Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V.ADT (Auden)** Certificate No: EX3-3650_Jul17 S C ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3650 Calibration procedure(s) A CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: July 24, 2017 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02525) | Apr-18 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-16 (No. ES3-3013_Dec16) | Dec-17 | | DAE4 | SN: 660 | 7-Dec-16 (No. DAE4-660_Dec16) | Dec-17 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-16) | In house check: Oct-17 | Name Function Signature Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: July 25, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: DCP **TSL** tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A, B, C, D Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - *NORMx,y,z:* Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3650_Jul17 Page 2 of 11 # Probe EX3DV4 SN:3650 Manufactured: Calibrated: March 18, 2008 July 24, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## **Basic Calibration Parameters** | 8.1 | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.40 | 0.40 | 0.40 | ± 10.1 % | | DCP (mV)B | 104.1 | 92.7 | 99.1 | 2 10.1 70 | ## **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 136.1 | ±1.9 % | | | | Y | 0.0 | 0.0 | 1.0 | | 139.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 136.4 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Numerical linearization parameter: uncertainty not required. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the EX3DV4~SN:3650 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------------| | 750 | 41.9 | 0.89 | 10.31 | 10.31 | 10.31 | 0.35 | 1.00 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.91 | 9.91 | 9.91 | 0.40 | 0.88 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.80 | 9.80 | 9.80 | 0.45 | 0.90 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.94 | 8.94 | 8.94 | 0.39 | 0.80 | ± 12.0 % | | 1640 | 40.2 | 1.31 | 8.69 | 8.69 | 8.69 | 0.39 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.56 | 8.56 | 8.56 | 0.30 | 0.90 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.28 | 8.28 | 8.28 | 0.36 | 0.85 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 8.35 | 8.35 | 8.35 | 0.45 | 0.82 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.06 | 8.06 | 8.06 | 0.44 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.58 | 7.58 | 7.58 | 0.40 | 0.95 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.55 | 7.55 | 7.55 | 0.45 | 0.90 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.38 | 7.38 | 7.38 | 0.30 | 1.15 | ± 12.0 % | | 3700 | 37.7 | 3.12 | 7.07 | 7.07 | 7.07 | 0.35 | 1.15 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.60 | 5.60 | 5.60 | 0.35 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.90 | 4.90 | 4.90 | 0.50 | 1.80 | | | 5800 | 35.3 | 5.27 | 4.94 | 4.94 | 4.94 | 0.50 | 1.80 | ± 13.1 %
± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz
for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip EX3DV4-SN:3650 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 9.89 | 9.89 | 9.89 | 0.37 | 0.99 | ± 12.0 % | | 835 | 55.2 | -0.97 | 9.76 | 9.76 | 9.76 | 0.42 | 0.85 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.60 | 9.60 | 9.60 | 0.42 | 0.85 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.78 | 8.78 | 8.78 | 0.39 | 0.80 | ± 12.0 % | | 1640 | 53.7 | 1.42 | 8.67 | 8.67 | 8.67 | 0.42 | 0.80 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.27 | 8.27 | 8.27 | 0.42 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.00 | 8.00 | 8.00 | 0.43 | 0.80 | ± 12.0 % | | 2100 | 53.2 | 1.62 | 8.18 | 8.18 | 8.18 | 0.38 | 0.86 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.90 | 7.90 | 7.90 | 0.38 | 0.80 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.68 | 7.68 | 7.68 | 0.32 | 0.89 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.37 | 7.37 | 7.37 | 0.32 | 0.92 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 7.15 | 7.15 | 7.15 | 0.30 | 1.20 | ± 13.1 % | | 3700 | 51.0 | 3.55 | 7.00 | 7.00 | 7.00 | 0.30 | 1.25 | ± 13.1 % | | 5250 | 48.9 | 5.36 | 5.28 | 5.28 | 5.28 | 0.35 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.29 | 4.29 | 4.29 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.61 | 4.61 | 4.61 | 0.50 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. FAt frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2) ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: \pm 0.6% (k=2) ## **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid** Error (ϕ, ϑ) , f = 900 MHz EX3DV4- SN:3650 July 24, 2017 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -21.6 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Certificate No: EX3-3650_Jul17 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client BV ADT (Auden) Certificate No: EX3-3864_Jul16 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3864 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: July 25, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Power sensor NRP-Z91 | SN: 103245 | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 05-Apr-16 (No. 217-02293) | Apr-17 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-15 (No. ES3-3013_Dec15) | Dec-16 | | DAE4 | SN: 660 | 23-Dec-15 (No. DAE4-660_Dec15) | Dec-16 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Name Function Signature Calibrated by: Michael Weber Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: July 27, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3864_Jul16 Page 1 of 11 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3864_Jul16 Page 2 of 11 # Probe EX3DV4 SN:3864 Manufactured: February 2, 2012 Calibrated: July 25, 2016 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3864_Jul16 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3864 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.46 | 0.43 | 0.48 | ± 10.1 % | | DCP (mV) ^B | 98.0 | 97.9 | 94.5 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc⁻
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 158.2 | ±2.5 % | | | | Y | 0.0 | 0.0 | 1.0 | | 149.9 | | | | | Z | 0.0 | 0.0 | 1.0 | | 141.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. B Numerical linearization parameter: uncertainty not required. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3864 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 41.9 | 0.89 | 10.09 | 10.09 | 10.09 | 0.36 | 1.07 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.80 | 9.80 | 9.80 | 0.54 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.84 | 9.84 | 9.84 | 0.52 | 0.80 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 9.28 | 9.28 | 9.28 | 0.39 | 0.80 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 8.92 | 8.92 | 8.92 | 0.37 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.76 | 8.76 | 8.76 | 0.30 | 0.93 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.53 | 8.53 | 8.53 | 0.35 | 0.80 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 8.69 | 8.69 | 8.69 | 0.33 | 0.80 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.14 | 8.14 | 8.14 | 0.34 | 0.80 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.75 | 7.75 | 7.75 | 0.37 | 0.80 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.57 | 7.57 | 7.57 | 0.38 | 0.86 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.03 | 7.03 | 7.03 | 0.49 | 0.87 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.57 | 5.57 | 5.57 | 0.30 | 1.80 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.44 | 5.44 | 5.44 | 0.30 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.31 | 5.31 | 5.31 | 0.30 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.95 | 4.95 | 4.95 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.96 | 4.96 | 4.96 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. Certificate No: EX3-3864_Jul16 F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3864 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 750 | 55.5 | 0.96 | 10.11 | 10.11 | 10.11 | 0.43 | 0.80 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.08 | 10.08 | 10.08 | 0.48 | 0.80 | ± 12.0 % | | 900 | 55.0 | 1.05 | 10.09 | 10.09 | 10.09 | 0.38 | 0.80 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.84 | 8.84 | 8.84 | 0.38 | 0.80 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 8.88 | 8.88 | 8.88 | 0.34 | 0.80 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.43 | 8.43 | 8.43 | 0.39 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.14 | 8.14 | 8.14 | 0.32 | 0.91 | ± 12.0 % | | 2100 | 53.2 | 1.62 | 8.68 | 8.68 | 8.68 | 0.42 | 0.82 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 8.04 | 8.04 | 8.04 | 0.33 | 0.80 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.82 | 7.82 | 7.82 | 0.28 | 0.80 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.60 | 7.60 | 7.60 | 0.32 | 0.80 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.56 | 6.56 | 6.56 | 0.37 | 1.10 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 4.64 | 4.64 | 4.64 | 0.45 | 1.90 | ± 13.1 % | | 5250 | 48.9 | 5.36 | 4.42 | 4.42 | 4.42 | 0.50 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.32 | 4.32 | 4.32 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.85 | 3.85 | 3.85 | 0.55 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.96 | 3.96 | 3.96 | 0.60 | 1.90 | ± 13.1 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: EX3-3864_Jul16 Page 6 of 11 validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. July 25, 2016 EX3DV4-SN:3864 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid** Error (ϕ, ϑ) , f = 900 MHz ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3864 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 64.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe
Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | ### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: EX3-3820 Jun16 ## CALIBRATION CERTIFICATE Object Client EX3DV4 - SN:3820 Calibration procedure(s) Auden QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: June 27, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Data (Cartificate N.) | | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | Cal Date (Certificate No.) | Scheduled Calibration | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288/02289) | Apr-17 | | Power sensor NRP-Z91 | SN: 103244 | 06-Apr-16 (No. 217-02288) | Apr-17 | | Reference 20 dB Attenuator | | 06-Apr-16 (No. 217-02289) | Apr-17 | | Reference Probe ES3DV2 | SN: S5277 (20x) | 05-Apr-16 (No. 217-02293) | Apr-17 | | DAE4 | SN: 3013 | 31-Dec-15 (No. ES3-3013_Dec15) | Dec-16 | | UAE4 | SN: 660 | 23-Dec-15 (No. DAE4-660_Dec15) | Dec-16 | | Secondary Standards | ID | Charle Date (i.e.) | | | Power meter E4419B | SN: GB41293874 | Check Date (in house) | Scheduled Check | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | RF generator HP 8648C | | 06-Apr-16 (in house check Jun-16) | In house check: Jun-18 | | | SN: US3642U01700 | 04-Aug-99 (in house check Jun-16) | In house check: Jun-18 | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | | | | Calibrated by: Name Jeton Kastrati Function Signature Approved by: Katja Pokovic Technical Manager Laboratory Technician Issued: June 28, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: EX3-3820_Jun16 Page 1 of 38 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space DCP sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization ϕ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ## Methods Applied and Interpretation of Parameters: - NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). # Probe EX3DV4 SN:3820 Manufactured: September 2, 2011 Calibrated: June 27, 2016 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) **Basic Calibration Parameters** | NI: () () () | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.43 | 0.48 | 0.49 | | | DCP (mV) ^B | 101.2 | 97.3 | | ± 10.1 % | | | | 31.3 | 95.3 | | **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc ^E
(k=2) | |---------|--|-----|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | - V | | 1 | | ub. | mv | (N-2) | | | | X | 0.0 | 0.0 | 1.0 | 0.00 | 148.5 | ±3.8 % | | | | Y | 0.0 | 0.0 | 1.0 | | 134.3 | 70 | | oto: Fo | l
r details on UID parameters see Apper | Z | 0.0 | 0.0 | 1.0 | | 135.9 | | **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V-1 | T6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------|-------| | X | 53.59 | 401.9 | 35.94 | 14.39 | | | | | | | V | 54.13 | | | 14.39 | 1.148 | 4.979 | 0.834 | 0.475 | 1.005 | | _ | | 407.2 | 36.33 | 11 | 1.06 | 5.036 | 0.269 | 0.444 | | | Z | 61.28 | 473.5 | 37.6 | 7.012 | | | | 0.444 | 1.006 | | | | 170.0 | 07.0 | 7.012 | 1.239 | 5.1 | 0.2 | 0.481 | 1.017 | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Numerical linearization parameter: uncertainty not required. $[\]frac{A}{a}$ The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G (mm) | Unc
(k=2) | |----------------------|----------------------------|------------------------------------|---------|---------|---------|--------------------|-------------------------|--------------| | 750 | 41.9 | 0.89 | 9.42 | 9.42 | 9.42 | 0.34 | 1.06 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.00 | 9.00 | 9.00 | 0.47 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.88 | 8.88 | 8.88 | 0.37 | 0.95 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.37 | 8.37 | 8.37 | 0.32 | 0.80 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 7.95 | 7.95 | 7.95 | 0.30 | 0.80 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.80 | 7.80 | 7.80 | 0.32 | 0.85 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.74 | 7.74 | 7.74 | 0.34 | 0.84 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.78 | 6.78 | 6.78 | 0.21 | 1.17 | ± 12.0 % | | 2600 | 39.0 |
1.96 | 6.49 | 6.49 | 6.49 | 0.25 | 1.26 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 4.66 | 4.66 | 4.66 | 0.40 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.41 | 4.41 | 4.41 | 0.45 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.32 | 4.32 | 4.32 | 0.45 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.14 | 4.14 | 4.14 | 0.50 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.14 | 4.14 | 4.14 | 0.50 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of G Alpha/Depth are determined their angle tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G (mm) | Unc
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|-------------------------|--------------| | 750 | 55.5 | 0.96 | 8.87 | 8.87 | 8.87 | 0.30 | 1.02 | ± 12.0 % | | 835 | 55.2 | 0.97 | 8.86 | 8.86 | 8.86 | 0.27 | 1.13 | ± 12.0 % | | 900 | 55.0 | 1.05 | 8.94 | 8.94 | 8.94 | 0.36 | 0.93 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.02 | 8.02 | 8.02 | 0.28 | 0.80 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.65 | 7.65 | 7.65 | 0.39 | 0.82 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.41 | 7.41 | 7.41 | 0.19 | 1.30 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.51 | 7.51 | 7.51 | 0.26 | 1.05 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.79 | 6.79 | 6.79 | 0.38 | 0.93 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.52 | 6.52 | 6.52 | 0.48 | 0.83 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.19 | 4.19 | 4.19 | 0.50 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 3.95 | 3.95 | 3.95 | 0.55 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.71 | 3.71 | 3.71 | 0.55 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.54 | 3.54 | 3.54 | 0.55 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.70 | 3.70 | 3.70 | 0.60 | 1.90 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity validity can be extended to \pm 100 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz ## **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 31.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | EX3DV4- SN:3820 June 27, 2016 **Appendix: Modulation Calibration Parameters** | V V V V V V V V V V | UID | dix: Modulation Calibration Para Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
Unc ^E | |--|---------------|--|---|---------|------------------|-------|---------|----------|-------------------------| | Y 0.00 0.00 1.00 134.3 155.9 | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 1/18 5 | (k=2) | | TOO10-CAA SAR Validation (Square, 100ms, 10ms) X 2.91 66.95 11.00 11.00 20.00 ± 9.6 % | | | | | | | 0.00 | | ± 3.0 % | | 10010- CAA | | | _ | | | | | | | | 10011- CAB | | SAR Validation (Square, 100ms, 10ms) | _ | | | | 10.00 | | ± 9.6 % | | 10011- CAB | | | Y | 4.24 | 71.80 | 13.80 | | 20.0 | | | MTS-FDD (WCDMA) | | | Z | 13.20 | | | | | | | TOO12-CAB IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 X 1.19 63.84 15.24 0.41 150.0 ± 9.6 % | | UMTS-FDD (WCDMA) | | | | | 0.00 | | ± 9.6 % | | 10012- IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 X 1.19 63.84 15.24 0.41 150.0 ± 9.6 % | | | | | | 19.60 | | 150.0 | | | CAB Mbps No. 1000 | 10010 | UEEE COO AND | | | 63.95 | 13.11 | | 150.0 | | | TOO13- | | | | 1.19 | 63.84 | 15.24 | 0.41 | 150.0 | ± 9.6 % | | DO15- CAB | | | | | | 16.88 | | 150.0 | | | Tell | 10010 | 1555 | | | 62.20 | 14.01 | | | | | 10021- 10024- 10024- 10024- 10024- 10026- 10025- 10026-
10026- 10026- 10026- 10026- 10026- 10026- 10026- 10026- 10026- 10026- 1 | | | | | | 16.89 | 1.46 | 150.0 | ± 9.6 % | | 10021- DAB | | | | | | 17.38 | | 150.0 | | | DAB Y 100.00 115.62 28.70 50.0 | 10001 | | | | | 16.95 | | 150.0 | | | TOD23-DAB GPRS-FDD (TDMA, GMSK, TN 0) X 10.49 83.18 19.06 9.57 50.0 ± 9.6 % | | GSM-FDD (TDMA, GMSK) | | | | 19.85 | 9.39 | 50.0 | ± 9.6 % | | 10023- DAB | | | | | | 28.70 | | 50.0 | | | DAB | 10000 | | | | 123.67 | 32.95 | | 50.0 | | | 10024- DAB | | GPRS-FDD (TDMA, GMSK, TN 0) | | | | | 9.57 | 50.0 | ± 9.6 % | | 10024- DAB | | | | | | 28.65 | | 50.0 | | | DAB Y 100.00 | 10001 | | + | | 123.24 | 32.82 | | 50.0 | | | TOO25-DAB EDGE-FDD (TDMA, 8PSK, TN 0) X 4.99 72.36 25.92 12.57 50.0 ± 9.6 % | 10024-
DAB | GPRS-FDD (TDMA, GMSK, TN 0-1) | | | 96.11 | 21.36 | 6.56 | 60.0 | ± 9.6 % | | DAB EDGE-FDD (TDMA, 8PSK, TN 0) X 4.99 72.36 25.92 12.57 50.0 ±9.6 % | | | Y | 100.00 | 115.76 | 27.51 | | 60.0 | | | DAB Y 12.74 102.33 40.28 50.0 | 40005 | | | | | 32.70 | | 60.0 | | | TOUZE-DAB EDGE-FDD (TDMA, 8PSK, TN 0-1) X 9.44 89.33 30.51 9.56 60.0 ± 9.6 % | 10025-
DAB | EDGE-FDD (TDMA, 8PSK, TN 0) | | | | | 12.57 | 50.0 | ± 9.6 % | | 10026-DAB EDGE-FDD (TDMA, 8PSK, TN 0-1) X 9.44 89.33 30.51 9.56 60.0 ± 9.6 % | | | | | 102.33 | | | 50.0 | | | DAB Y 12.46 98.80 35.19 60.0 | 40000 | | | | | | | 50.0 | | | 10027- DAB GPRS-FDD (TDMA, GMSK, TN 0-1-2) X 100.00 108.03 23.23 4.80 80.0 ± 9.6 % | DAB | EDGE-FDD (TDMA, 8PSK, TN 0-1) | | | | | 9.56 | 60.0 | ± 9.6 % | | 10027- DAB | | | | | | 35.19 | | 60.0 | | | DAB Y 100.00 117.95 27.58 80.0 10028-DAB GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) X 100.00 129.63 33.06 80.0 10028-DAB GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) X 100.00 108.32 22.71 3.55 100.0 ± 9.6 % 10029-DAB Y 100.00 132.93 33.53 100.0 10029-DAB EDGE-FDD (TDMA, 8PSK, TN 0-1-2) X 6.28 80.96 26.28 7.80 80.0 ± 9.6 % 10030-DAB Y 6.96 85.32 29.11 80.0 ± 9.6 % 10030-CAA IEEE 802.15.1 Bluetooth (GFSK, DH1) X 23.05 92.26 19.61 5.30 70.0 ± 9.6 % 10031-CAA IEEE 802.15.1 Bluetooth (GFSK, DH3) X 100.00 107.60 21.20 1.88 100.0 ± 9.6 % | 10007 | | | | | | | | | | Toology | 10027-
DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | | | | 23.23 | 4.80 | 80.0 | ± 9.6 % | | 10028-DAB GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) X 100.00 108.32 22.71 3.55 100.0 ± 9.6 % | | | | | | | | | | | DAB Y 100.00 122.16 28.60 100.0 T 100.00 122.16 28.60 100.0 T 100.00 132.93 33.53 | 10000 | ODDO EDD (TDIII) OLION THE | | | | | | | | | Toology | DAB | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | | | | | 3.55 | | ± 9.6 % | | Total Tota | | | | | | | | | | | DAB Y 6.96 85.32 29.11 80.0 Z 5.29 77.61 25.92 80.0 10030- CAA IEEE 802.15.1 Bluetooth (GFSK, DH1) X 23.05 92.26 19.61 5.30 70.0 ± 9.6 % Y 100.00 115.32 26.76 70.0 Z 100.00 126.49 32.09 70.0 10031- CAA IEEE 802.15.1 Bluetooth (GFSK, DH3) X 100.00 107.60 21.20 1.88 100.0 ± 9.6 % Y 100.00 131.06 30.63 100.0 | 10020 | EDGE EDD (TDMA CDG)(TN C 1 C) | | | | | | | | | Total Tota | DAB | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | | | | | 7.80 | | ± 9.6 % | | 10030- CAA IEEE 802.15.1 Bluetooth (GFSK, DH1) X 23.05 92.26 19.61 5.30 70.0 ± 9.6 % | | | | | | | | | | | Y 100.00 115.32 26.76 70.0 Z 100.00 126.49 32.09 70.0 10031- CAA IEEE 802.15.1 Bluetooth (GFSK, DH3) X 100.00 107.60 21.20 1.88 100.0 ± 9.6 % Y 100.00 131.06 30.63 100.0 | 10030-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | | | | | 5.30 | | ± 9.6 % | | Z 100.00 126.49 32.09 70.0 10031- CAA IEEE 802.15.1 Bluetooth (GFSK, DH3) X 100.00 107.60 21.20 1.88 100.0 ± 9.6 % Y 100.00 131.06 30.63 100.0 | | | V | 100.00 | 115.22 | 26.76 | | 70.0 | | | 10031-
CAA IEEE 802.15.1 Bluetooth (GFSK, DH3) X 100.00 107.60 21.20 1.88 100.0 ± 9.6 % Y 100.00 131.06 30.63 100.0 | | | | | | | | | | | Y 100.00 131.06 30.63 100.0 | 10031- | IEEE 802 15 1 Bluetooth (GESK DU2) | | | | | 1.00 | | 1000 | | | CAA | TEEL OOZ. 10.1 BIDGROOTH (GF3N, DF3) | | | | | 1.88 | | ± 9.6 % | | | | | Z | 100.00 | 131.06
132.96 | 30.63 | | 100.0 | | EX3DV4- SN:3820 June 27, 2016 | 10032-
CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | X | 100.00 | 113.22 | 22.67 | 1.17 | 100.0 | ± 9.6 % | |---------------|---|---|--------|-----------------|----------------|-------|--------------|---------| | | | Y | 100.00 | 159.51 | 40.57 | | 100.0 | | | | | Z | 4.77 | 98.55 | 23.61 | | 100.0 | | | 10033-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | X | 5.95 | 81.54 | 20.62 | 5.30 | 70.0 | ± 9.6 % | | | | Υ | 31.39 | 111.74 | 31.08 | | 70.0 | | | | | Z | 6.92 | 88.40 | 25.43 | | 70.0 | | | 10034-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Х | 2.53 | 73.78 | 16.91 | 1.88 | 100.0 | ± 9.6 % | | | | Υ | 8.40 | 94.30 | 25.11 | | 100.0 | | | | | Z | 2.04 | 71.57 | 17.30 | | 100.0 | | | 10035-
CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | X | 1.92 | 71.48 | 15.91 | 1.17 | 100.0 | ± 9.6 % | | | | Υ | 4.80 | 87.19 | 22.72 | | 100.0 | | | | | Z | 1.52 | 68.13 | 15.29 | | 100.0 | | | 10036-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | X | 7.00 | 84.17 | 21.61 | 5.30 | 70.0 | ± 9.6 % | | | | Y | 60.53 | 122.86 | 33.97 | | 70.0 | | | | | Z | 8.35 | 92.00 | 26.74 | | 70.0 | | | 10037-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Х | 2.42 | 73.25 | 16.65 | 1.88 | 100.0 | ± 9.6 % | | | | Υ | 7.51 | 92.72 | 24.60 | | 100.0 | | | | | Z | 1.97 | 71.19 | 17.10 | | 100.0 | | | 10038-
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | X | 1.94 | 71.83 | 16.15 | 1.17 | 100.0 | ± 9.6 % | | | | Υ | 4.97 | 88.11 | 23.16 | | 100.0 | | | | | Z | 1.52 | 68.29 | 15.45 | | 100.0 | | | 10039-
CAB | CDMA2000 (1xRTT, RC1) | X | 2.15 | 73.98 | 17.06 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.64 | 89.14 | 22.94 | | 150.0 | | | | | Z | 1.50 | 66.92 | 13.82 | | 150.0 | | | 10042-
CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-
DQPSK, Halfrate) | X | 9.98 | 82.49 | 17.56 | 7.78 | 50.0 | ± 9.6 % | | | | Υ | 100.00 | 112.59 | 26.38 | | 50.0 | | | | | Z | 100.00 | 121.68 | 30.94 | | 50.0 | | | 10044-
CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | X | 0.00 | 97.86 | 1.75 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 0.00 | 115.28 | 0.17 | | 150.0 | | | | | Z | 0.01 | 89.38 | 7.52 | | 150.0 | | | 10048-
CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | X | 7.18 | 75.26 | 17.75 | 13.80 | 25.0 | ± 9.6 % | | | | Υ | 19.36 | 89.79 | 23.13 | | 25.0 | | | 10049- | DECT (TDD, TDMA/FDM, GFSK, Double | X | 7.58 | 119.10
78.05 | 32.85
17.57 | 10.79 | 25.0
40.0 | ± 9.6 % | | CAA | Slot, 12) | Y | 40.47 | 102.30 | 25.68 | | 40.0 | | | | | Z | 100.00 | 121.63 | 32.57 | | 40.0 | | | 10056-
CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | X | 9.03 | 82.76 | 21.27 | 9.03 | 50.0 | ± 9.6 % | | | | Y | 27.06 | 102.61 | 28.44 | | 50.0 | | | | | Z | 20.85 | 101.14 | 29.48 | | 50.0 | | | 10058-
DAB | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | X | 4.87 | 76.45 | 23.78 | 6.55 | 100.0 | ± 9.6 % | | | | Υ | 5.10 | 79.07 | 25.85 | | 100.0 | | | | | Z | 4.21 | 73.47 | 23.33 | | 100.0 | | | 10059-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2
Mbps) | X | 1.23 | 64.84 | 15.71 | 0.61 | 110.0 | ± 9.6 % | | | | Υ | 1.31 | 67.04 | 17.67 | | 110.0 | | | 100 | | Z | 1.18 | 62.94 | 14.51 | | 110.0 | | | 10060-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | X | 5.37 | 91.70 | 23.52 | 1.30 | 110.0 | ± 9.6 % | | | | Υ | 100.00 | 145.92 | 39.22 | | 110.0 | | | | | Z | 1.66 | 75.92 | 19.25 | | 110.0 | | | 10061-
CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | X | 2.59 | 76.69 | 20.10 | 2.04 | 110.0 | ± 9.6 % | |---------------|---|---|--------------|----------------|----------------|------|-------|---------| | | | Y | 5.25 | 92.34 | 27.22 | | 110.0 | | | | | Z | 1.92 | 72.23 | 19.28 | | 110.0 | | | 10062-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | Х | 4.73 | 66.55 | 16.45 | 0.49 | 100.0 | ± 9.6 % | | | | Y | 4.79 | 66.94 | 16.88 | | 100.0 | | | | | Z | 4.83 | 66.22 | 16.30 | | 100.0 | | | 10063-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | X | 4.74 | 66.61 | 16.52 | 0.72 | 100.0 | ± 9.6 % | | | | Y | 4.81 | 67.03 | 16.98 | | 100.0 | | | 40004 | 1 | Z | 4.85 | 66.32 | 16.42 | | 100.0 | | | 10064-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | X | 5.05 | 66.89 | 16.74 | 0.86 | 100.0 | ± 9.6 % | | ***** | | Y | 5.11 | 67.30 | 17.20 | | 100.0 | | | 10065- | IFFE 000 44- #- W/F/ 5 OU /05504 | Z | 5.19 | 66.70 | 16.71 | | 100.0 | | | CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | X | 4.90 | 66.75 | 16.79 | 1.21 | 100.0 | ± 9.6 % | | | - | Υ | 4.97 | 67.20 | 17.29 | | 100.0 | | | 10066- | IEEE 000 44 - # 14/5: = 5:: | Z | 5.05 | 66.61 | 16.83 | | 100.0 | | | CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | X | 4.92 | 66.75 | 16.92 | 1.46 | 100.0 | ± 9.6 % | | | | Y | 4.99 | 67.21 | 17.44 | | 100.0 | | | 10067- | IEEE 000 44- # MEE E CO | Z | 5.08 | 66.65 | 17.02 | | 100.0 | | | CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | X | 5.19 | 66.81 | 17.28 | 2.04 | 100.0 | ± 9.6 % | | | | Υ | 5.27 | 67.26 | 17.81 | | 100.0 | | | 10068-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | Z | 5.38
5.26 | 66.77
66.92 | 17.47
17.50 | 2.55 | 100.0 | ± 9.6 % | | O/ LD | (VIDPS) | Y | 5.33 | 67.41 | 18.07 | | 400.0 | | | | | Z | 5.46 | 66.99 | 17.77 | | 100.0 | | | 10069-
CAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | X | 5.33 | 66.87 | 17.66 | 2.67 | 100.0 | ± 9.6 % | | | | Y | 5.41 | 67.34 | 18.23 | | 100.0 | | | | | Z | 5.54 | 66.91 | 17.94 | | 100.0 | | | 10071-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 9 Mbps) | X | 4.99 | 66.49 | 17.14 | 1.99 | 100.0 | ± 9.6 % | | | | Y | 5.06 | 66.92 | 17.66 | | 100.0 | | | | | Z | 5.15 | 66.40 | 17.28 | | 100.0 | - | | 10072-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 12 Mbps) | X | 4.98 | 66.81 | 17.32 | 2.30 | 100.0 | ± 9.6 % | | | | Y | 5.05 | 67.30 | 17.89 | | 100.0 | | | | | Z | 5.14 | 66.77 | 17.52 | | 100.0 | | | 10073-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 18 Mbps) | X | 5.03 | 66.92 | 17.59 | 2.83 | 100.0 | ± 9.6 % | | | | Y | 5.11 | 67.44 | 18.20 | | 100.0 | | | | | Z
 5.21 | 66.91 | 17.86 | | 100.0 | | | 10074-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 24 Mbps) | X | 5.01 | 66.80 | 17.71 | 3.30 | 100.0 | ± 9.6 % | | | | Υ | 5.08 | 67.31 | 18.34 | | 100.0 | | | 10075 | IEEE OOG 44 MARTIE | Z | 5.18 | 66.81 | 18.04 | | 100.0 | | | 10075-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 36 Mbps) | X | 5.06 | 66.97 | 18.03 | 3.82 | 90.0 | ± 9.6 % | | | | Υ | 5.14 | 67.49 | 18.68 | | 90.0 | | | 10070 | 1555 000 11 1115 | Z | 5.25 | 67.05 | 18.43 | | 90.0 | | | 10076-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 48 Mbps) | Х | 5.06 | 66.71 | 18.10 | 4.15 | 90.0 | ± 9.6 % | | | | Y | 5.13 | 67.20 | 18.74 | | 90.0 | | | 10077 | 1555 000 44 149545 | Z | 5.23 | 66.74 | 18.50 | | 90.0 | | | 10077-
CAB | IEEE 802.11g WiFi 2.4 GHz
(DSSS/OFDM, 54 Mbps) | X | 5.08 | 66.77 | 18.18 | 4.30 | 90.0 | ± 9.6 % | | | | Υ | 5.15 | 67.26 | 18.83 | | 90.0 | | | | | Z | 5.25 | 66.77 | 18.58 | | 90.0 | | EX3DV4- SN:3820 June 27, 2016 | 10081-
CAB | CDMA2000 (1xRTT, RC3) | X | 0.95 | 67.20 | 13.72 | 0.00 | 150.0 | ± 9.6 % | |---------------|---|---|--------|--------|-------|------|-------|---------| | | | Y | 1.84 | 77.86 | 18.83 | | 150.0 | | | | | Z | 0.83 | 63.27 | 11.54 | | 150.0 | | | 10082-
CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-
DQPSK, Fullrate) | X | 0.72 | 58.34 | 3.85 | 4.77 | 80.0 | ± 9.6 % | | | | Y | 0.80 | 60.00 | 5.01 | | 80.0 | | | | | Z | 0.78 | 60.02 | 5.75 | 70 | 80.0 | | | 10090-
DAB | GPRS-FDD (TDMA, GMSK, TN 0-4) | X | 29.15 | 95.48 | 21.21 | 6.56 | 60.0 | ± 9.6 % | | | | Y | 100.00 | 115.79 | 27.54 | | 60.0 | | | | | Z | 100.00 | 126.41 | 32.74 | | 60.0 | | | 10097-
CAB | UMTS-FDD (HSDPA) | X | 1.88 | 67.87 | 15.99 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.14 | 70.75 | 17.79 | | 150.0 | | | | | Z | 1.73 | 65.15 | 14.30 | | 150.0 | | | 10098-
CAB | UMTS-FDD (HSUPA, Subtest 2) | Х | 1.84 | 67.81 | 15.95 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.11 | 70.78 | 17.80 | | 150.0 | | | | | Z | 1.69 | 65.08 | 14.24 | | 150.0 | | | 10099-
DAB | EDGE-FDD (TDMA, 8PSK, TN 0-4) | X | 9.47 | 89.38 | 30.52 | 9.56 | 60.0 | ± 9.6 % | | | | Y | 12.54 | 98.89 | 35.21 | | 60.0 | | | | | Z | 7.89 | 86.11 | 30.54 | | 60.0 | | | 10100-
CAB | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, QPSK) | X | 3.25 | 70.73 | 16.93 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.69 | 73.26 | 18.35 | | 150.0 | | | | | Z | 2.98 | 68.29 | 15.50 | | 150.0 | | | 10101-
CAB | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM) | X | 3.32 | 67.71 | 16.08 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.47 | 68.78 | 16.86 | | 150.0 | | | | | Z | 3.27 | 66.54 | 15.28 | | 150.0 | | | 10102-
CAB | LTE-FDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM) | X | 3.43 | 67.67 | 16.18 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.56 | 68.63 | 16.89 | | 150.0 | | | | | Z | 3.38 | 66.55 | 15.41 | | 150.0 | | | 10103-
CAB | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, QPSK) | Х | 6.21 | 74.23 | 19.42 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.88 | 77.07 | 21.19 | | 65.0 | | | | No. | Z | 5.98 | 74.05 | 20.08 | | 65.0 | | | 10104-
CAB | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 16-QAM) | X | 6.42 | 73.10 | 19.79 | 3.98 | 65.0 | ± 9.6 % | | | | Y | 6.52 | 74.28 | 20.86 | | 65.0 | | | | | Z | 6.03 | 72.15 | 19.99 | | 65.0 | | | 10105-
CAB | LTE-TDD (SC-FDMA, 100% RB, 20
MHz, 64-QAM) | Х | 6.09 | 72.02 | 19.63 | 3.98 | 65.0 | ± 9.6 % | | | | Υ | 5.92 | 72.21 | 20.23 | | 65.0 | | | | | Z | 5.85 | 71.37 | 19.93 | | 65.0 | | | 10108-
CAC | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, QPSK) | X | 2.85 | 69.93 | 16.76 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 3.22 | 72.45 | 18.22 | | 150.0 | | | | | Z | 2.65 | 67.54 | 15.31 | | 150.0 | | | 10109-
CAC | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, 16-QAM) | X | 2.99 | 67.57 | 16.02 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.14 | 68.79 | 16.90 | | 150.0 | | | | | Z | 2.93 | 66.22 | 15.13 | | 150.0 | | | 10110-
CAC | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | X | 2.32 | 68.97 | 16.39 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.65 | 71.77 | 18.06 | | 150.0 | | | | | Z | 2.18 | 66.50 | 14.87 | | 150.0 | | | 10111-
CAC | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | X | 2.72 | 68.46 | 16.43 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 2.92 | 70.13 | 17.54 | | 150.0 | | | | | 1 | 2.02 | 10.10 | 17.54 | | 100.0 | | | 10112-
CAC | LTE-FDD (SC-FDMA, 100% RB, 10
MHz, 64-QAM) | X | 3.11 | 67.54 | 16.08 | 0.00 | 150.0 | ± 9.6 % | |---------------|--|---|------|-------|-------|------|-------|---| | | | Y | 3.25 | 68.64 | 16.88 | | 150.0 | | | | | Z | 3.06 | 66.25 | 15.23 | | 150.0 | | | 10113-
CAC | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | X | 2.88 | 68.57 | 16.55 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.07 | 70.09 | 17.57 | | 150.0 | | | | | Z | 2.76 | 66.60 | 15.38 | | 150.0 | | | 10114-
CAB | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | X | 5.19 | 67.21 | 16.48 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.24 | 67.52 | 16.81 | | 150.0 | | | | | Z | 5.22 | 66.70 | 16.13 | | 150.0 | | | 10115-
CAB | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | X | 5.53 | 67.47 | 16.62 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.58 | 67.77 | 16.93 | | 150.0 | | | | | Z | 5.60 | 67.06 | 16.32 | | 150.0 | | | 10116-
CAB | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | X | 5.31 | 67.45 | 16.53 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.36 | 67.78 | 16.86 | | 150.0 | | | | | Z | 5.35 | 66.97 | 16.19 | | 150.0 | | | 10117-
CAB | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | Х | 5.18 | 67.14 | 16.46 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 5.22 | 67.45 | 16.79 | | 150.0 | | | | | Z | 5.23 | 66.72 | 16.16 | | 150.0 | | | 10118-
CAB | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | X | 5.61 | 67.65 | 16.71 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.66 | 67.96 | 17.03 | | 150.0 | | | | | Z | 5.67 | 67.22 | 16.41 | | 150.0 | | | 10119-
CAB | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | X | 5.28 | 67.38 | 16.50 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 5.33 | 67.70 | 16.84 | | 150.0 | | | | | Z | 5.33 | 66.93 | 16.18 | | 150.0 | | | 10140-
CAB | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, 16-QAM) | X | 3.47 | 67.67 | 16.09 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.60 | 68.62 | 16.81 | - | 150.0 | | | | | Z | 3.43 | 66.56 | 15.35 | | 150.0 | | | 10141-
CAB | LTE-FDD (SC-FDMA, 100% RB, 15
MHz, 64-QAM) | X | 3.59 | 67.76 | 16.26 | 0.00 | 150.0 | ± 9.6 % | | | | Y | 3.72 | 68.63 | 16.93 | | 150.0 | | | | | Z | 3.55 | 66.67 | 15.53 | | 150.0 | | | 10142-
CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | X | 2.11 | 69.04 | 16.19 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.50 | 72.47 | 18.16 | | 150.0 | - | | | | Z | 1.95 | 66.19 | 14.52 | | 150.0 | | | 10143-
CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | Х | 2.62 | 69.39 | 16.35 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.95 | 71.82 | 17.79 | | 150.0 | | | | | Z | 2.42 | 66.67 | 14.90 | | 150.0 | | | 10144-
CAC | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | Х | 2.37 | 66.97 | 14.69 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.59 | 68.81 | 15.89 | | 150.0 | | | | | Z | 2.31 | 65.30 | 13.79 | | 150.0 | | | 10145-
CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, QPSK) | X | 1.44 | 66.90 | 13.35 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 2.00 | 72.14 | 16.10 | | 150.0 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | Z | 1.34 | 64.27 | 12.14 | | 150.0 | | | 10146-
CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, 16-QAM) | X | 2.34 | 68.02 | 13.01 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 3.00 | 72.25 | 15.28 | | 150.0 | | | | | Z | 3.24 | 72.73 | 16.47 | | 150.0 | | | 10147-
CAC | LTE-FDD (SC-FDMA, 100% RB, 1.4
MHz, 64-QAM) | X | 2.87 | 70.69 | 14.36 | 0.00 | 150.0 | ± 9.6 % | | | | Υ | 4.47 | 77.69 | 17.60 | | 150.0 | | | | | Z | | | 11.00 | | 100.0 | |