FCC §1.1307 (b) (1) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RDG171207020-00A

Applicable Standard

According to subpart 1.1307 (b)(1), 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for Occupational/Controlled Exposure

Limits for occupational/Controlled Exposure									
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (Minutes)					
0.3-1.34	614	1.63	*(100)	6					
1.34-30	1842/f	4.89/f	*(900/f ²)	6					
30-300	61.4	0.163	1.0	6					
300-1500	/	/	f/300	6					
1500-100,000	/	/	5.0	6					

f = frequency in MHz

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For worst case:

Frequency	Antenna Gain		Max average output power	Evaluation Distance	Power Density	MPE Limit
(MHz)	(dBi)	(numeric)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
851-869	5.5	3.55	19905.5	45	2.78	2.83
935-940	5.5	3.55	19905.5	45	2.78	3.11

Note: Max tune-up output power is 46dBm (39811 mW), and PMR radio 4FSK mode, the duty cycle is 50%. So the average power is 19905.5 mW

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 45cm from nearby persons.

Result: Compliance

FCC Part 90 Page 9 of 64

^{* =} Plane-wave equivalent power density