TCT通测检				
	TEST REPOR	RT		
FCC ID	2AVIZ-J56			
Test Report No:	TCT220722E906			
Date of issue:	Jul. 29, 2022			
Testing laboratory:	SHENZHEN TONGCE TESTIN	IG LAB		
Testing location/ address:	2101 & 2201, Zhenchang Factor Subdistrict, Bao'an District, Sho People's Republic of China	ory Renshan Industrial Zone, Fuhai enzhen, Guangdong, 518103,		
Applicant's name: :	Trulyway Electronic Developme	ent Co., Ltd		
Address:	4th Floor, A Building, No. 268 of Baoshi East Road, Baoan District, Shenzhen, Guangdong, China			
Manufacturer's name :	Trulyway Electronic Development Co., Ltd			
Address:	4th Floor, A Building, No. 268 of Baoshi East Road, Baoan District, Shenzhen, Guangdong, China			
Standard(s) :	FCC CFR Title 47 Part 15 Sub FCC KDB 558074 D01 15.247 ANSI C63.10:2013			
Product Name::	True wireless earbuds			
Trade Mark:	Trulyway			
Model/Type reference :		, X2, X10, X11, X20, YX02, YX06, H10, PRO 3, PRO 4, 18S, 19S, OONKYX Phoenix		
Rating(s):	Rechargeable Li-ion Battery D	C 3.7V		
Date of receipt of test item	Jul. 22, 2022			
Date (s) of performance of test:	Jun. 17, 2022 ~ Jul. 29, 2022			
Tested by (+signature) :	Aaron MO			
Check by (+signature) :	Beryl ZHAO			
Approved by (+signature):	Tomsin	Tomsin 25 35		

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

	General Pro							
	1.1. EUT desc	cription		<u></u>				3
	1.2. Model(s)	list						3
	1.3. Operation	n Frequenc	y					3
2.	Test Result	Summary	,					4
3.	General Info	ormation.						5
	3.1. Test envi	ironment an	d mode	<u>(6)</u>				5
	3.2. Descripti	on of Supp	ort Units					5
4.	Facilities an	nd Accred	itations					6
	4.1. Facilities		<u>(G)</u>		(\mathbf{C})		(\mathbf{c})	6
	4.2. Location							
	4.3. Measure	ment Uncer	tainty					6
	Test Result							
	5.1. Antenna	requiremen	t					7
	5.2. Conducte	ed Emission	n					8
	5.3. Conducte	ed Output P	ower					12
	5.4. Emission							
	5.5. Power Sp	pectral Dens	sity					14
	5.6. Conducte	ed Band Ed	ge and Sp	ourious En	nission M	easuremei	nt	15
	5.7. Radiated	Spurious E	mission N	Neasurem	ent			17
Ap	ppendix A: T	est Resul	t of Con	ducted T	est			
Ap	pendix B: F	Photograp	hs of Te	st Setup				
	opendix C: F							
)							

TCT通测检测 1. General Product Information

1.1. EUT description

Product Name:	I rue wireless earbuds		
Model/Type reference:	J56		
Sample Number	TCT220617E016-0101		
Bluetooth Version:	V5.3 (This report is for BLE)		
Operation Frequency:	2402MHz~2480MHz		
Channel Separation:	2MHz	(\mathbf{c})	(\mathbf{c})
Data Rate:	LE 1M PHY, LE 2M PHY		
Number of Channel:	40		
Modulation Type:	GFSK		
Antenna Type:	Chip Antenna		
Antenna Gain:	1.15dBi		
Rating(s):	Rechargeable Li-ion Battery DC	3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	J56	\boxtimes
Other models	J68, J100, J101, J152, X1, X2, X10, X11, X20, YX02, YX06, Y18, Y28, Y68, Y138, H8, H9, H10, PRO 3, PRO 4, 18S, 19S, VQWRENLA, VQWRENCK, DOONKYX Phoenix	3)

Note: J56 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of J56 can represent the remaining models.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
	(X	(<u> </u>	(A	(*
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark:	Remark: Channel 0, 19 & 39 have been tested.						

Page 3 of 52

Report No.: TCT220722E906

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. After pre-testing the two earphones, the two earphones are left and right ears respectively; we found that the left earphone is the worst case, so the results are recorded in this report.

Page 4 of 52

Report No.: TCT220722E906

3. General Information

3.1. Test environment and mode

Operating Environment:						
Condition	Conducted Emission Radiated Emission					
Temperature:	25.3 °C	25 °C				
Humidity:	56 % RH	55 % RH				
Atmospheric Pressure:	1010 mbar	1010 mbar				
Test Software:						
Software Information:	FCC Assist 1.0.1.2					
Power Level:	10					
Test Mode:	Test Mode:					

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	JD-050200	2012010907576735		

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

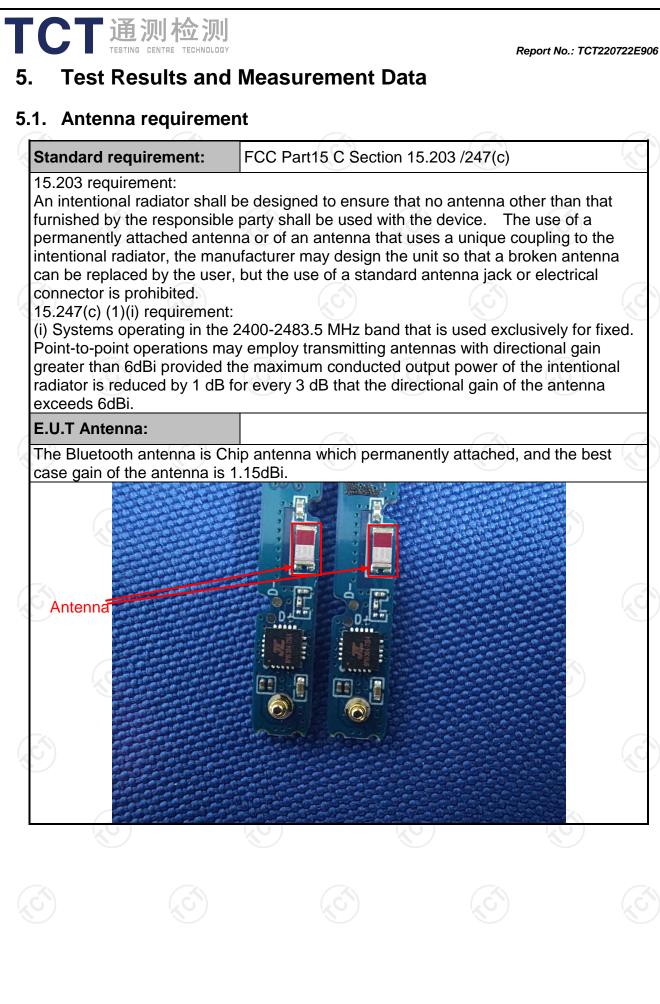
IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location


SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

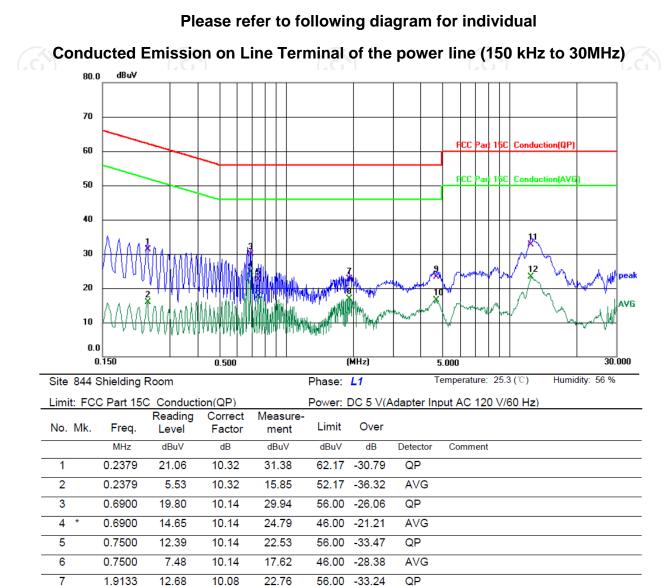
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5.2. Conducted Emission

5.2.1. Test Specification

Test Method: ANSI C63.10:2013 Frequency Range: 150 kHz to 30 MHz Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56' 0.5-5 56 46 5-30 0.5-5 56 40cm 80cm Filter AC power EUT Frequency label Filter AC power EUT Frequence Plane Remark: EUT Frequence Value EUT Frequence Index Test EUT Frequence Index Test LINK Line Impedence Stabilization Network Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). Thi provides a 500hm/50UH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50UH coupling impedance for the measuring equipment. 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum conducted interference. In order to f	Test Requirement:	ECC Part15 C Section	15 207				
Frequency Range: 150 kHz to 30 MHz Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) (MHz) Quasi-peak Average 0.15-0.5 66 to 56' 56 to 46' 0.5-5 56 46 5-30 60 50 Reference Plane EU.T Adapter Filter Limit (dBuV) (LISN Reference Plane EU.T Adapter Filter Adapter Fertable/Insulation plane Filter Reference Plane EU.T Adapter Filter Adapter Filter Filter Reference Plane Filter Filter Filter Adapter Filter <t< td=""><td>-</td><td></td><td colspan="5">FCC Part15 C Section 15.207</td></t<>	-		FCC Part15 C Section 15.207				
Receiver setup: RBW=9 kHz, VBW=30 kHz, Sweep time=auto Limits: Frequency range Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 0.5-5 56 0.5-5 56 0.5-5 60 5-30 60 60 50 Reference Plane Fernark E.U.T Adapter Test Setup: Fernark FUT Equipment Under Test LISN Une Impedence Stabilization Network Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). Thi provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the mai power through a LISN that provides a 500hm/50uH coupling impedance of the measuring equipment. 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all or the interface cables must be changed according to the interface cables must be chan	Test Method:	ANSI C63.10:2013					
Limits: Frequency range (MHz) Limit (dBuV) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane LISN EU.T Adapter EINI Test Setup: Remark E.U.T Adapter Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a limit impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the mait power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to the interface cables must be chang	Frequency Range:	150 kHz to 30 MHz	(\mathbf{C})	$\langle \mathcal{O} \rangle$			
Imits: Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Imits: Imit State Reference Plane Imit State Remark EUT Imit Adapter EUT Equipment Under Test ISN Line measuring environment Under Test USN Line measuring environment Under Test ISN Line measuring environment (L.I.S.N.). Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). Thi provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50ut coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup an photographs). 3. Both sides of A.C. line are checked for maximum conducted interference	Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto			
Limits: 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2"Co		Frequency range	Limit (o	dBuV)			
0.5-5 56 46 5-30 60 50 Reference Plane Image: Colspan="2">Image: Colspan="2"		(MHz)	Quasi-peak	Average			
5-30 60 50 Reference Plane Image: Set table //	Limits:	0.15-0.5	66 to 56*	56 to 46*			
Test Setup: Reference Plane Image: Test Setup: Image: Test table/Insulation plane Remark: E.U.T Adapter E.U.T Adapter Test Mode: Charging + Transmitting Mode 1. The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance for the measuring equipment. 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.		0.5-5	56	46			
Test Setup: Image: Constraint of the set table and table and the set table and table and tab		5-30	60	50			
Test Setup: Image: Constraint of the second sec		Refere	nce Plane				
 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 	Test Setup:	Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	ne EMI Receiver				
 Test Procedure: The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance for the coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 	Test Mode:	Charging + Transmittir	ng Mode				
	Test Procedure:	 impedance stabilizing provides a 500hm/s measuring equipme 2. The peripheral device power through a Licoupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interferer emission, the relative the interface cables 	ation network 50uH coupling im nt. ces are also conne ISN that provides with 50ohm term diagram of the line are checkence. In order to fir e positions of equ s must be chang	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uh nination. (Please test setup and d for maximum nd the maximum ipment and all o ed according to			
	Test Result:						


5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESCI3	100898	Jul. 03, 2023			
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 24, 2023			
Line-5	ТСТ	CE-05	/	Jul. 03, 2024			
EMI Test Software	Shurple Technology	EZ-EMC	1	1			

Page 9 of 52

5.2.3. Test data

Note:

8 9

10

11

12

Freq. = Emission frequency in MHz Reading level ($dB\mu V$) = Receiver reading

Corr [Corr (dB)] = Vecenter reading

6.87

13.05

6.35

22.39

12.92

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$

10.08

10.16

10.16

10.29

10.29

16.95

23.21

16.51

32.68

23.21

46.00 -29.05

56.00 -32.79

46.00 -29.49

60.00 -27.32

50.00 -26.79

AVG

QP

AVG

QP

AVG

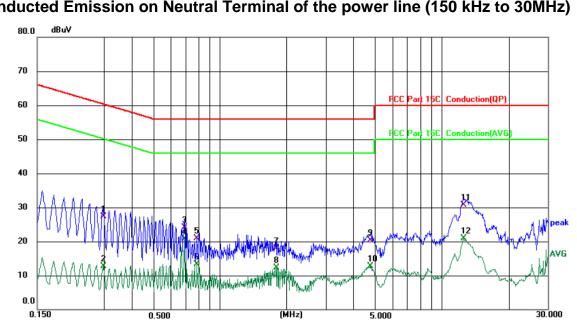
Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

1.9133

4.7060


4.7060

12,4580

12.4580

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz

Temperature: 25.3 (°C)

Lim	Limit: FCC Part 15C Conduction(QP)					Power: DC 5 V(Adapter Input AC 120 V/60 Hz)			
No.	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2977	16.99	10.29	27.28	60.31	-33.03	QP	
2		0.2977	2.38	10.29	12.67	50.31	-37.64	AVG	
3		0.6900	13.95	10.14	24.09	56.00	-31.91	QP	
4	*	0.6900	10.60	10.14	20.74	46.00	-25.26	AVG	
5		0.7900	10.68	10.14	20.82	56.00	-35.18	QP	
6		0.7900	3.19	10.14	13.33	46.00	-32.67	AVG	
7		1.7940	7.65	10.16	17.81	56.00	-38.19	QP	
8		1.7940	2.14	10.16	12.30	46.00	-33.70	AVG	
9		4.7538	10.10	10.20	20.30	56.00	-35.70	QP	
10		4.7538	2.44	10.20	12.64	46.00	-33.36	AVG	
11		12.5219	20.32	10.40	30.72	60.00	-29.28	QP	
12		12.5219	10.41	10.40	20.81	50.00	-29.19	AVG	

Phase: N

Note 1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB) Limit $(dB\mu V) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V) – Limits (dB μ V) Q.P. =Quasi-Peak

AVG =average

Site 844 Shielding Room

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note 2:

Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Report No.: TCT220722E906

Humidity: 56 %

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	30dBm				
Test Setup:					
	Spectrum Analyzer EUT				
Test Mode:	Refer to item 3.1				
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. 				
Test Result:	PASS				

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	9 1	

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)					
Test Method:	KDB 558074 D01 v05r02 The peak power spectral density shall not be greate han 8dBm in any 3kHz band at any time interval o continuous transmission. Spectrum Analyzer Eur Refer to item 3.1 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. 8. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to					
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.					
Test Setup:						
	Spectrum Analyzer EUT					
Test Mode:	Refer to item 3.1					
Test Procedure:	 was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 					
Test Result:	PASS					

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

TCT通测检测 TESTING CENTRE TECHNOLOGY

5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
	4. Measure and record the results in the test report.5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Page 15 of 52

TCT通测检测

5	.6.2. Test Instrum	ents		ĸ	e
	Name	Manufacturer	Model No.	Serial Number	
	Spectrum Analyzer	Agilent	N9020A	MY49100619	
	Combiner Box	Ascentest	AT890-RFB	/	

Report No.: TCT220722E906

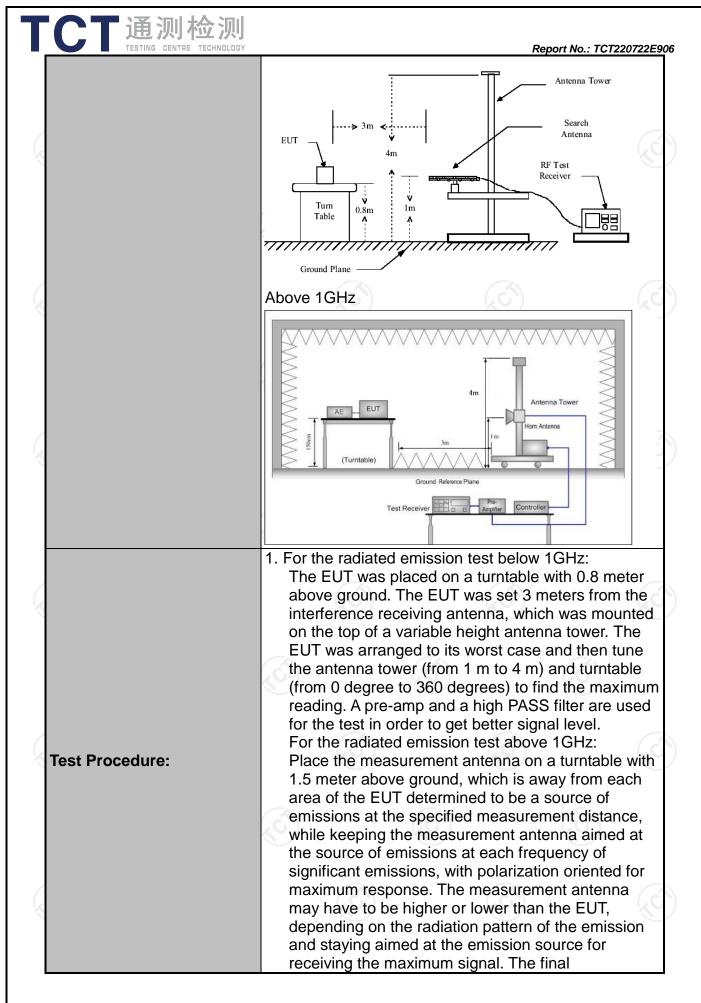
Calibration Due

Jul. 04, 2023

/

Page 16 of 52

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

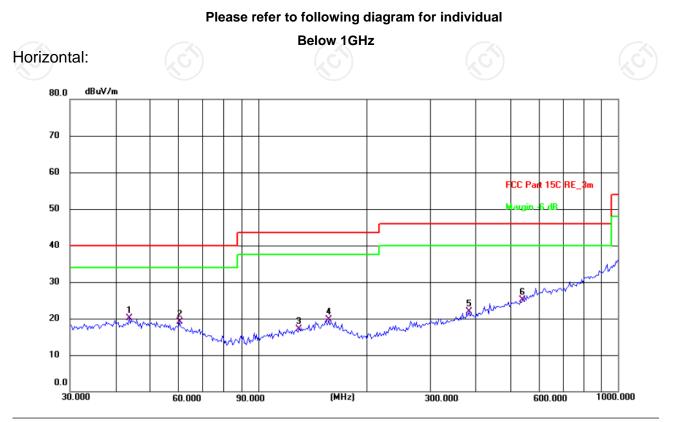

5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

FCC Part15 C Section 15.209						
ANSI C63.10: 2013						
9 kHz to 25 (9 kHz to 25 GHz					
3 m Horizontal & Vertical						
						Refer to item
Frequency 9kHz- 150kHz	Detector Quasi-peal	RBW k 200Hz	VBW 1kHz	Remark Quasi-peak V		
150kHz- 30MHz	Quasi-peal	k 9kHz	30kHz	Quasi-peak V	/alue	
30MHz-1GHz			300KHz	Quasi-peak V		
Above 1GHz	Peak Peak					
	I Cak			I Average Va	ue	
Frequen	icy		-	Measureme Distance (met		
0.009-0.490		2400/F(KHz)		300		
		2 \ 1				
		200		3		
		500		3	1	
				x		
		eld Strength Distar		nce Detector		
	,	500	500 3		Average	
Above TGH2	<u> </u>	5000 3		Peak		
For radiated	emission	s below 30)MHz			
Di	stance = 3m			Computer		
Pre - Amplifier						
0.Sm Turn table						
	ANSI C63.10 9 kHz to 25 0 3 m Horizontal & Refer to item Frequency 9kHz- 150kHz 150kHz- 30MHz-1GHz Above 1GHz Frequency 0.009-0.4 0.490-1.1 1.705-3 30-88 88-210 216-96 Above 9 Frequency Above 1GHz	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 3.1 Frequency Detector 9kHz- 150kHz Quasi-peal 150kHz- Quasi-peal 30MHz-1GHz Quasi-peal Above 1GHz Peak Peak Frequency 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960 Frequency Fiel (micro Above 1GHz For radiated emission	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 3.1 Frequency Detector 9kHz.150kHz Quasi-peak 30MHz Quasi-peak 30MHz Quasi-peak 30MHz Quasi-peak 150kHz Quasi-peak Quasi-peak 120KHz Above 1GHz Peak Frequency Field Strength (microvolts) 0.009-0.490 2400/F(0) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Frequency Field Strength (microvolts/meter) Above 1GHz 500 5000 500 For radiated emissions below 30 Distance = 3m 100	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 3.1 Frequency Detector RBW VBW 9kHz.150kHz Quasi-peak 200Hz 1kHz 150kHz- Quasi-peak 200Hz 1kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 30Hz 0.009-0.490 2400/F(KHz) 0.490-1.705 24000/F(KHz) 1.705-30 30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Frequency Field Strength (microvolts/meter) Measure Distance Distance Above 1GHz 500 3 3 5000 3 3 3	ANSI C63.10: 2013 9 kHz to 25 GHz 3 m Horizontal & Vertical Refer to item 3.1 Frequency Detector RBW VBW Refer to item 3.1 State 200Hz 150kHz Quasi-peak 200Hz 1kHz Quasi-peak 9kHz 30MHz Quasi-peak 9kHz-1GHz Quasi-peak 150kHz Quasi-peak 160kHz Quasi-peak 10kz Peak 10kz Peak 10kz Peak 10Hz Average Va Frequency Field Strength Measureme Distance (me 0.009-0.490 2400/F(KHz) 300 30 1.705-30 30 30 30 30-88 100 31-216-960 200 200 3 Above 960 500 30 3 Prequency Field Strength (microvolts/meter) Mabove 1GHz 500	

Page 17 of 52

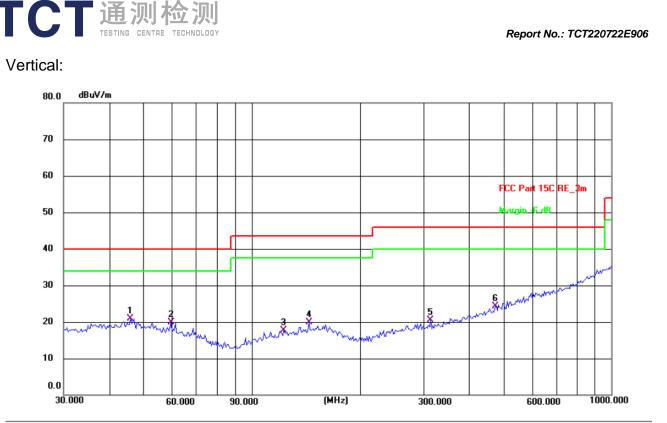


	 Report No.: TCT220722E measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS

5.7.2. Test Instruments

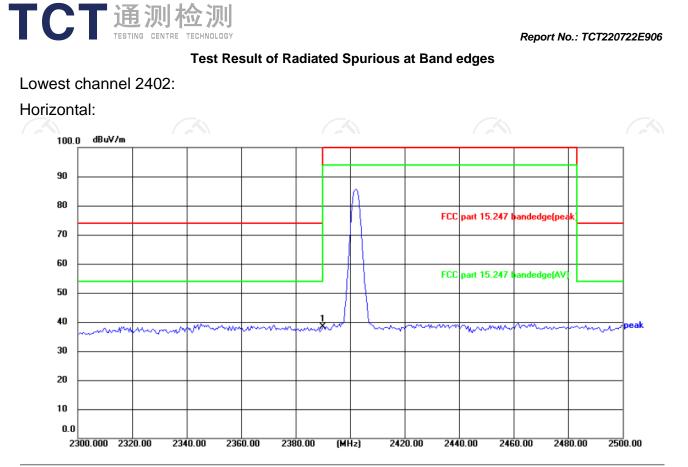
Radiated Emission Test Site (966)							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023			
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023			
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023			
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 24, 2023			
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023			
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2024			
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2024			
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2024			
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023			
Antenna Mast	Keleto	RE-AM					
Coaxial cable	SKET	RC-18G-N-M	1	Feb. 24, 2024			
Coaxial cable	SKET	RC_40G-K-M	1	Feb. 24, 2024			
EMI Test Software	Shurple Technology	EZ-EMC	K.	/			

5.7.3. Test Data



Site #	1 3m Anechoi	c Chambei	·	Polarization: Horizontal				Te	emperature: 25(C)	Humidity: 55 %
Limit:	FCC Part 15C	RE_3m		Power: DC 3.7 V						
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1 *	43.8119	6.42	13.63	20.05	40.00	-19.95	QP	Ρ		
2	60.4917	7.01	12.12	19.13	40.00	-20.87	QP	Ρ		
3	129.9225	5.03	12.13	17.16	43.50	-26.34	QP	Ρ		
4	157.0072	6.41	13.28	19.69	43.50	-23.81	QP	Ρ		
5	385.2803	6.14	15.68	21.82	46.00	-24.18	QP	Ρ		
6	543.2740	5.65	19.50	25.15	46.00	-20.85	QP	Ρ		

Page 21 of 52


Report No.: TCT220722E906

Site #	Site #1 3m Anechoic Chamber Polarization: Vertical Temperature: 25(C) Humidity: 55 %									
Limit:	Limit: FCC Part 15C RE_3m Power: DC 3.7 V									
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1 *	46.0162	7.35	13.57	20.92	40.00	-19.08	QP	Ρ		
2	59.6492	7.73	12.23	19.96	40.00	-20.04	QP	Р		
3	122.8336	5.91	11.75	17.66	43.50	-25.84	QP	Р		
4	144.3343	7.19	12.80	19.99	43.50	-23.51	QP	Р		
5	314.3763	6.63	13.87	20.50	46.00	-25.50	QP	Р		
6	475.4990	6.38	17.90	24.28	46.00	-21.72	QP	Р		

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported
 - 2. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (high, channel) was submitted only.
 - 3. Freq. = Emission frequency in MHz
 - Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier $Limit (dB\mu V/m) = Limit stated in standard$ $Margin (dB) = Measurement (dB\mu V/m) – Limits (dB\mu V/m)$ * is meaning the worst frequency has been tested in the test frequency range

Site			Polariza	tion: Horizon	tal Ten	Temperature: 2		
Limit: FC	C part 15.247 banded	lae(peak)	Power:	DC 3.7 V	Hun	Humidity: 56 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	2390.000	54.19	-15.76	38.43	74.00	-35.57	peak	

Page 23 of 52

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT220722E906 Vertical: dBuV/m 100.0 90 80 FCC part 15.247 bandedge(pea 70 60 FCC part 15.247 bandedge(AV) 50 40 - Xum man peak man mmmm w. 30 20 10

Site			Polariza	ation: Vertical	Ter	mperature:	25(° ℃)
Limit: FC	C part 15.247 banded	dge(peak)	Power:	DC 3.7 V	Humidity: 56 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector

(MHz)

2420.00

2440.00

2460.00

2480.00

2500.00

2380.00

0.0

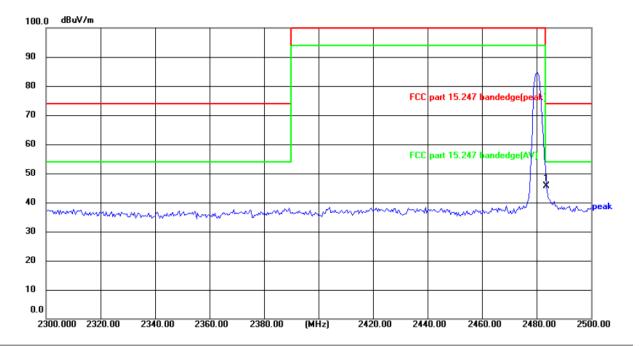
*

1

2300.000 2320.00

2340.00

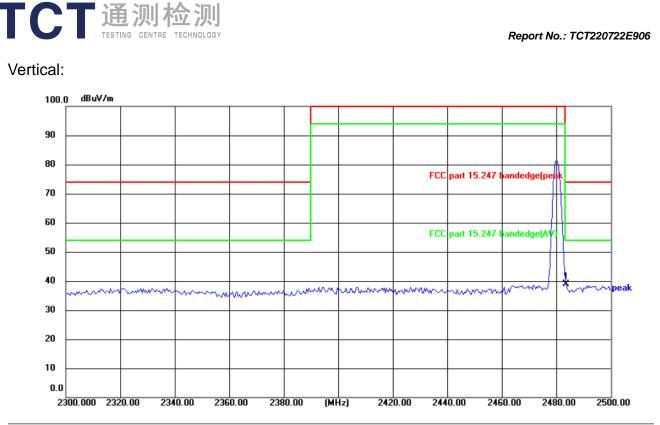
2360.00


2390.000 52.38 -15.76 36.62 74.00 -37.38 peak

Page 24 of 52

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Highest channel 2480:


Horizontal:

Site			Polariza	ation: Horizon	tal Ter	Temperature:		
Limit: FC	C part 15.247 banded	dge(peak)	Power:	DC 3.7 V	Hur	Humidity: 56 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	2483.500	61.16	-15.41	45.75	74.00	-28.25	peak	

Page 25 of 52

Report No.: TCT220722E906

Site			Polariza	tion: Vertical	Ten	Temperature: 25(°C)		
Limit: FCC	Deart 15.247 banded	de(peak)	Power:	DC 3.7 V	Hun	nidity: 56 9	6	
No.	Frequency (MHz)	Reading (dBu∀)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1 *	2483.500	54.34	-15.41	38.93	74.00	-35.07	peak	

Note: Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.

Above 1GHz

Low chann	el: 2402 IV	IHZ							
Frequency	Ant. Pol.	Peak	AV	Correction		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBuV)	Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	
4804	Н	44.17		0.66	44.83		74	54	-9.17
7206	Н	34.85		9.50	44.35		74	54	-9.65
	Н								
4804	V	43.79		0.66	44.45	×	74	54	-9.55
7206	<u>S</u> V	34.53		9.50	44.03		74	54	-9.97
	V					<u> </u>			

Middle channel: 2440 MHz

通测检测 TESTING CENTRE TECHNOLOGY

imaale ena									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
4880	Н	45.50		0.99	46.49		74	54	-7.51
7320	Н	35.91		9.87	45.78		74	54	-8.22
	Н				(
			K.)					
4880	V	45.74		0.99	46.73		74	54	-7.27
7320	V	35.96		9.87	45.83		74	54	-8.17
	V						<u> </u>		

High channel: 2480 MHz

Frequency	Ant Pol	Pol. Peak		Correction	Emission Level		Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)			(dBµV/m)	(dB)
4960	Н	42.48		1.33	43.81		74	54	-10.19
7440	Я	32.82		10.22	43.04	<u> </u>	74	54	-10.96
	Н								
4960	V	43.57		1.33	44.90		74	54	-9.10
7440	V	33.66		10.22	43.88		74	54	-10.12
<u> </u>	V			<i></i>	/				<i></i>

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

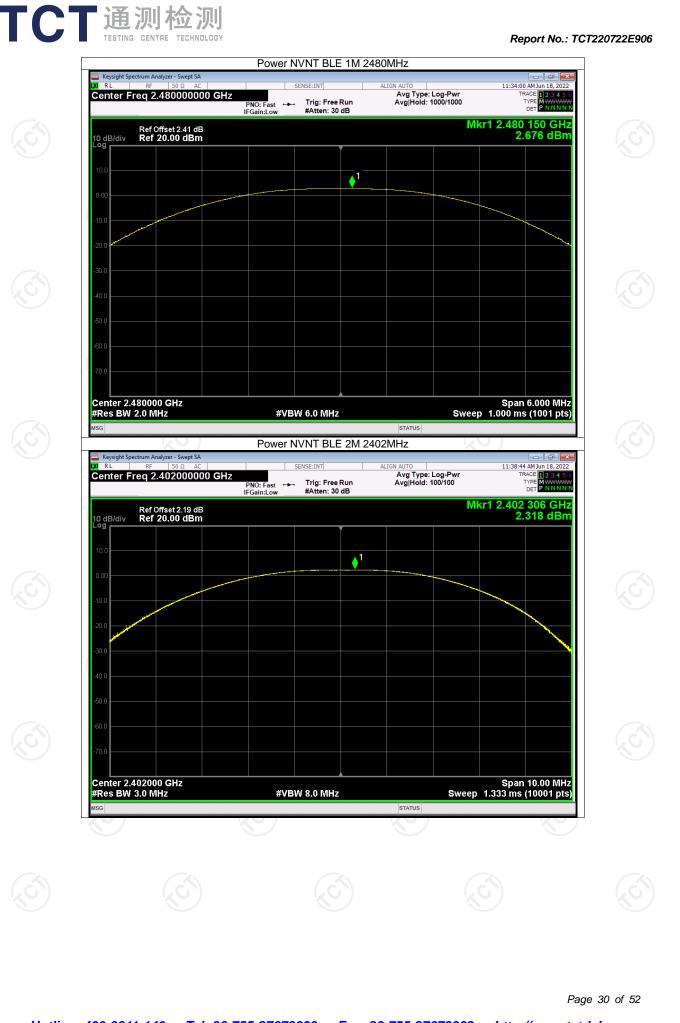
4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

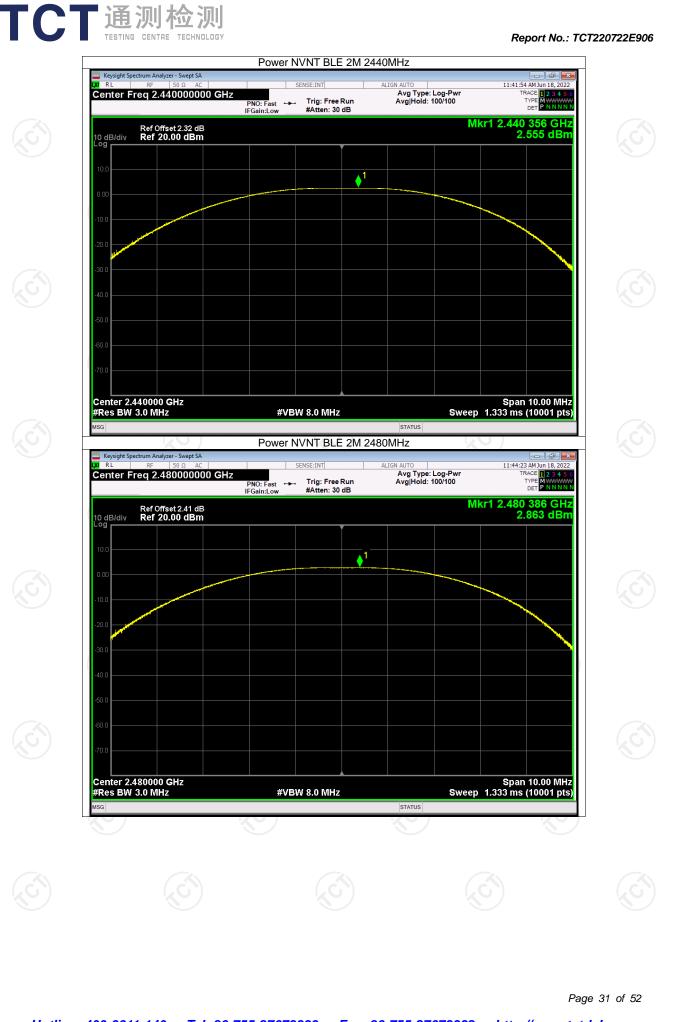
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

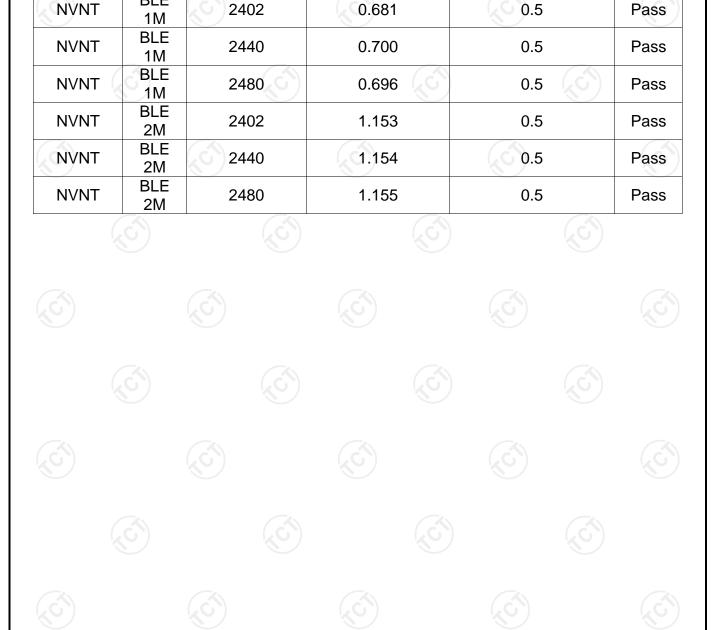
6. All the restriction bands are compliance with the limit of 15.209.

7. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.




Appendix /	A:	Test	Result	of	Conducted	Test
------------	----	------	--------	----	-----------	------


	Maxim	um Conduc	ted Output P	ower	
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	2.21	30	Pass
NVNT	BLE 1M	2440	2.35	30	Pass
NVNT	BLE 1M	2480	2.68	30	Pass
NVNT	BLE 2M	2402	2.32	30	Pass
NVNT	BLE 2M	2440	2.56	30	Pass
NVNT	BLE 2M	2480	2.86	30	Pass


TCT通测检测 TESTING CENTRE TECHNOLOGY Test Graphs Power NVNT BLE 1M 2402MHz Keysight Spectrum Analyzer - Swept SA 11:28:58 AM Jun 18, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N KI RI Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 832 GHz 2.209 dBm Ref Offset 2.19 dB Ref 20.00 dBm 10 dB/div **♦**¹ Center 2.402000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.000 ms (1001 pts) #VBW 6.0 MHz STATUS Power NVNT BLE 1M 2440MHz Keysight Spectrum Analyzer - Swept SA 11:32:06 AM Jun 18, 2022 KI RL SENSE:INT ALIGN AUT Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freq 2.440000000 GHz TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N Trig: Free Run #Atten: 30 dB PNO: Fast ++++ IFGain:Low Mkr1 2.439 754 GHz 2.353 dBm Ref Offset 2.32 dB Ref 20.00 dBm 10 dB/div Loa

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

-6dB Bandwidth Frequency -6 dB Bandwidth

(MHz)

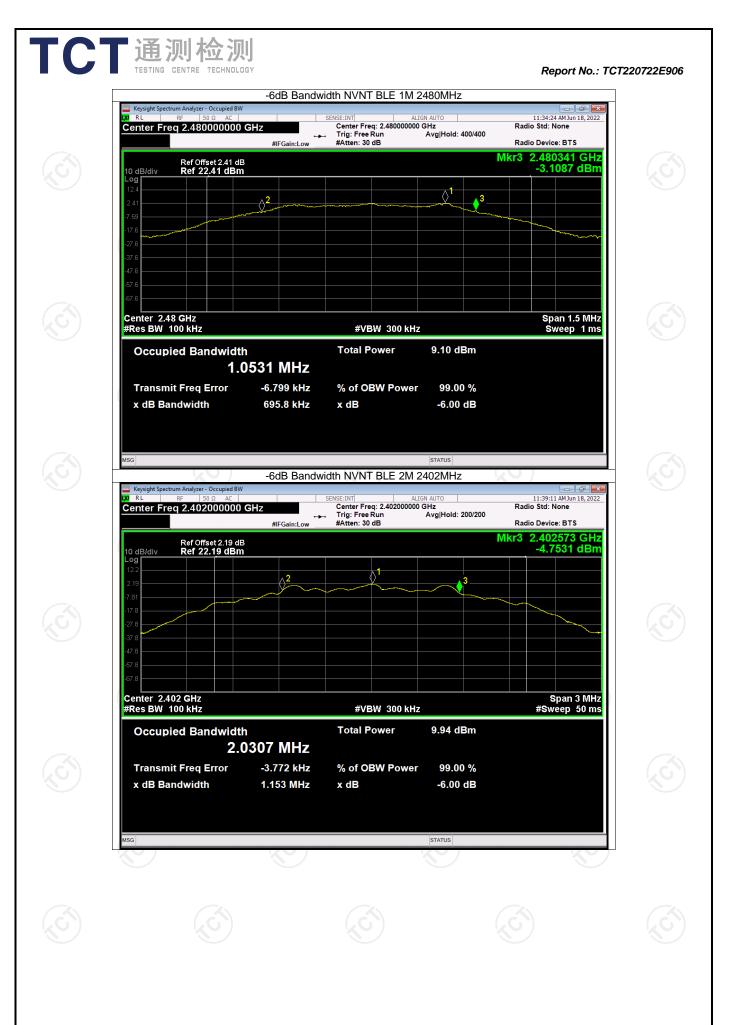
Mode

BLE

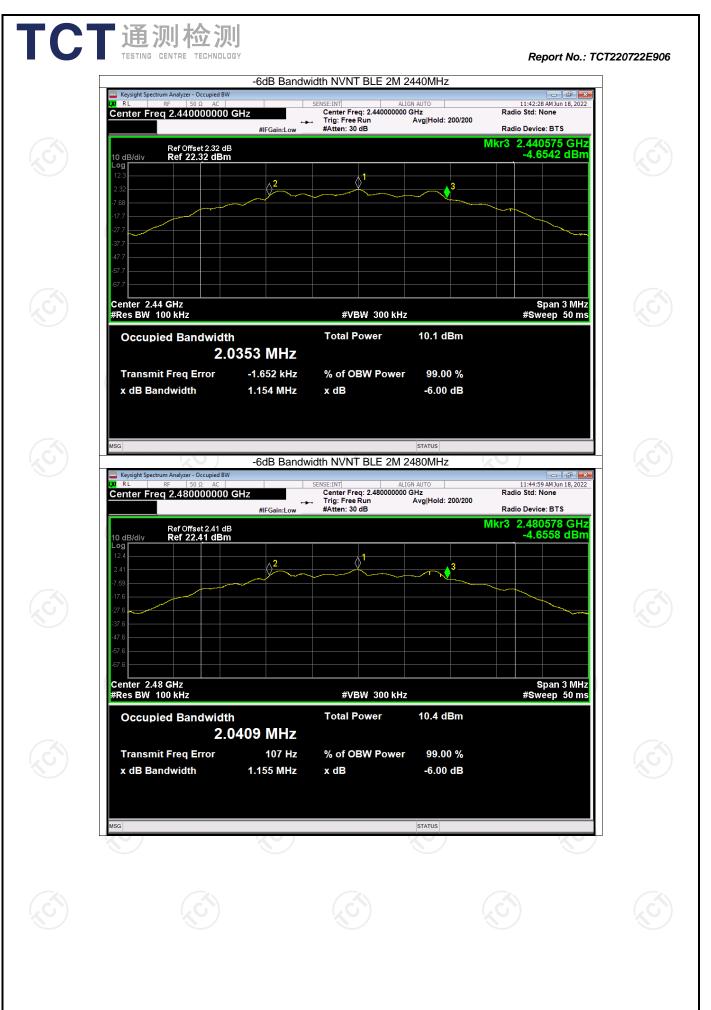
(MHz)

Condition

Report No.: TCT220722E906


Verdict

Page 32 of 52

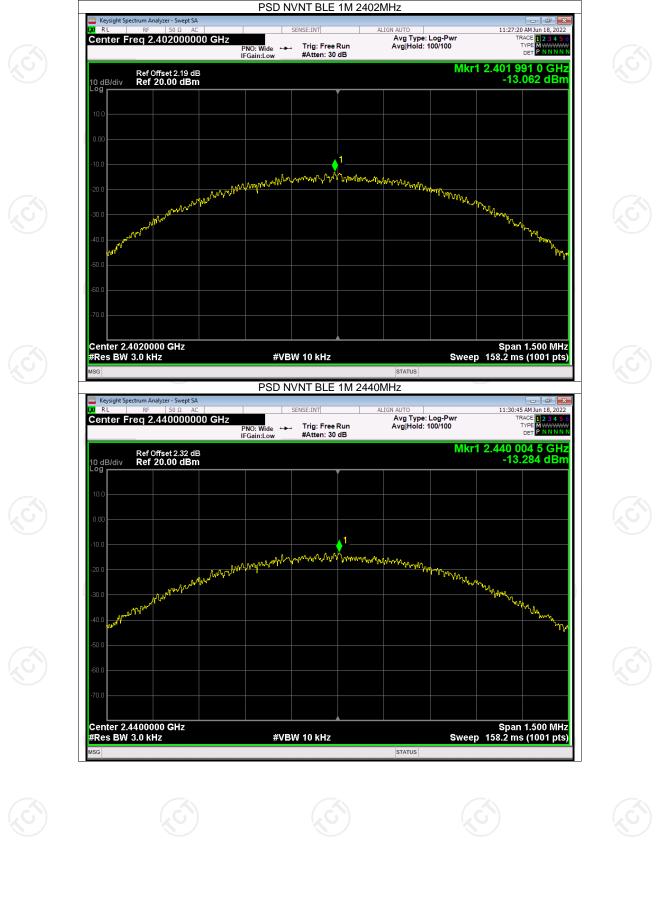

Limit -6 dB

Bandwidth (MHz)

Page 34 of 52

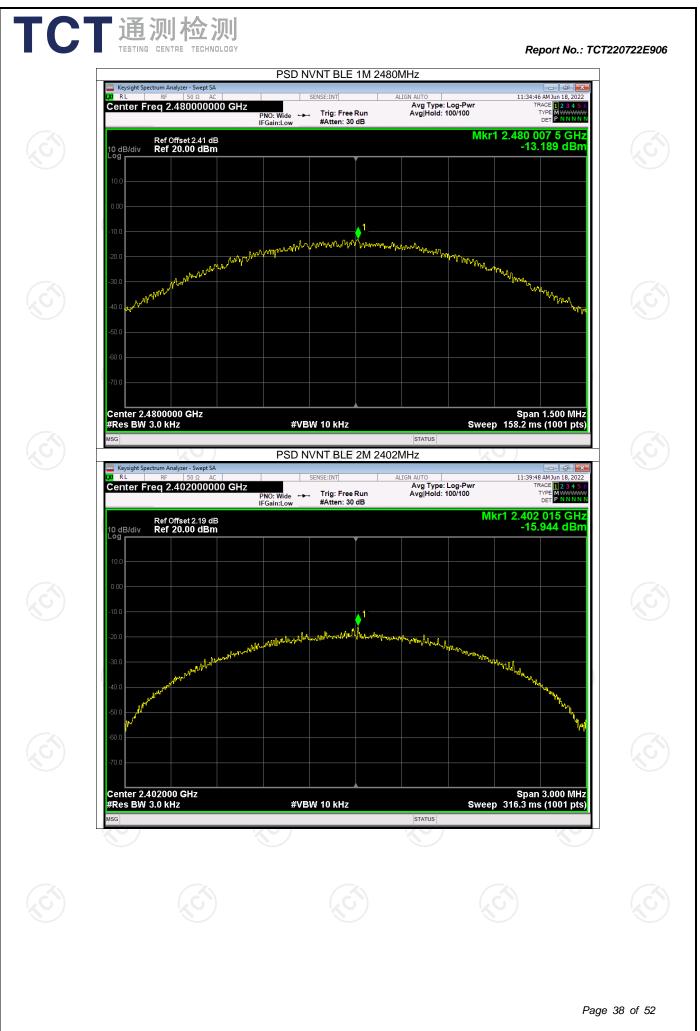
Page 35 of 52

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	-13.06	8	Pass
NVNT	BLE 1M	2440	-13.28	8	Pass
NVNT	BLE 1M	2480	-13.19	8	Pass
NVNT	BLE 2M	2402	-15.94	8	Pass
NVNT	BLE 2M	2440	-15.87	8	Pass
NVNT	BLE 2M	2480	-15.44	8	Pass
Ky /		KU /	KO.)	KO/

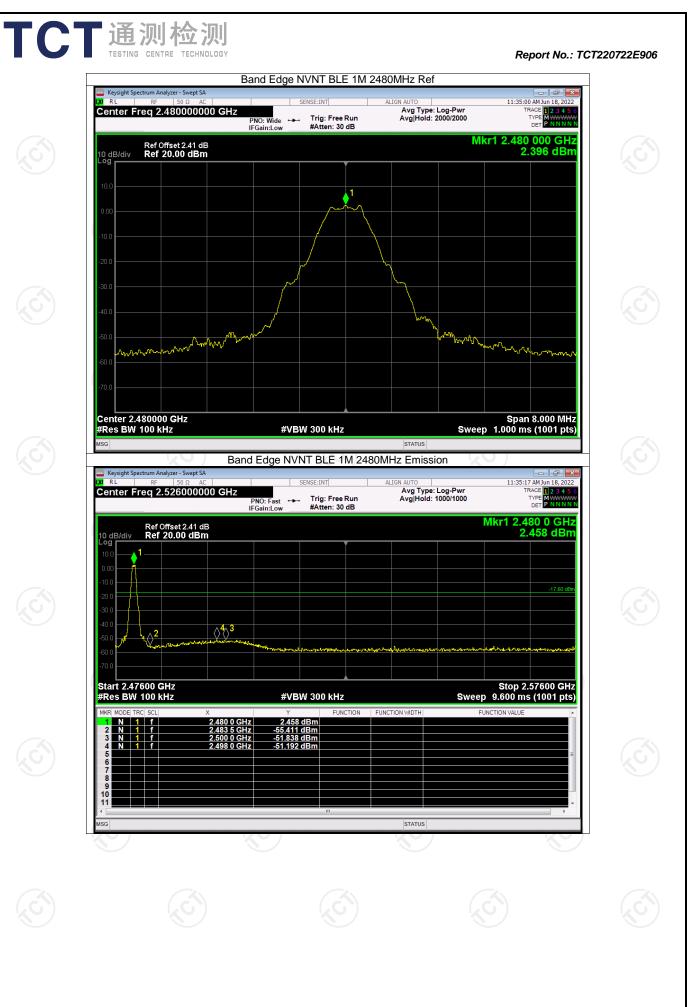

Report No.: TCT220722E906

Page 36 of 52

Test Graphs

TCT通测检测 TESTING CENTRE TECHNOLOGY

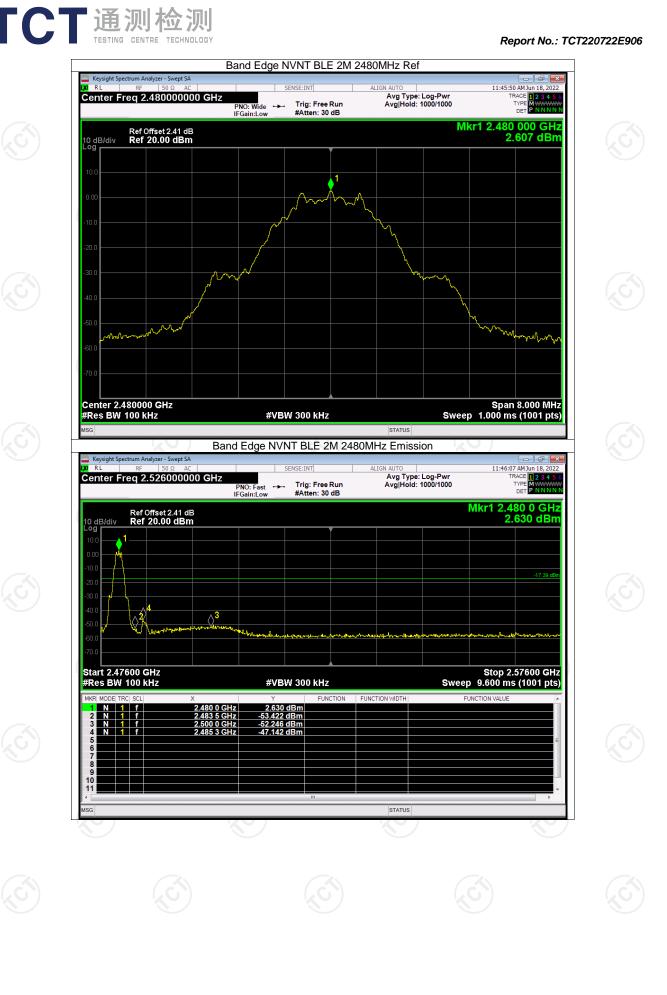
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


			Page	40 of 52

		Band	Edge		
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-52.86	-20	Pass
NVNT	BLE 1M	2480	-53.59	-20	Pass
NVNT	BLE 2M	2402	-53.04	-20	Pass
NVNT	BLE 2M	2480	-49.75	-20	Pass

TCT通测检测 TESTING CENTRE TECHNOLOGY

STATUS



Page 42 of 52

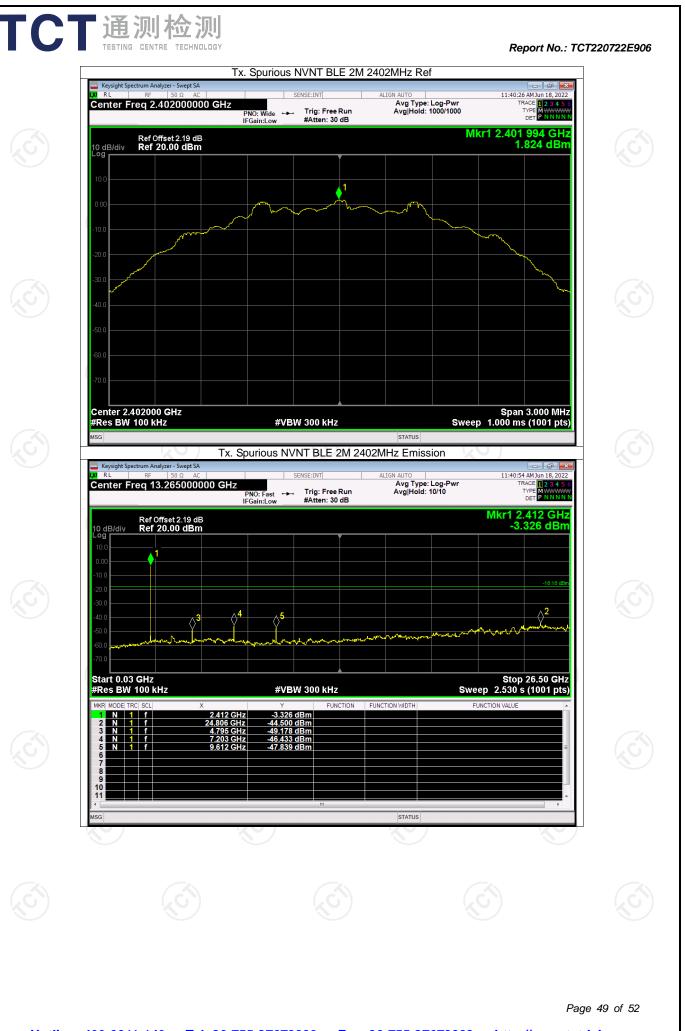
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

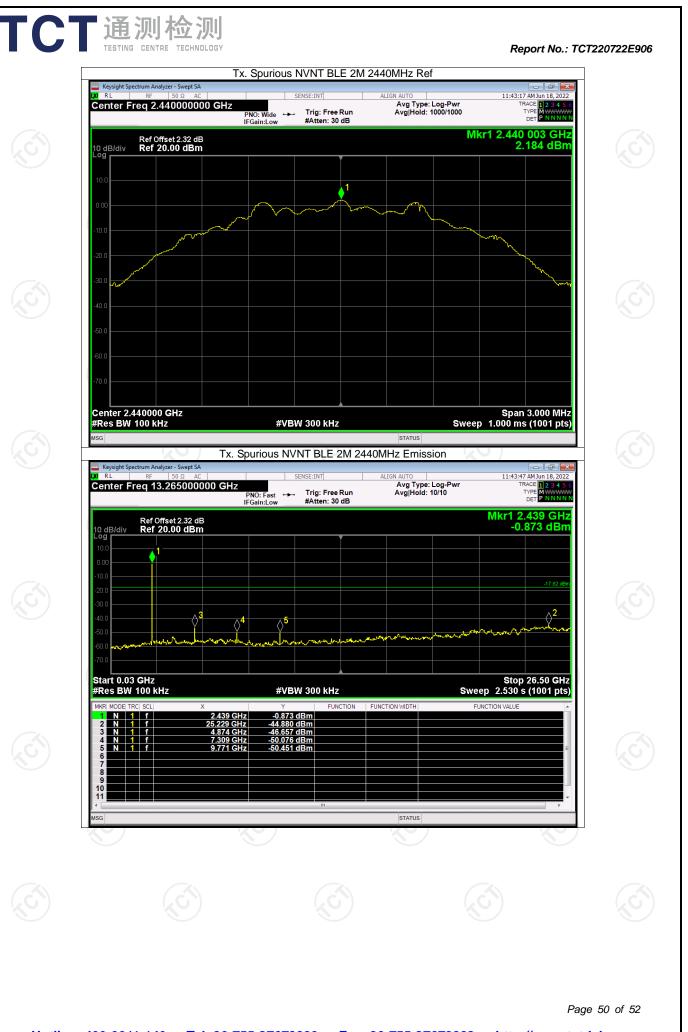
Page 43 of 52

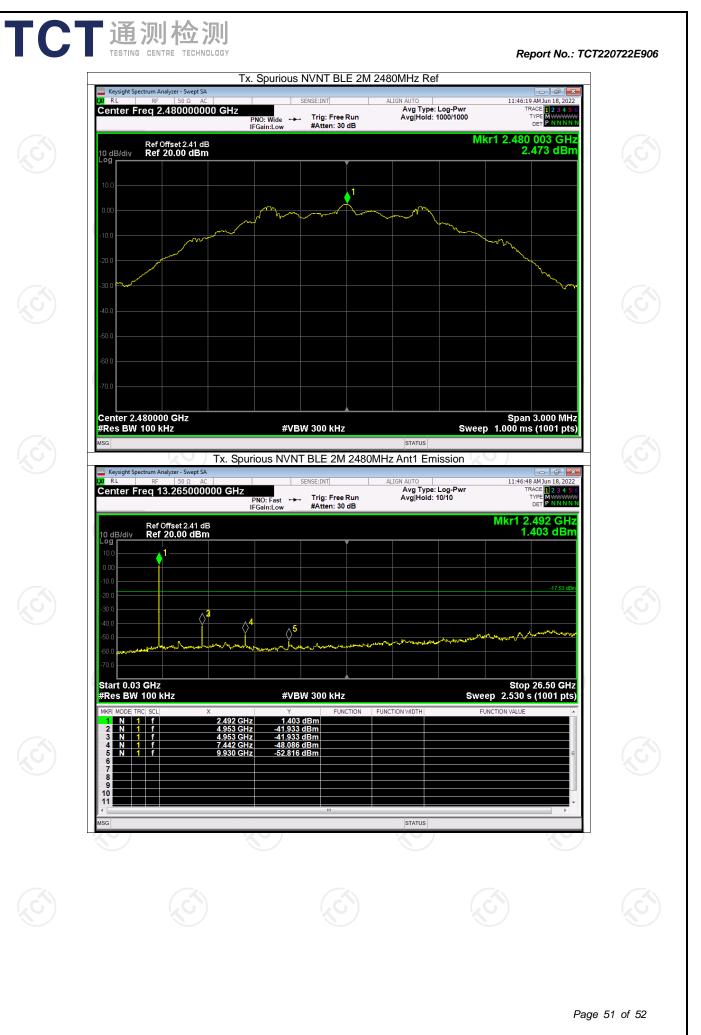
Page 44 of 52

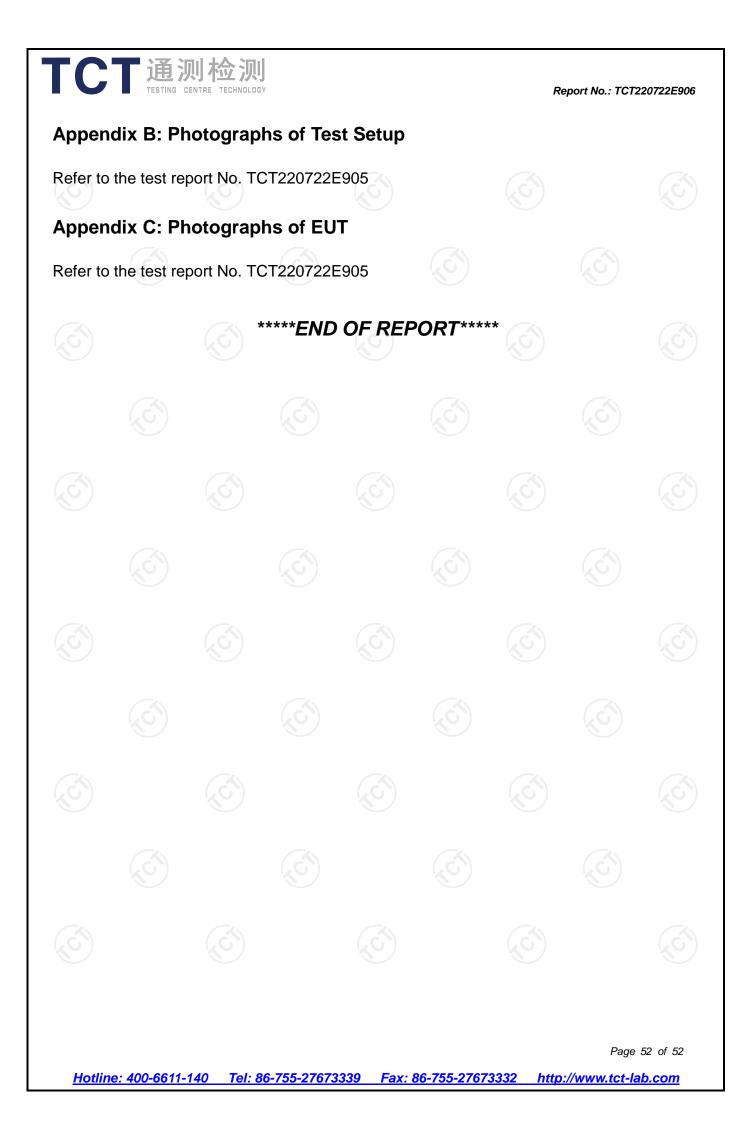
Conducted	RF	Spurious	Emission
-----------	----	----------	----------

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-46.50	-20	Pass
NVNT	BLE 1M	2440	-47.59	-20	Pass
NVNT	BLE 1M	2480	-45.56	-20	Pass
NVNT	BLE 2M	2402	-46.31	-20	Pass
NVNT	BLE 2M	2440	-47.06	-20	Pass
NVNT	BLE 2M	2480	-44.40	-20	Pass






Page 46 of 52


To Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC	K. Spurious NVNT BLE 1M	2440MHz Ref	11:30:55 AM Jun 18, 2022
enter Freq 2.440000000 GHz	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 1000/1000	TRACE 123456 TYPE MWWWW DET PNNNNN
Ref Offset 2.32 dB dB/div Ref 20.00 dBm		Mkr1 2	2.440 238 5 GHz 2.066 dBm
.0			
00			
0.0			~~~
			mm
0			
0			
0			
.0			
enter 2.4400000 GHz			Span 1.500 MHz
es BW 100 kHz	#VBW 300 kHz	Sweep 7	1.000 ms (1001 pts)
Tx. S Keysight Spectrum Analyzer - Swept SA	Spurious NVNT BLE 1M 24	40MHz Emission	
RL RF 50 Ω AC nter Freq 13.265000000 GHz	PNO: Fast Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 10/10	11:31:23 AM Jun 18, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N
Ref Offset 2.32 dB dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB		Mkr1 2.439 GHz 1.070 dBm
dB/div Ref 20.00 dBm			
0.0			-17.93 dBm
0.0	4		<u>^</u> 2
		and a start a sta	www.
tart 0.03 GHz Res BW 100 kHz	#VBW 300 kHz	-	Stop 26.50 GHz 2.530 s (1001 pts)
MODE TRC SCL X N 1 f 2.439 GH 2 N 1 f 25.097 GH 3 N 1 f 4.874 GH	Y FUNCTION IZ 1.070 dBm IZ -45.527 dBm IZ 45.727 dBm	FUNCTION WIDTH FUNCT	ION VALUE
4 N 1 f 7.309 GH 5 N 1 f 9.771 GH 6	Iz -46.308 dBm		E
7 8 9			
d	m	STATUS	*
			NC N

RL RF 50 Ω AC enter Freq 2.480000000 GH:	Z PNO: Wide Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 1000/1000	11:37:21 AM Jun 18, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N
Ref Offset 2.41 dB dB/div Ref 20.00 dBm	IFGain:Low #Atten: 30 dB	Mkr1 2	2.480 234 0 GHz 2.370 dBm
.00		1	
.0			~~~
1.0			
.0			
.0			
.0			
.0			
0.0			
enter 2.4800000 GHz tes BW 100 kHz	#VBW 300 kHz	Sweep	Span 1.500 MHz I.000 ms (1001 pts)
T> Keysight Spectrum Analyzer - Swept SA	k. Spurious NVNT BLE 1M 24	status 480MHz Emission]
enter Freq 13.265000000 GI	PNO: Fast ++++ Irig: Free Run	Avg Type: Log-Pwr Avg Hold: 10/10	TRACE 1 2 3 4 5 6
g 	IFGain:Low #Atten: 30 dB		Mkr1 2.492 GHz 0.570 dBm
i dB/div Ref 20.00 dBm 9 00 00 00 00 00 00 00 00 00	IFGain:Low #Atten: 30 dB		Mkr1 2.492 GHz
IdB/div Ref 20.00 dBm 9 1 00 1 00 3 00 3 00 3 00 3 00 3 00 3 00 3 00 3			Nkr1 2.492 GHz 0.570 dBm
Beldiv Ref 20.00 dBm 9 1 1	4 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Malation of the second se	Nkr1 2.492 GHz 0.570 dBm
dB/div Ref 20.00 dBm 29 1 00 1 00 3 00 3 00 3 00 3 00 4 10 4 10 4 10 4 10 4 10 4 1	#VBW 300 kHz #VBW 300 kHz GHz 0.570 dBm GHz 0.43192 dBm	Sweep	Nkr1 2.492 GHz 0.570 dBm
Albert Ref 20.00 dBm Albert Albert Alber<	#VBW 300 kHz Y FUNCTION GHz 43.192 dBm GHz 43.192 dBm	Sweep	Nkr1 2.492 GHz 0.570 dBm
Albert Ref 20.00 dBm Og 1 Og 1 Og 1 Og 3 Og 4	#VBW 300 kHz Y FUNCTION GHz 43.192 dBm GHz 43.192 dBm	Sweep	Nkr1 2.492 GHz 0.570 dBm
0 GB/div Ref 20.00 dBm 00 1 00 1 00 1 00 2 00 2 00 2 00 2 00 2 00 2 00 2 00 2 00 2 00 2 00 2 00 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	#VBW 300 kHz #VBW 300 kHz CHz 43.192 dBm CHz -45.112 dBm CHz -52.149 dBm	FUNCTION WIDTH FUNC	Nkr1 2.492 GHz 0.570 dBm

