency | 490KHz~30MHz for QP detector      |
| Start ~ Stop Frequency | 30MHz~1000MHz for QP detector     |


Project No.: 2501T005 Page 16 of 82 Report Version: R00

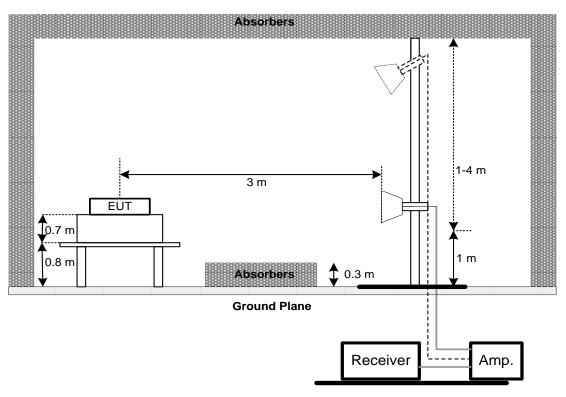


#### 4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8 m or 1.5 m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.


#### 4.3 TEST SETUP




Project No.: 2501T005 Page 17 of 82 Report Version: R00



## 30 MHz to 1 GHz



## **Above 1 GHz**





## 4.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

## 4.5 TEST RESULT - BELOW 30 MHZ

There were no emissions found below 30 MHz within 20 dB of the limit.

## 4.6 TEST RESULT - 30 MHZ TO 1 GHZ

Please refer to the APPENDIX B.

## 4.7 TEST RESULT - ABOVE 1 GHZ

Please refer to the APPENDIX C.

#### NOTE:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

Project No.: 2501T005 Page 19 of 82 Report Version: R00



## **5 BANDWIDTH TEST**


## **5.1 LIMIT**

| FCC Part15, Subpart C (15.247) |                |         |  |
|--------------------------------|----------------|---------|--|
| Section                        | Test Item      | Limit   |  |
| 15.247(a)                      | 6 dB Bandwidth | 500 kHz |  |

## **5.2 TEST PROCEDURE**

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = 2.5 ms.

## 5.3 TEST SETUP



## 5.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

## 5.5 TEST RESULT

Please refer to the APPENDIX D.

Project No.: 2501T005 Page 20 of 82 Report Version: R00



## 6 OUTPUT POWER TEST

## 6.1 LIMIT

| FCC Part15, Subpart C (15.247) |                      |                 |  |
|--------------------------------|----------------------|-----------------|--|
| Section                        | Limit                |                 |  |
| 15.247(b)                      | Maximum Output Power | 1 Watt or 30dBm |  |

#### **6.2 TEST PROCEDURE**

- a. The EUT was directly connected to the power meter and antenna output port as show in the block diagram below.
- b. The maximum peak conducted output power was performed in accordance with FCC KDB 558074 D01 15.247 Meas Guidance.
- c. Subclause 11.9.1.1 of ANSI C63.10 is applied. The maximum peak conducted output power may be
  measured using a broadband peak RF power meter.
  The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and
  shall use a fast-responding diode detector.

## 6.3 TEST SETUP



## 6.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

## 6.5 TEST RESULT

Please refer to the APPENDIX E.

Project No.: 2501T005 Page 21 of 82 Report Version: R00



## 7 POWER SPECTRAL DENSITY

## **7.1 LIMIT**

| FCC Part15, Subpart C (15.247) |                        |                         |  |  |
|--------------------------------|------------------------|-------------------------|--|--|
| Section                        | Test Item              | Limit                   |  |  |
| 15.247(e)                      | Power Spectral Density | 8 dBm<br>(in any 3 kHz) |  |  |

## 7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 3 kHz, VBW = 10 kHz, Sweep time = Auto.

## 7.3 TEST SETUP



## 7.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

## 7.5 TEST RESULT

Please refer to the APPENDIX F.

Project No.: 2501T005 Page 22 of 82 Report Version: R00



## 8 ANTENNA CONDUCTED SPURIOUS EMISSIONS TEST


## **8.1 LIMIT**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

## **8.2 TEST PROCEDURE**

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. Spectrum Setting: RBW = 100 kHz, VBW=300 kHz, Sweep time = Auto.
- c. Offset = antenna gain + cable loss.

#### 8.3 TEST SETUP



#### 8.4 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

#### 8.5 TEST RESULT

Please refer to the APPENDIX G.

Project No.: 2501T005 Page 23 of 82 Report Version: R00



# 9 LIST OF MEASURING EQUIPMENTS

|      | AC Power Line Conducted Emissions |              |                                     |            |                    |                     |  |
|------|-----------------------------------|--------------|-------------------------------------|------------|--------------------|---------------------|--|
| Item | Kind of<br>Equipment              | Manufacturer | Type No.                            | Serial No. | Calibrated<br>Date | Calibrated<br>Until |  |
| 1    | TWO-LINE<br>V-NETWORK             | R&S          | ENV216                              | 101339     | 2024/3/28          | 2025/3/27           |  |
| 2    | Test Cable                        | EMCI         | EMCRG142S-SM<br>-SM-5000            | 230609     | 2024/8/10          | 2025/8/9            |  |
| 3    | Test Cable                        | EMCI         | EMC104-SM-SM-<br>6000               | 240635     | 2024/7/15          | 2025/7/14           |  |
| 4    | Measurement<br>Software           | Farad        | EZ_EMC<br>(Ver.E-LAB-5A2.2<br>2021) | N/A        | N/A                | N/A                 |  |

|      | Radiated Emissions      |              |                             |             |                    |                     |  |
|------|-------------------------|--------------|-----------------------------|-------------|--------------------|---------------------|--|
| Item | Kind of<br>Equipment    | Manufacturer | Type No.                    | Serial No.  | Calibrated<br>Date | Calibrated<br>Until |  |
| 1    | Log-Bicon<br>Antenna    | Schwarzbeck  | VULB 9168                   | 01577       | 2024/7/17          | 2025/7/16           |  |
| 2    | Attenuator              | EMCI         | EMCI-N-6-05                 | AT-N0575    | 2024/7/17          | 2025/7/16           |  |
| 3    | Pre-Amplifier           | EMCI         | EMC001330                   | 980909      | 2024/8/9           | 2025/8/8            |  |
| 4    | Test Cable              | EMCI         | EMC104-SM-SM-<br>6000       | 230540      | 2024/8/10          | 2025/8/9            |  |
| 5    | Test Cable              | EMCI         | EMC104-SM-SM-<br>2500       | 230541      | 2024/8/10          | 2025/8/9            |  |
| 6    | Test Cable              | EMCI         | EMC104-SM-SM-<br>1000       | 230546      | 2024/8/10          | 2025/8/9            |  |
| 7    | MXE EMI<br>Receiver     | Keysight     | N9038A                      | MY50018009  | 2024/8/30          | 2025/8/29           |  |
| 8    | Horn Antenna            | RFSPIN       | DRH18-E                     | KV2D02A18ES | 2024/6/7           | 2025/6/6            |  |
| 9    | Pre-Amplifier           | EMCI         | EMC118A45SE                 | 980962      | 2024/8/9           | 2025/8/8            |  |
| 10   | Horn Antenna            | Schwarzbeck  | BBHA 9170                   | 01228       | 2024/6/12          | 2025/6/11           |  |
| 11   | Pre-Amplifier           | EMCI         | EMC184045SE                 | 980918      | 2024/8/9           | 2025/8/8            |  |
| 12   | Test Cable              | EMCI         | EMC104-35M-35<br>M-1000     | 230547      | 2024/8/10          | 2025/8/9            |  |
| 13   | Test Cable              | EMCI         | EMC104-35M-35<br>M-4700     | 230548      | 2024/8/10          | 2025/8/9            |  |
| 14   | Measurement<br>Software | Farad        | EZ_EMC (Ver.<br>NB-03A1-01) | N/A         | N/A                | N/A                 |  |

Project No.: 2501T005 Page 24 of 82 Report Version: R00



|      |                      |              | Bandwidth |            |                    |                     |
|------|----------------------|--------------|-----------|------------|--------------------|---------------------|
| Item | Kind of<br>Equipment | Manufacturer | Type No.  | Serial No. | Calibrated<br>Date | Calibrated<br>Until |
| 1    | MXE EMI<br>Receiver  | Keysight     | N9038A    | MY50018009 | 2024/8/30          | 2025/8/29           |

|      |                      |              | Output Power |            |                    |                     |
|------|----------------------|--------------|--------------|------------|--------------------|---------------------|
| Item | Kind of<br>Equipment | Manufacturer | Type No.     | Serial No. | Calibrated<br>Date | Calibrated<br>Until |
| 1    | MXE EMI<br>Receiver  | Keysight     | N9038A       | MY50018009 | 2024/8/30          | 2025/8/29           |
|      |                      |              |              |            |                    |                     |

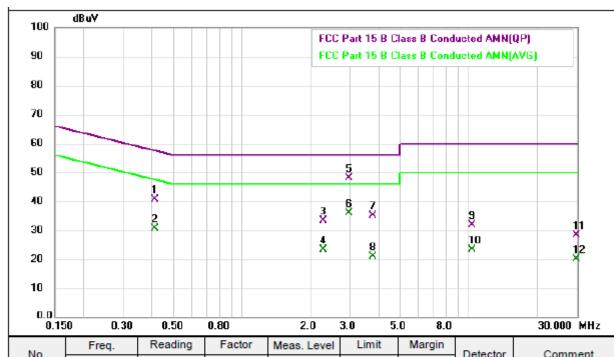
| Power Spectral Density |                      |              |          |            |                    |                     |
|------------------------|----------------------|--------------|----------|------------|--------------------|---------------------|
| Item                   | Kind of<br>Equipment | Manufacturer | Type No. | Serial No. | Calibrated<br>Date | Calibrated<br>Until |
| 1                      | MXE EMI<br>Receiver  | Keysight     | N9038A   | MY50018009 | 2024/8/30          | 2025/8/29           |

|      | Antenna conducted Spurious Emission |              |          |            |                    |                     |  |
|------|-------------------------------------|--------------|----------|------------|--------------------|---------------------|--|
| Item | Kind of<br>Equipment                | Manufacturer | Type No. | Serial No. | Calibrated<br>Date | Calibrated<br>Until |  |
| 1    | MXE EMI<br>Receiver                 | Keysight     | N9038A   | MY50018009 | 2024/8/30          | 2025/8/29           |  |

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

Project No.: 2501T005 Page 25 of 82 Report Version: R00




| R                                                                    | eport No.: BTL-FCC-2-2501T005 |
|----------------------------------------------------------------------|-------------------------------|
|                                                                      |                               |
| 10 EUT TEST PHOTO                                                    |                               |
| Please refer to document Appendix No.TP-2501T005-FCC-2 (APPENDIX-T   | EST PHOTOS).                  |
|                                                                      |                               |
| 11 EUT PHOTOS                                                        |                               |
| Please refer to document Appendix No.EP-2501T005-3, EP-2501T005-4(AF | PPENDIX-EUT PHOTOS).          |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |
|                                                                      |                               |

Project No.: 2501T005 Page 26 of 82 Report Version: R00



# APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

| Test Mode      | Normal | Tested Date | 2025/2/11 |
|----------------|--------|-------------|-----------|
| Test Frequency | -      | Phase       | Line      |



| N  | 0. | Freq.     | Reading | Factor | Meas. Level | Limit  | Margin | Detector | Comment |
|----|----|-----------|---------|--------|-------------|--------|--------|----------|---------|
| 14 | 0. | (MHz)     | (dBuV)  | (dB)   | (dBuV)      | (dBuV) | (dB)   | Detector | Comment |
| 1  |    | 0.411000  | 31.00   | 9.64   | 40.64       | 57.63  | -16.99 | QP       |         |
| 2  |    | 0.411000  | 21.10   | 9.64   | 30.74       | 47.63  | -16.89 | AVG      |         |
| 3  |    | 2.280750  | 23.80   | 9.71   | 33.51       | 56.00  | -22.49 | QP       |         |
| 4  |    | 2.280750  | 13.70   | 9.71   | 23.41       | 46.00  | -22.59 | AVG      |         |
| 5  | *  | 2.955750  | 38.50   | 9.72   | 48.22       | 56.00  | -7.78  | QP       |         |
| 6  |    | 2.955750  | 26.30   | 9.72   | 36.02       | 46.00  | -9.98  | AVG      |         |
| 7  |    | 3.786000  | 25.30   | 9.74   | 35.04       | 56.00  | -20.96 | QP       |         |
| 8  |    | 3.786000  | 11.30   | 9.74   | 21.04       | 46.00  | -24.96 | AVG      |         |
| 9  |    | 10.371750 | 22.00   | 9.85   | 31.85       | 60.00  | -28.15 | QP       |         |
| 10 |    | 10.371750 | 13.60   | 9.85   | 23.45       | 50.00  | -26.55 | AVG      |         |
| 11 |    | 29.798250 | 18.50   | 9.85   | 28.35       | 60.00  | -31.65 | QP       |         |
| 12 |    | 29.798250 | 10.20   | 9.85   | 20.05       | 50.00  | -29.95 | AVG      |         |

## **REMARKS**:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

Project No.: 2501T005 Page 27 of 82 Report Version: R00



| Test Mode      | Normal | Tested Date | 2025/2/11 |
|----------------|--------|-------------|-----------|
| Test Frequency | -      | Phase       | Neutral   |



60.00

50.00

-30.16

-29.26

QP

AVG

# REMARKS:

11

(1) Measurement Value = Reading Level + Correct Factor.

19.80

10.70

10.04

10.04

(2) Margin Level = Measurement Value - Limit Value.

29.978250

29.978250

(3) \*: Maximum data x: Over limit !: Over margin


29.84

20.74



# APPENDIX B RADIATED EMISSIONS - 30 MHZ TO 1 GHZ

| Test Mode      | IEEE 802.11 b | Test Date    | 2025/2/7 |
|----------------|---------------|--------------|----------|
| Test Frequency | CH06:2437MHz  | Polarization | Vertical |
| Temp           | 21°C          | Hum.         | 60%      |

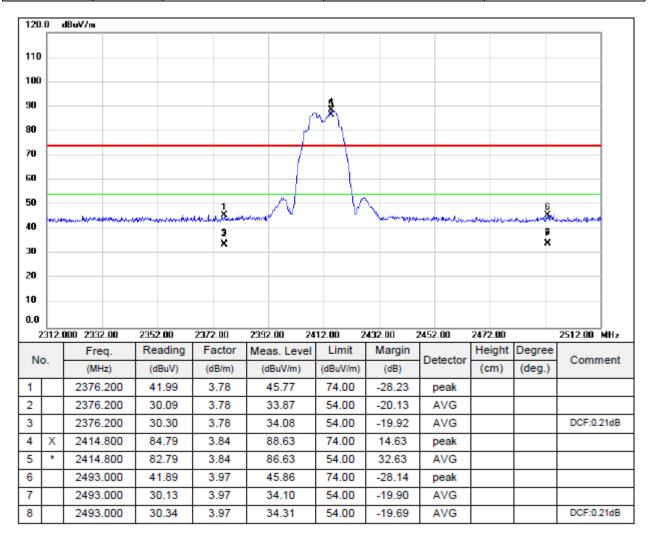


## **REMARKS:**

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

Project No.: 2501T005 Page 29 of 82 Report Version: R00




| Test Mode      | IEEE 802.11 b | Test Date    | 2025/2/7   |
|----------------|---------------|--------------|------------|
| Test Frequency | CH06:2437MHz  | Polarization | Horizontal |
| Temp           | 21°C          | Hum.         | 60%        |

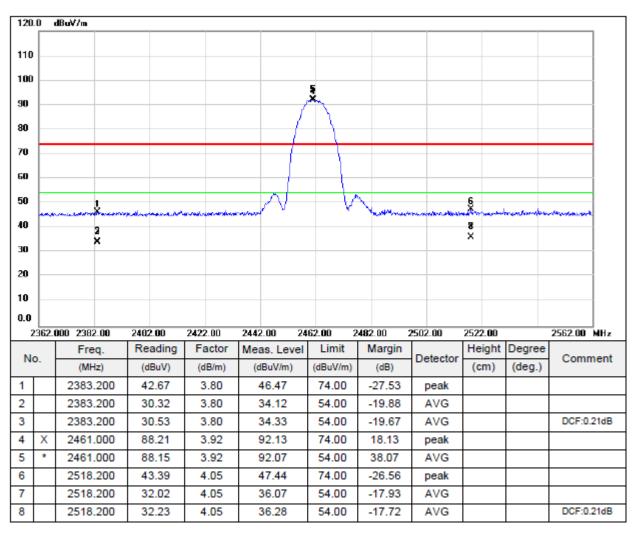


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

# APPENDIX C RADIATED EMISSIONS - ABOVE 1 GHZ

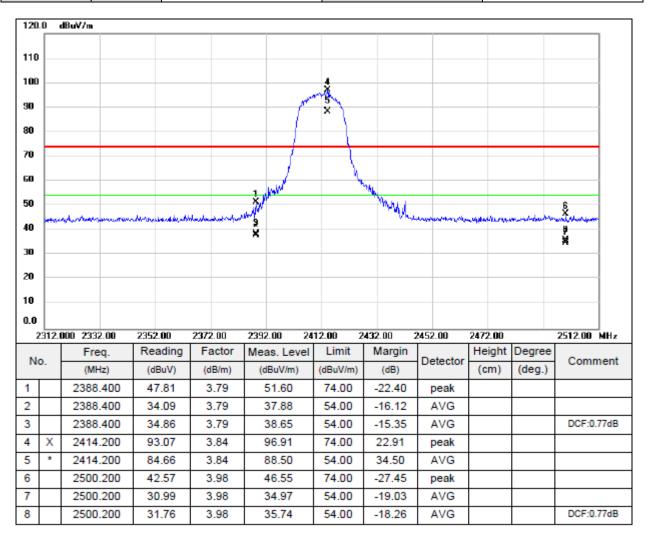
| Test Mode      | IEEE 802.11b | Test Date    | 2025/1/17  |
|----------------|--------------|--------------|------------|
| Test Frequency | 2412MHz      | Polarization | Horizontal |
| Temp           | 21°C         | Hum.         | 62%        |




#### **REMARKS:**

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) X and \* represent fundamental frequency and with no limit.

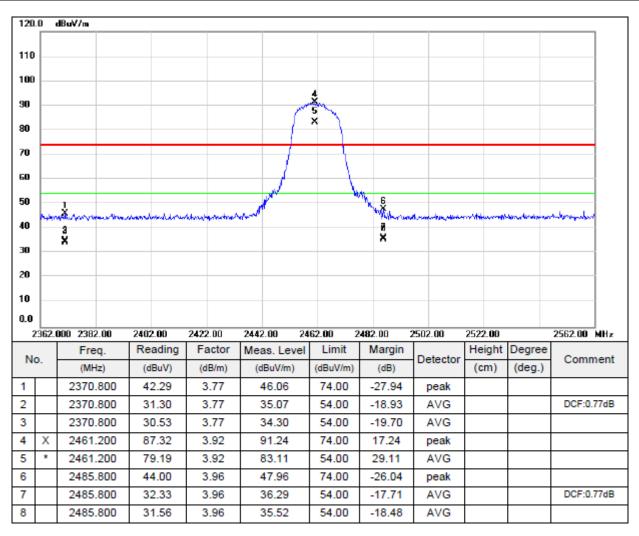
Project No.: 2501T005 Page 31 of 82 Report Version: R00




| Test Mode      | IEEE 802.11b | Test Date    | 2025/1/17  |
|----------------|--------------|--------------|------------|
| Test Frequency | 2462MHz      | Polarization | Horizontal |
| Temp           | 21°C         | Hum.         | 62%        |



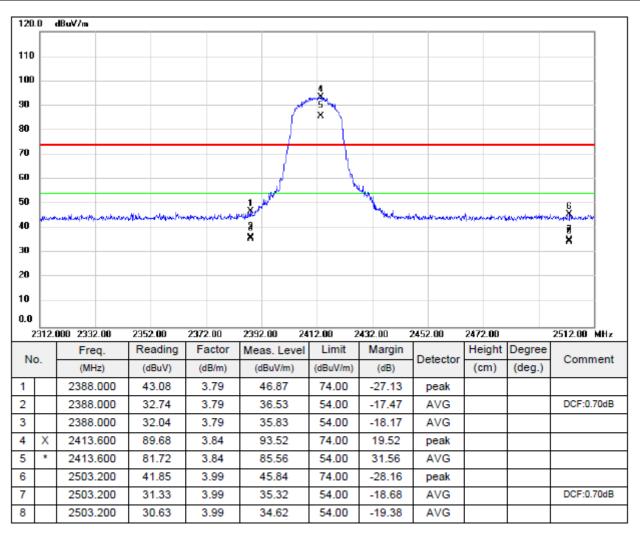
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) X and \* represent fundamental frequency and with no limit.


| Test Mode      | IEEE 802.11g   | Test Date    | 2025/1/17  |
|----------------|----------------|--------------|------------|
| Test Frequency | CH01: 2412 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 62%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) X and \* represent fundamental frequency and with no limit.

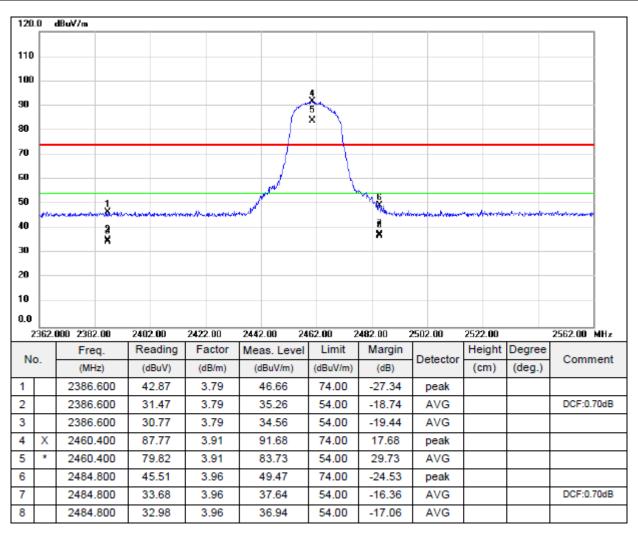



| Test Mode      | IEEE 802.11g   | Test Date    | 2025/1/17  |
|----------------|----------------|--------------|------------|
| Test Frequency | CH11: 2462 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 62%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) X and \* represent fundamental frequency and with no limit.




| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/1/17  |
|----------------|---------------------|--------------|------------|
| Test Frequency | CH01: 2412 MHz      | Polarization | Horizontal |
| Temp           | 21°C                | Hum.         | 62%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) X and \* represent fundamental frequency and with no limit.



| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/1/17  |
|----------------|---------------------|--------------|------------|
| Test Frequency | CH11: 2462 MHz      | Polarization | Horizontal |
| Temp           | 21°C                | Hum.         | 62%        |



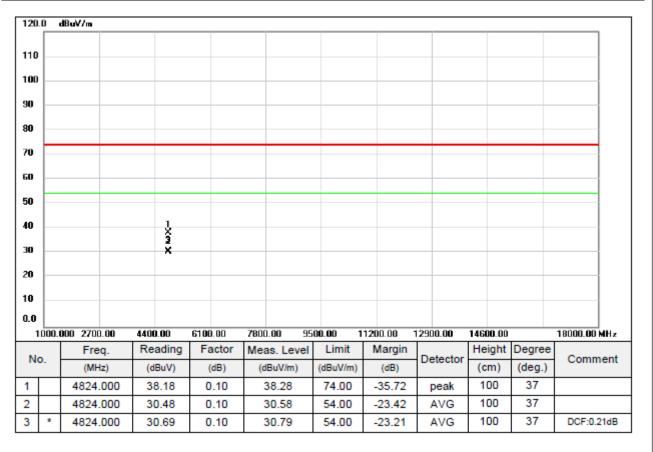
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) X and \* represent fundamental frequency and with no limit.



#### Above 1G

| Test Mode      | IEEE 802.11b   | Test Date    | 2025/2/4 |
|----------------|----------------|--------------|----------|
| Test Frequency | CH01: 2412 MHz | Polarization | Vertical |
| Temp           | 21°C           | Hum.         | 59%      |




- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11b   | Test Date    | 2025/2/4   |
|----------------|----------------|--------------|------------|
| Test Frequency | CH01: 2412 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 59%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11b   | Test Date    | 2025/2/4 |
|----------------|----------------|--------------|----------|
| Test Frequency | CH06: 2437 MHz | Polarization | Vertical |
| Temp           | 21°C           | Hum.         | 59%      |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11b   | Test Date    | 2025/2/4   |
|----------------|----------------|--------------|------------|
| Test Frequency | CH06: 2437 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 59%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11b   | Test Date    | 2025/2/4 |
|----------------|----------------|--------------|----------|
| Test Frequency | CH11: 2462 MHz | Polarization | Vertical |
| Temp           | 21°C           | Hum.         | 59%      |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11b   | Test Date    | 2025/2/4   |
|----------------|----------------|--------------|------------|
| Test Frequency | CH11: 2462 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 59%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin



| Test Mode      | IEEE 802.11g   | Test Date    | 2025/2/4 |
|----------------|----------------|--------------|----------|
| Test Frequency | CH01: 2412 MHz | Polarization | Vertical |
| Temp           | 21°C           | Hum.         | 59%      |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin



| Test Mode      | IEEE 802.11g   | Test Date    | 2025/2/4   |
|----------------|----------------|--------------|------------|
| Test Frequency | CH01: 2412 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 59%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.(3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11g   | Test Date    | 2025/2/4 |
|----------------|----------------|--------------|----------|
| Test Frequency | CH06: 2437 MHz | Polarization | Vertical |
| Temp           | 21°C           | Hum.         | 59%      |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin



| Test Mode      | IEEE 802.11g   | Test Date    | 2025/2/4   |
|----------------|----------------|--------------|------------|
| Test Frequency | CH06: 2437 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 59%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin


| Test Mode      | IEEE 802.11g   | Test Date    | 2025/2/4 |
|----------------|----------------|--------------|----------|
| Test Frequency | CH11: 2462 MHz | Polarization | Vertical |
| Temp           | 21°C           | Hum.         | 59%      |

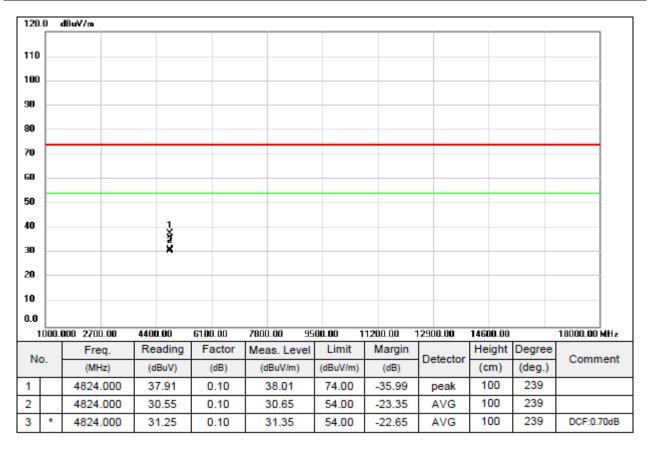


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin



| Test Mode      | IEEE 802.11g   | Test Date    | 2025/2/4   |
|----------------|----------------|--------------|------------|
| Test Frequency | CH11: 2462 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 59%        |




- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/2/4 |
|----------------|---------------------|--------------|----------|
| Test Frequency | CH01: 2412 MHz      | Polarization | Vertical |
| Temp           | 21°C                | Hum.         | 59%      |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/2/4   |
|----------------|---------------------|--------------|------------|
| Test Frequency | CH01: 2412 MHz      | Polarization | Horizontal |
| Temp           | 21°C                | Hum.         | 59%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/2/4 |
|----------------|---------------------|--------------|----------|
| Test Frequency | CH06: 2437 MHz      | Polarization | Vertical |
| Temp           | 21°C                | Hum.         | 59%      |



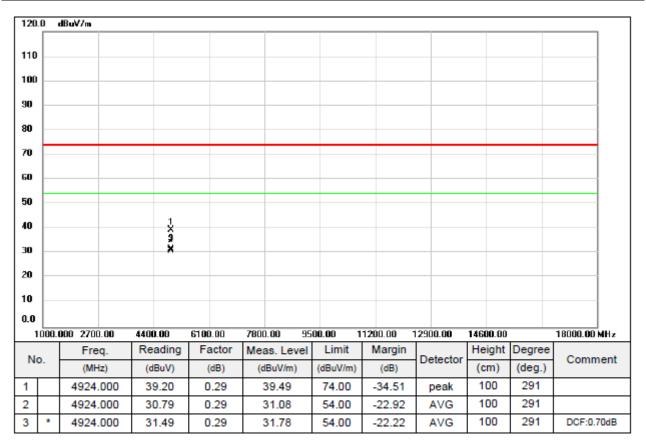
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/2/4   |
|----------------|---------------------|--------------|------------|
| Test Frequency | CH06: 2437 MHz      | Polarization | Horizontal |
| Temp           | 21°C                | Hum.         | 59%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin




| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/2/4 |
|----------------|---------------------|--------------|----------|
| Test Frequency | CH11: 2462 MHz      | Polarization | Vertical |
| Temp           | 21°C                | Hum.         | 59%      |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin



| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/2/4   |
|----------------|---------------------|--------------|------------|
| Test Frequency | CH11: 2462 MHz      | Polarization | Horizontal |
| Temp           | 21°C                | Hum.         | 59%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.(3) \*: Maximum data x: Over limit !: Over margin



#### Above 18G

| Test Mode      | IEEE 802.11b   | Test Date    | 2025/2/4 |
|----------------|----------------|--------------|----------|
| Test Frequency | CH01: 2412 MHz | Polarization | Vertical |
| Temp           | 21°C           | Hum.         | 59%      |



#### **REMARKS:**

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

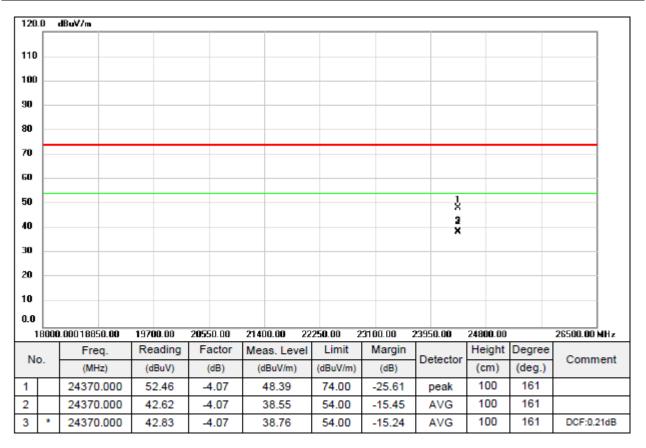
Project No.: 2501T005 Page 55 of 82 Report Version: R00




| Test Mode      | IEEE 802.11b   | Test Date    | 2025/2/4   |
|----------------|----------------|--------------|------------|
| Test Frequency | CH01: 2412 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 59%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.(3) \*: Maximum data x: Over limit !: Over margin


| Test Mode      | IEEE 802.11b   | Test Date    | 2025/2/4 |
|----------------|----------------|--------------|----------|
| Test Frequency | CH06: 2437 MHz | Polarization | Vertical |
| Temp           | 21°C           | Hum.         | 59%      |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.(3) \*: Maximum data x: Over limit !: Over margin



| Test Mode      | IEEE 802.11b   | Test Date    | 2025/2/4   |
|----------------|----------------|--------------|------------|
| Test Frequency | CH06: 2437 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 59%        |



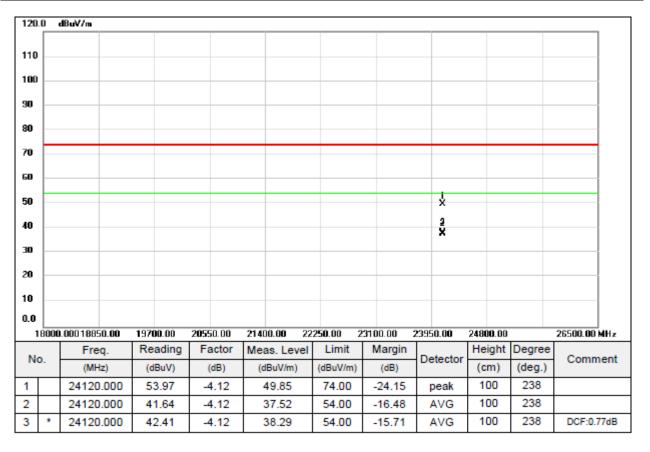
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.(3) \*: Maximum data x: Over limit !: Over margin




| Test Mode      | IEEE 802.11b   | Test Date    | 2025/2/4 |
|----------------|----------------|--------------|----------|
| Test Frequency | CH11: 2462 MHz | Polarization | Vertical |
| Temp           | 21°C           | Hum.         | 59%      |

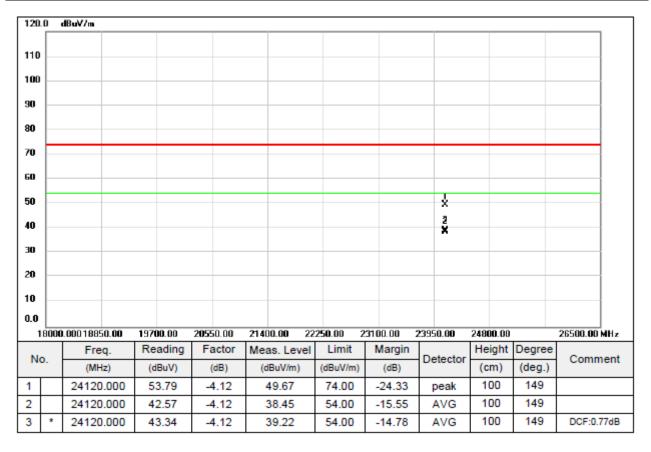


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin




| Test Mode      | IEEE 802.11b   | Test Date    | 2025/2/4   |
|----------------|----------------|--------------|------------|
| Test Frequency | CH11: 2462 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 59%        |




- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11g   | Test Date    | 2025/2/4 |
|----------------|----------------|--------------|----------|
| Test Frequency | CH01: 2412 MHz | Polarization | Vertical |
| Temp           | 21°C           | Hum.         | 59%      |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin


| Test Mode      | IEEE 802.11g   | Test Date    | 2025/2/4   |
|----------------|----------------|--------------|------------|
| Test Frequency | CH01: 2412 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 59%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin



| Test Mode      | IEEE 802.11g   | Test Date    | 2025/2/4 |
|----------------|----------------|--------------|----------|
| Test Frequency | CH06: 2437 MHz | Polarization | Vertical |
| Temp           | 21°C           | Hum.         | 59%      |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin



| Test Mode      | IEEE 802.11g   | Test Date    | 2025/2/4   |
|----------------|----------------|--------------|------------|
| Test Frequency | CH06: 2437 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 59%        |



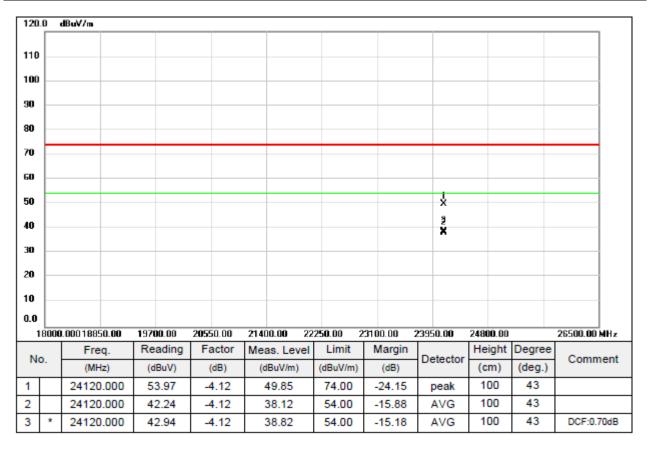
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin



| Test Mode      | IEEE 802.11g   | Test Date    | 2025/2/4 |
|----------------|----------------|--------------|----------|
| Test Frequency | CH11: 2462 MHz | Polarization | Vertical |
| Temp           | 21°C           | Hum.         | 59%      |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin




| Test Mode      | IEEE 802.11g   | Test Date    | 2025/2/4   |
|----------------|----------------|--------------|------------|
| Test Frequency | CH11: 2462 MHz | Polarization | Horizontal |
| Temp           | 21°C           | Hum.         | 59%        |

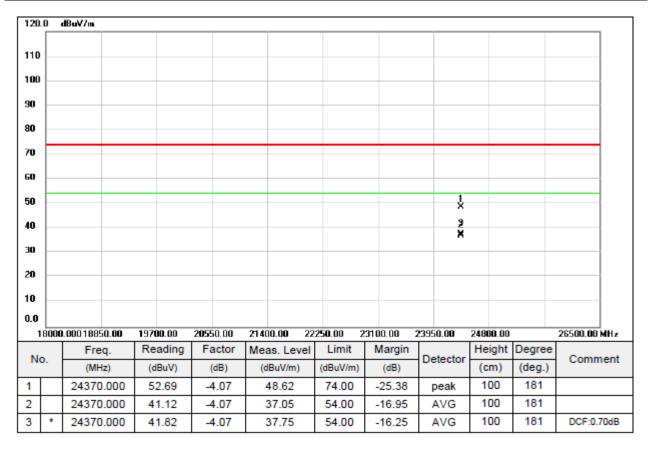


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/2/4 |
|----------------|---------------------|--------------|----------|
| Test Frequency | CH01: 2412 MHz      | Polarization | Vertical |
| Temp           | 21°C                | Hum.         | 59%      |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin




| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/2/4   |
|----------------|---------------------|--------------|------------|
| Test Frequency | CH01: 2412 MHz      | Polarization | Horizontal |
| Temp           | 21°C                | Hum.         | 59%        |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/2/4 |
|----------------|---------------------|--------------|----------|
| Test Frequency | CH06: 2437 MHz      | Polarization | Vertical |
| Temp           | 21°C                | Hum.         | 59%      |



- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/2/4   |
|----------------|---------------------|--------------|------------|
| Test Frequency | CH06: 2437 MHz      | Polarization | Horizontal |
| Temp           | 21°C                | Hum.         | 59%        |




- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/2/4 |
|----------------|---------------------|--------------|----------|
| Test Frequency | CH11: 2462 MHz      | Polarization | Vertical |
| Temp           | 21°C                | Hum.         | 59%      |

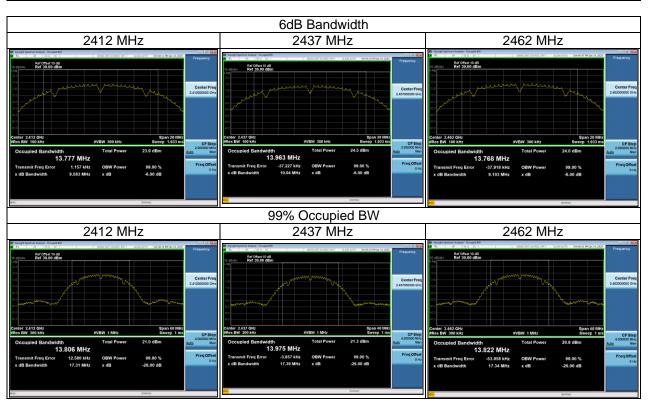


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) \*: Maximum data x: Over limit !: Over margin

| Test Mode      | IEEE 802.11n (HT20) | Test Date    | 2025/2/4   |
|----------------|---------------------|--------------|------------|
| Test Frequency | CH11: 2462 MHz      | Polarization | Horizontal |
| Temp           | 21°C                | Hum.         | 59%        |



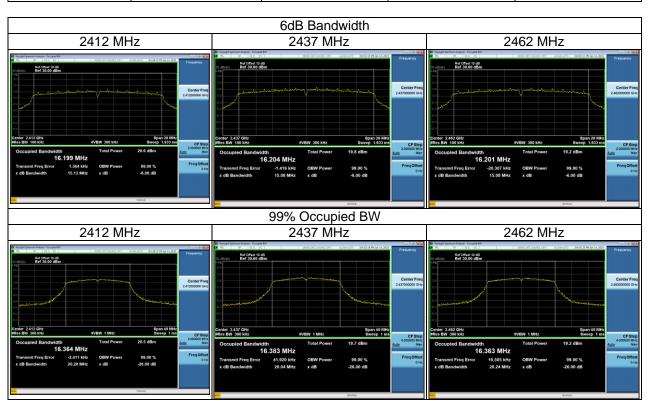
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.(3) \*: Maximum data x: Over limit !: Over margin






### APPENDIX D BANDWIDTH

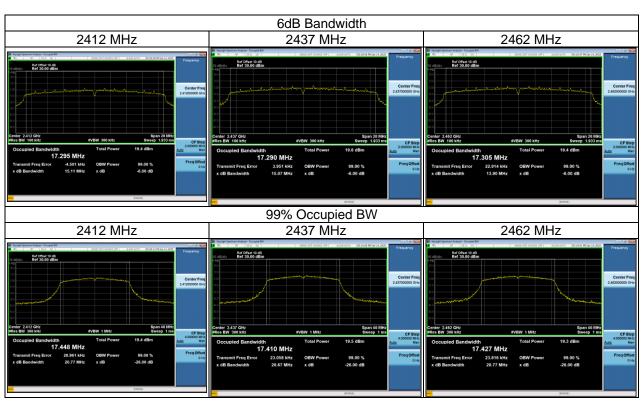
| Test Mode | IEEE 802.11b |
|-----------|--------------|
|-----------|--------------|


| Test Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | 99 % Occupied<br>Bandwidth<br>(MHz) | Minimum 6 dB<br>Bandwidth Limit<br>(kHz) | Result |
|-------------------------|-------------------------|-------------------------------------|------------------------------------------|--------|
| 2412                    | 9.58                    | 13.81                               | ≥ 500                                    | Pass   |
| 2437                    | 10.04                   | 13.98                               | ≥ 500                                    | Pass   |
| 2462                    | 9.10                    | 13.82                               | ≥ 500                                    | Pass   |





| Test Mode | IEEE 802.11g |  |  |
|-----------|--------------|--|--|
|-----------|--------------|--|--|


| Test Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | 99 % Occupied<br>Bandwidth<br>(MHz) | Minimum 6 dB<br>Bandwidth Limit<br>(kHz) | Result |
|-------------------------|-------------------------|-------------------------------------|------------------------------------------|--------|
| 2412                    | 15.13                   | 16.36                               | ≥ 500                                    | Pass   |
| 2437                    | 15.08                   | 16.38                               | ≥ 500                                    | Pass   |
| 2462                    | 15.08                   | 16.36                               | ≥ 500                                    | Pass   |





| Test Mode   IEEE | 802.11n | (HT20) | ANT1 |
|------------------|---------|--------|------|
|------------------|---------|--------|------|

| Test Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | 99 % Occupied<br>Bandwidth<br>(MHz) | Minimum 6 dB<br>Bandwidth Limit<br>(kHz) | Result |
|-------------------------|-------------------------|-------------------------------------|------------------------------------------|--------|
| 2412                    | 15.11                   | 17.45                               | ≥ 500                                    | Pass   |
| 2437                    | 15.07                   | 17.41                               | ≥ 500                                    | Pass   |
| 2462                    | 13.90                   | 17.43                               | ≥ 500                                    | Pass   |





# APPENDIX E OUTPUT POWER

| Test Mode | IEEE 802.11b    |           |       | Tested Date | 2025/1/14 |
|-----------|-----------------|-----------|-------|-------------|-----------|
|           |                 |           |       |             |           |
| Frequency | Conducted       | Conducted | Limit | Limit       | Result    |
| (MHz)     | Power (dBm)     | Power (W) | (dBm) | (W)         | Result    |
| 2412      | 17.28           | 0.0535    | 30.00 | 1.0000      | Complies  |
| 2437      | 18.16           | 0.0655    | 30.00 | 1.0000      | Complies  |
| 2462      | 18.03           | 0.0635    | 30.00 | 1.0000      | Complies  |
|           |                 |           |       |             |           |
| Test Mode | IEEE 802.11g    |           |       | Tested Date | 2025/1/14 |
|           |                 |           |       |             |           |
| Frequency | Conducted       | Conducted | Limit | Limit       | Daguit    |
| (MHz)     | Power (dBm)     | Power (W) | (dBm) | (W)         | Result    |
| 2412      | 15.21           | 0.0332    | 30.00 | 1.0000      | Complies  |
| 2437      | 15.01           | 0.0317    | 30.00 | 1.0000      | Complies  |
| 2462      | 14.77           | 0.0300    | 30.00 | 1.0000      | Complies  |
|           |                 |           |       |             |           |
| Test Mode | IEEE 802.11n (H | T20) ANT1 |       | Tested Date | 2025/1/14 |
|           |                 |           |       |             |           |
| Frequency | Conducted       | Conducted | Limit | Limit       | Result    |
| (MHz)     | Power (dBm)     | Power (W) | (dBm) | (W)         | Result    |
| 2412      | 15.34           | 0.0342    | 30.00 | 1.0000      | Complies  |
| 2437      | 14.62           | 0.0290    | 30.00 | 1.0000      | Complies  |
| 2462      | 14.91           | 0.0310    | 30.00 | 1.0000      | Complies  |

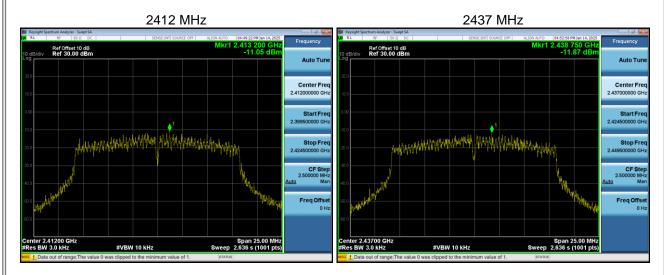
Project No.: 2501T005 Page 76 of 82 Report Version: R00



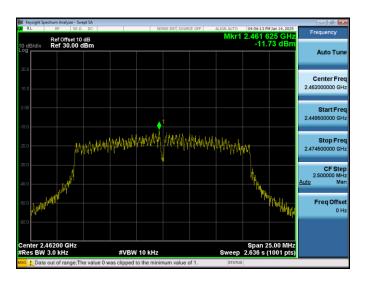
# APPENDIX F POWER SPECTRAL DENSITY

| Test Mode | IEEE 802.11b |
|-----------|--------------|
|-----------|--------------|

| Test Frequency<br>(MHz) | Power Spectral Density (dBm/3kHz) | Maximum Limit<br>(dBm/3kHz) | Result |
|-------------------------|-----------------------------------|-----------------------------|--------|
| 2412                    | -7.16                             | 8.00                        | Pass   |
| 2437                    | -6.11                             | 8.00                        | Pass   |
| 2462                    | -6.96                             | 8.00                        | Pass   |



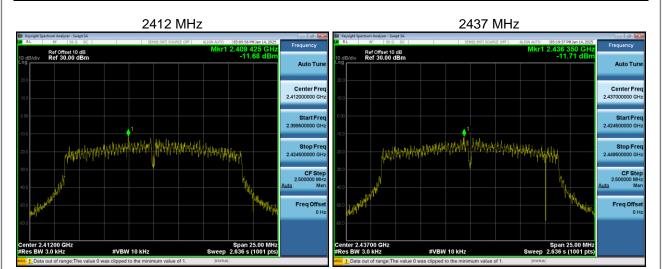

# 



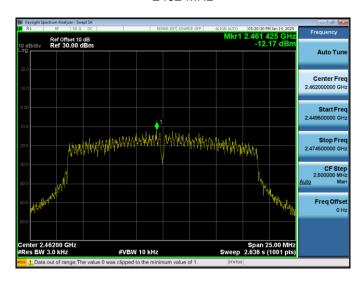

| Test Mode | IEEE 802.11g |
|-----------|--------------|

| Test Frequency<br>(MHz) | Power Spectral Density (dBm/3kHz) | Maximum Limit<br>(dBm/3kHz) | Result |
|-------------------------|-----------------------------------|-----------------------------|--------|
| 2412                    | -11.05                            | 8.00                        | Pass   |
| 2437                    | -11.87                            | 8.00                        | Pass   |
| 2462                    | -11.73                            | 8.00                        | Pass   |




#### 2462 MHz

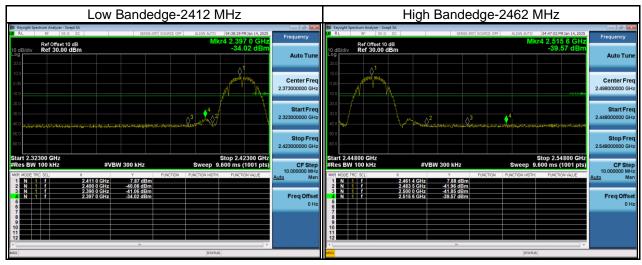





| Test Mode | IEEE 802.11n (HT20) ANT1 |
|-----------|--------------------------|
|-----------|--------------------------|

| Test Frequency<br>(MHz) | Power Spectral Density<br>(dBm/3kHz) | Maximum Limit<br>(dBm/3kHz) | Result |
|-------------------------|--------------------------------------|-----------------------------|--------|
| 2412                    | -11.68                               | 8.00                        | Pass   |
| 2437                    | -11.71                               | 8.00                        | Pass   |
| 2462                    | -12.17                               | 8.00                        | Pass   |

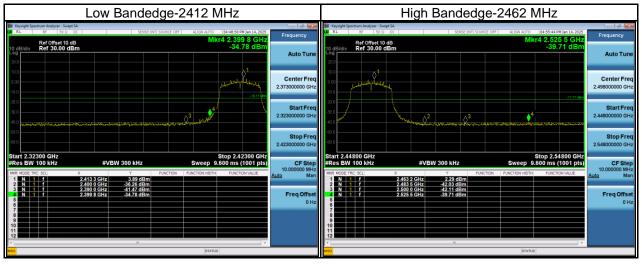



#### 2462 MHz





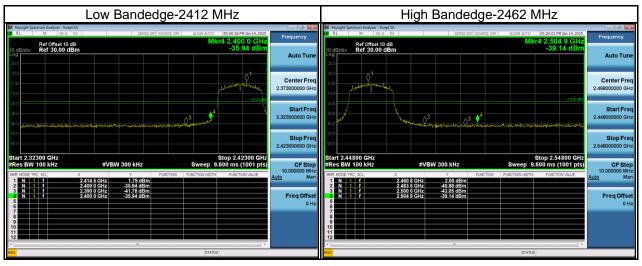
## APPENDIX G ANTENNA CONDUCTED SPURIOUS EMISSIONS


Test Mode IEEE 802.11b








Test Mode IEEE 802.11g







Test Mode IEEE 802.11n (HT20) ANT1





**End of Test Report**