

RF Exposure Antenna Summary

Network Systems Organization

Source Based

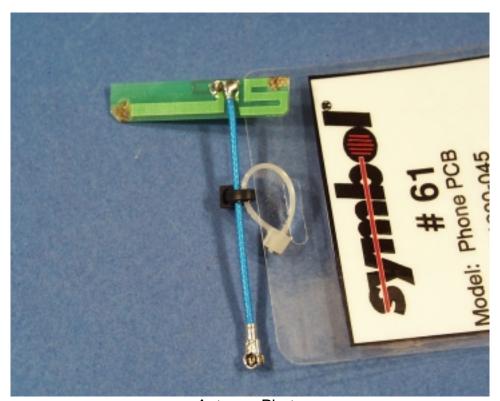
AP DC Factor: 1.000

Remote DC Factor: 0.108

FCC ID: **H9PDP4046 EA101239**

DS Data Phone

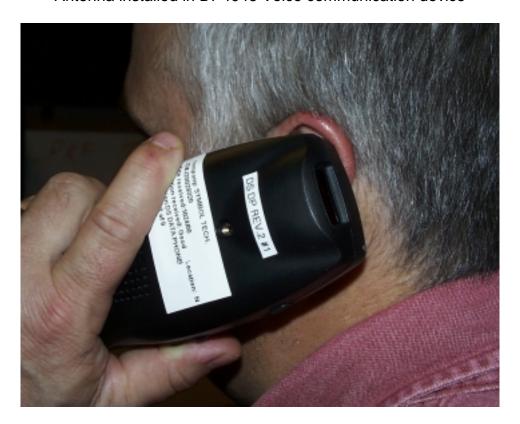
Output Power: 145 mW


Original Equip.

Portable Antennas (R < 5cm)									
Ant No	Model	Symbol P/N	Type	Gain (dBi)	Cable Loss (dB)	Pout (dBm)	EIRP (mW)	TR Status	Device Use
01.	Phone PCB	50-21900-045	Dipole	2.0	0.18	21.43	23.7	Tested + SAR	Hand Set
02.	Phone Stickon	50-21900-044	Dipole	2.0	0.22	21.40	23.5	Tested + SAR	Hand Set

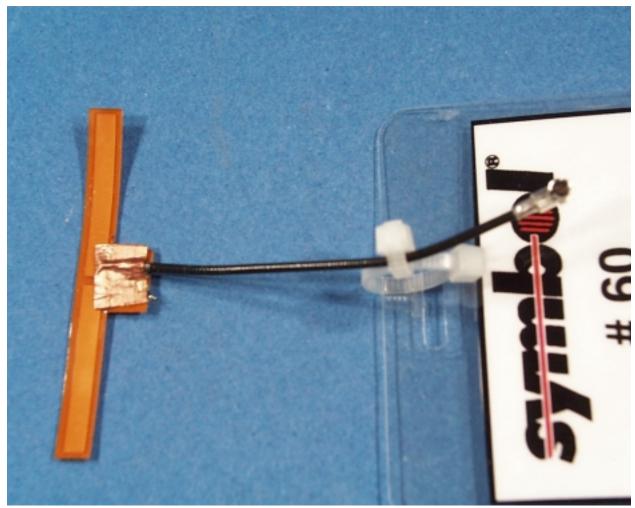
Phone PCB Antenna

The **Phone PCB** antenna is 2 dBi omnidirectional in azimuth plane. It is mounted internally as shown in the attached photo. The **Phone PCB** uses a Hirose FL series connector. In use it is 1.5 cm from a users head. It is used in mobile devices.


Location	Phone Handset				
Pattern	Omni				
Туре	Dipole				
Max Gain	2 dBi				
Physical	1.5" x 0.3"				
Cable	CO-6F-DSB-				
	CX501X32AWG				
Symbol P/N	50-21900-045				

Antenna Photo

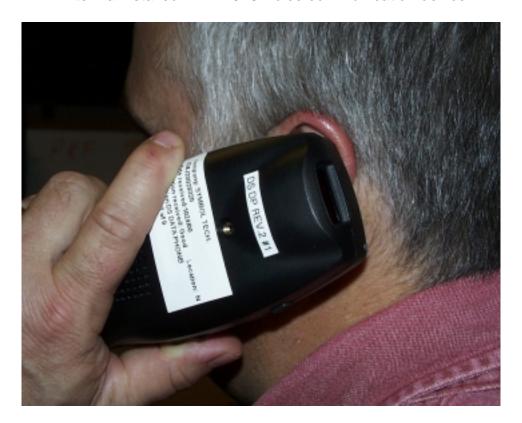
Antenna installed in DP4046 Voice communication device

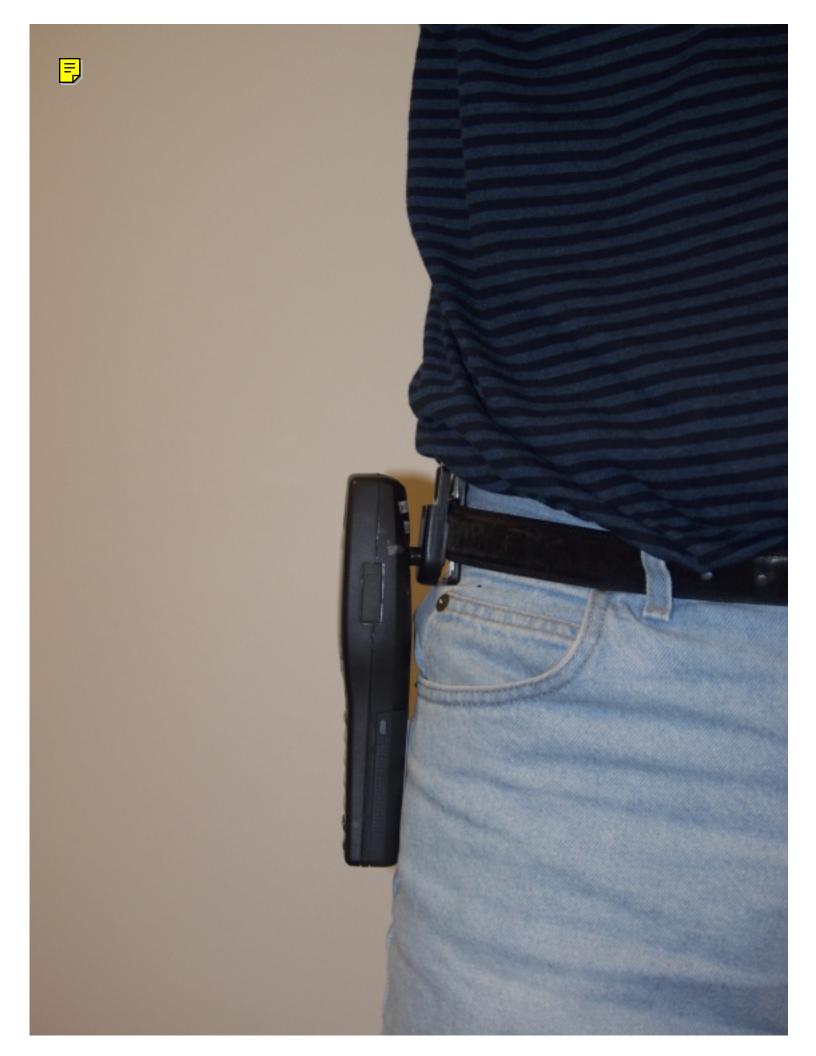


DP4046 Use Photo

Phone Stick On Antenna

The **Phone** Stick On antenna is 2 dBi omni-directional in azimuth plane. It is mounted internally as shown in the attached photo. The **Phone** Stick On uses a Hirose FL series connector. In use it is 3.4 cm from the users head. It is used in mobile devices.


Location	Phone Handset				
Pattern	Omni				
Туре	Dipole				
Max Gain	2 dBi				
Physical	2.12" x 0.2"				
Cable	CO-6F-DSB-				
	CX501X32AWG				
Symbol P/N	50-21900-044				


Antenna Photo

Antenna installed in DP4046 Voice communication device

DP4046 Use Photo

Network Systems Organization

Duty Cycle Calculations

The maximum duty cycle of a 802.11 compliant transmitter is dependent on the data rate and the processing speed of the device the transmitter is installed in. The duty cycle is the ratio of the maximum transmitter on time divided by the total cycle time which is composed of the maximum on time and the minimum off time. The maximum on time is dependent on the data rate. The 802.11 spec mandates what the maximum data payload for a packet may be. The data pay load along with packet addressing and other network overhead information determine the maximum size of a packet. The maximum transmitter on time is the longest time that it will take the radio to transmit the packet. In the case of Symbol's Spectrum 24 products the 1 Mbps data rate is the slowest.

For the cycle time the minimum off time consists of an acknowledgement from the receiver, the shortest carrier sense time and the shortest packet construction time. The acknowledgment and carrier sense times are driven by the 802.11 protocol while the packet construction time is driven by the processing power of the radio host. For access points , laptops, and workstations with fast processors the construction time is fairly short. While for hand held battery powered terminals with slower processors the construction time can be really significant.

Directly related to the duty cycle is data throughput of a link. The lower the duty cycle the lower the data throughput.

Longest On Time

N = Maximum # of data bytes / packet

OP = Overhead bytes/packet Ton = ((N + OP) * 8 bits/byte) / 10^6 bits/sec = 4.872 mS

Maximum Duty Cycle Factor DCF = Ton / (Ton + Toff)

Shortest Off Time

CST = Carrier Sense Time APA = AP Ack time

PCT = Packet Construction Time

Toff = CST + APA + PCT

Radios

	11000102		
LA2400	CR-1	1Mbps	FH
LA3020	Duo	2Mbps	FH
LA3021	Proj C	2Mbps	FH
LA4111	T1	11Mbps	DS
LA4121	T2	11Mbps	DS
XX3010	FH Phone	1Mbps	FH
DM4026	DS Phone	11Mbps	DS

Duty Cycle Variables										
Radio	N		OP		CST (uS)		APA (uS)		PCT (uS)	
	AP	Rmt	AP	Rmt	AP	Rmt	AP	Rmt	AP	Rmt
LA2400	548	548	61	61	100	100	220	220	3000	10000
LA3020	548	548	61	61	100	100	220	220	2000	2000
LA3021	548	548	61	61	100	100	220	220	2280	2370
LA4111	548	548	61	61	100	100	220	220	1640	1660
LA4121	548	548	61	61	100	100	220	220	1600	1690
NP3010	N/A	32	N/A	80	N/A	100	N/A	220	N/A	7119
DP3010	N/A	32	N/A	80	N/A	100	N/A	220	N/A	7119
DM4026	N/A	32	N/A	80	N/A	100	N/A	220	N/A	7119

Duty Cycle Calculations

Duty Cycle Factors							
Radio	Data Rate	AP	Remote				
LA2400	1 Mbps	60% / -4.4 dB	32 % / -9.9 dB				
LA3020	1 Mbps	68% / -3.4 dB	68% / -3.4 dB				
LA3021	1 Mbps	65% / -3.7 dB	64% / -3.9 dB				
LA4111	1 Mbps	71.3% / -2.9 dB	71.1% / -3.0dB				
LA4121	1 Mbps	71.8% / -2.9 dB	70.8% / -3.0dB				
NP3010	1 Mbps	N/A	10.75% / -19.4 dB				
DP3010	1 Mbps	N/A	10.75% / -19.4 dB				
DM4026	1 Mbps	N/A	10.75% / -19.4 dB				

Regulatory Addenum:

FCC RF EXPOSURE GUIDELINES

To comply with RF safety requirements use the specific belt clip. All other belt clips should be avoided and may not comply with RF safety requirements.

The preceding statement is presently being added to the QRG (Quick Reference Guide –User's Manual) for the Symbol DS Phone line. This addition will be covering the model NP4046 and DP4046 NetVision ® phones.

Norm Nelson Symbol Technologies Inc 6480 Via Del Oro Drive San Jose, CA 95119-1208

Phone: (408) 528-2649 Fax: (408) 528-2740

E-mail: norm@sj.symbol.com