

TEST REPORT

Applicant Name: Address:

Report Number:

FCC ID:

IC:

Meizhou Guo Wei Electronics Co., Ltd. AD1 Section, Economic Development Area, Dongsheng Industrial District, Meizhou, Guangdong, China. 2401V85171E-RFD 2ARRB-MB500R 20353-MB500R

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247 ISSUE 3, AUGUST 2023

Sample Description

Product Type:	TRUE WIRELESS EARBUDS
Model No.:	MOTO BUDS 500 ANC
Multiple Model(s) No.:	N/A
Trade Mark:	Motorola
Date Received:	2024/07/10
Issue Date:	2024/11/01

Test Result:

Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

wills.yu

Wills Yu RF Engineer

Approved By:

elle len

Michelle Zeng RF Supervisor

Note: The information marked # is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "V".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF011

Page 1 of 69

Version 3.0

TABLE OF CONTENTS

DOCUMENT REVISION HIS	STORY	4
GENERAL INFORMATION.		5
PRODUCT DESCRIPTION FOR E	QUIPMENT UNDER TEST (EUT)	5
OBJECTIVE		5 5
MEASUREMENT UNCERTAINT	Υ	6
TEST FACILITY		6
SYSTEM TEST CONFIGURA	ATION	7
DESCRIPTION OF TEST CONFIG	JURATION	7
EQUIPMENT MODIFICATIONS.		
EUT EXERCISE SOFTWARE DUTY CYCLE		
SUPPORT EQUIPMENT LIST AN	D DETAILS	8
EXTERNAL I/O CABLE		8
BLOCK DIAGRAM OF TEST SET	ГUР	8
SUMMARY OF TEST RESUL	LTS	9
TEST EQUIPMENT LIST		10
FCC815 247 (I) 81 1307 (B) (1)	&82 1093 - RF EXPOSURE	11
APPLICABLE STANDARD		11
MEASUREMENT RESULT		
RSS-102 § 2.5.1 - EXEMPTIO	N LIMITS FOR ROUTINE EVALUATION-SAR EVALUATIO	ON12
APPLICABLE STANDARD		12
TEST RESULT:		
FCC §15.203 & RSS-GEN §6.8	3 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD		
ANTENNA CONNECTOR CONST	IRUCTION	
FCC §15.209, §15.205 & §15.24 FREQUENCIES AND RESTR	r7(D), RSS-GEN § 8.10 & RSS-247 § 5.5 - UNWANTED EMISSIC ICTED BANDS	DN 16
APPLICABLE STANDARD		
EUT SETUP		
EMI TEST RECEIVER & SPECT	RUM ANALYZER SETUP	
Factor & Over Limit/ Mar	GIN CALCULATION	
TEST DATA		
FCC §15.247(A) (2), RSS-GEN EMISSON BANDWIDTH	(§ 6.7 & RSS-247 § 5.2 (A) - 99% OCCUPIED BANDWIDTH &	& 6 DB
STANDARD APPLICABLE		41
TEST PROCEDURE		
TEST DATA		
FCC §15.247(B) (3), RSS-247 §	§5.4 (D) - PEAK OUTPUT POWER MEASUREMENT	
APPLICABLE STANDARD		
TEST DATA		
TR-FM-RF011	Page 2 of 69	Version 3.0

FCC §15.247(E), RSS-247 §5.2 (B) – POWER SPECTRAL DENSITY	46
APPLICABLE STANDARD	46
Test Procedure	46
TEST DATA	47
FCC §15.247(D) & RSS-247 §5.5 - 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	48
Applicable Standard	48
Test Procedure	48
TEST DATA	49
EUT PHOTOGRAPHS	50
TEST SETUP PHOTOGRAPHS	51
APPENDIX	52
APPENDIX A: DTS BANDWIDTH	52
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	56
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	60
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	63
APPENDIX E: BAND EDGE MEASUREMENTS	67
APPENDIX F: DUTY CYCLE	69

DOCUMENT REVISION HISTORY

Revision Number Report Number		Description of Revision	Date of Revision
0 2401V85171E-RFD		Original Report	2024/11/01

TR-EM-RF011

GENERAL INFORMATION

HVIN	MB500R
FVIN	N/A
Product	TRUE WIRELESS EARBUDS
Tested Model	MOTO BUDS 500 ANC
Multiple Model(s)	N/A
Frequency Range	BLE: 2402-2480MHz
Maximum Conducted Peak Output Power	BLE: 2.90 dBm
Modulation Technique	BLE: GFSK
Antenna Specification [#]	1.95dBi (provided by the applicant)
Voltage Range	DC 3.7V from battery or DC 5V from charger case
Sample serial number	208B-1 for Radiated Emissions Test 208B-5 for RF Conducted Test (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	N/A

Product Description for Equipment under Test (EUT)

Objective

This report is in accordance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209, 15.247 rules and RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247 Issue 3, August 2023 of the Innovation, Science and Economic Development Canada rules.

Test Methodology

All tests and measurements indicated in this document were performed in accordance ANSI C63.10-2013, RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247 Issue 3, August 2023.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter			Uncertainty	
Occupied Channel Bandwidth		andwidth	$\pm 5\%$	
RF output power, conducted		onducted	0.72 dB(k=2, 95% level of confidence)	
AC Power Lines Cond	ucted	9kHz~150 kHz	3.94dB(k=2, 95% level of confidence)	
Emissions		150 kHz ~30MHz	3.84dB(k=2, 95% level of confidence)	
		9kHz - 30MHz	3.30dB(k=2, 95% level of confidence)	
	30MHz~200MHz (Horizontal)		4.48dB(k=2, 95% level of confidence)	
	30MHz~200MHz (Vertical)		4.55dB(k=2, 95% level of confidence)	
Dedicted Emissions	200MHz~1000MHz (Horizontal)		4.85dB(k=2, 95% level of confidence)	
Radiated Emissions	200MHz~1000MHz (Vertical)		5.05dB(k=2, 95% level of confidence)	
	1GHz - 6GHz		5.35dB(k=2, 95% level of confidence)	
	6GHz - 18GHz		5.44dB(k=2, 95% level of confidence)	
		18GHz - 40GHz	5.16dB(k=2, 95% level of confidence)	
Temperature		2	±1°C	
H	Humidity		$\pm 1\%$	
Supply voltages		jes	$\pm 0.4\%$	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0023.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

"FCC_assist 1.0.2.2"[#] software was used to test and power level is Default[#]. The software and power level was provided by the applicant.

Duty cycle

Test Result: Compliant. Please refer to the Appendix.

Support Equipment List and Details

Manufacturer	anufacturer Description		Serial Number	
/	/	/	/	

External I/O Cable

Cable Description	Length (m)	From/Port	То
/	/	/	/

Block Diagram of Test Setup

For Radiated Emissions:

	EUT	-	▲ 1.0 Meter
Non-Conductive Table			
80/150 cm above Ground Plane			
←	1.5 Meters		•

SUMMARY OF TEST RESULTS

FCC Rules	RSS Rules	Description of Test	Result
§1.1307 ,§2.1093	RSS-102 § 2.5.1	RF Exposure & Exemption Limits For Routine Evaluation-SAR Evaluation	Compliant
§15.203	RSS-Gen §6.8	Antenna Requirement	Compliant
§15.207 (a)	RSS-Gen §8.8	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209, §15.247(d)	RSS-GEN § 8.10 & RSS-247 § 5.5	Spurious Emissions	Compliant
§15.247 (a)(2)	RSS- Gen§6.7 RSS-247 § 5.2 (a)	99% Occupied Bandwidth & 6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	RSS-247 § 5.4(d)	Maximum Conducted Output Power	Compliant
§15.247(e)	RSS-247 § 5.2 (b)	Power Spectral Density	Compliant
§15.247(d)	RSS-247 § 5.5	100 kHz Bandwidth of Frequency Band Edge	Compliant

Not Applicable: The EUT is powered by battery.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Radiated Emission Test							
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/01/16	2025/01/15		
Sonoma instrument	Pre-amplifier	310 N	186238	2024/05/21	2025/05/20		
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19		
Unknown	Cable	Chamber A Cable 1	N/A	2024/06/18	2025/06/17		
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17		
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13		
Unknown	Cable	2Y194	0735	2024/05/21	2025/05/20		
Unknown	Cable	PNG214	1354	2024/05/21	2025/05/20		
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR		
Rohde & Schwarz	Spectrum Analyzer	FSU26	200982	2023/12/18	2024/12/17		
COM-POWER	Pre-amplifier	PA-122	181919	2024/06/18	2025/06/17		
Schwarzbeck	Horn Antenna	BBHA9120D(1201)	1143	2023/07/26	2026/07/25		
Unknown	RF Cable	KMSE	735	2024/06/18	2025/06/17		
Unknown	RF Cable	UFA147	219661	2024/06/18	2025/06/17		
JD	Multiplex Switch Test Control Set	DT7220FSU	DQ77926	2024/06/18	2025/06/17		
Audix	EMI Test software	E3	191218(V9)	NCR	NCR		
A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17		
Electro-Mechanics Co	Horn Antenna	3116	2026	2023/09/18	2026/09/17		
UTIFLEX	RF Cable	NO. 13	232308-001	2024/06/18	2025/06/17		
		RF Conducted	l Test				
Tonscend	RF control Unit	JS0806-2	19D8060154	2024/08/06	2025/08/05		
Rohde & Schwarz	Spectrum Analyzer	FSV40	101942	2023/12/18	2024/12/17		
Unknown	10dB Attenuator	Unknown	F-03-EM190	2024/06/27	2025/06/26		

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) &§2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt[n]{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

Mode	Frequency (MHz)	Max tune-up conducted power [#] (dBm)	Max tune-up conducted power [#] (mW)	Distance (mm)	Calculated value	Threshold (1-g SAR)	SAR Test Exclusion
Bluetooth	2402-2480	2.5	1.78	5	0.6	3	Yes
BLE	2402-2480	3.5	2.24	5	0.7	3	Yes

Note: The max tune-up conducted power[#] were declared and provided by the applicant

Result: Compliant

RSS-102 § 2.5.1 - EXEMPTION LIMITS FOR ROUTINE EVALUATION-SAR EVALUATION

Applicable Standard

According to RSS-102 Issue 5§ (2.5.1), SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1.

Frequency	Exemption Limits (mW)								
(MHz)	At separation	At separation	At separation	At separation	At separation				
	distance of	distance of	distance of	distance of	distance of				
	≤5 mm	10 mm	15 mm	20 mm	25 mm				
≤300	71 mW	101 mW	132 mW	162 mW	193 mW				
450	52 mW	70 mW	88 mW	106 mW	123 mW				
835	17 mW	30 mW	42 mW	55 mW	$67 \mathrm{mW}$				
1900	7 mW	10 mW	18 mW	34 mW	60 mW				
2450	4 mW	7 mW	15 mW	30 mW	52 mW				
3500	2 mW	6 mW	16 mW	32 mW	55 mW				
5800	1 mW	6 mW	15 mW	27 mW	41 mW				

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance^{4,5}

Frequency	Exemption Limits (mW)									
(MHz)	At separation	At separation	At separation	At separation	At separation					
	distance of	distance of	distance of	distance of	distance of					
	30 mm	35 mm	40 mm	45 mm	≥50 mm					
≤300	223 mW	$254 \mathrm{mW}$	284 mW	315 mW	345 mW					
450	141 mW	159 mW	177 mW	195 mW	213 mW					
835	80 mW	92 mW	105 mW	117 mW	130 mW					
1900	99 mW	153 mW	225 mW	316 mW	431 mW					
2450	83 mW	123 mW	173 mW	235 mW	309 mW					
3500	86 mW	124 mW	170 mW	225 mW	290 mW					
5800	56 mW	71 mW	85 mW	97 mW	106 mW					

4. The exemption limits in Table 1 are based on measurements and simulations of half-wave dipole antennas at separation distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

5. Transmitters operating between 0.003-10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in Section 4.

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in Table 1, linear interpolation shall be applied for the applicable separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

For medical implants devices, the exemption limit for routine evaluation is set at 1 mW. The output power of a medical implants device is defined as the higher of the conducted or e.i.r.p to determine whether the device is exempt from the SAR evaluation.

Test Result:

Mode	Frequency (MHz)	Max tune-up conducted power [#] (dBm)	Max tune-up conducted power [#] (mW)	Gain [#] (dBi)	Max tune- up EIRP [#] (dBm)	Max tune- up EIRP [#] (mW)	Distance (mm)	Exemption Limit (mW)	SAR Evaluation Exemption
Bluetooth	2402-2480	2.50	1.78	1.95	4.45	2.79	5	3.94	Yes
BLE	2402-2480	3.50	2.24	1.95	5.45	3.51	5	3.94	Yes

Note: The antenna gain[#] and max tune-up conducted power[#] were declared and provided by the applicant

Compliant

FCC §15.203 & RSS-GEN §6.8 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be res ponsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has one internal antenna arrangement which was permanently attached and the maximum antenna gain[#] is 1.95dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant

FCC §15.209, §15.205 & §15.247(D), RSS-GEN § 8.10 & RSS-247 § 5.5 -UNWANTED EMISSION FREQUENCIES AND RESTRICTED BANDS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205; RSS-247 §5.5, RSS-GEN §8.10.

EUT Setup

9 kHz-30MHz:

30MHz-1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.205, FCC 15.209, FCC 15.247, RSS-Gen and RSS-247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
	/	/	200 Hz	QP
9 КНZ — 130 КПZ	300 Hz	1 kHz	/	РК
150 kHz 20 MHz	/	/	9 kHz	QP
130 kmz – 30 mmz	10 kHz	30 kHz	/	PK
20 MHz 1000 MHz	/	/	120 kHz	QP
50 MINZ – 1000 MINZ	100 kHz	300 kHz	/	РК

1-25GHz:

Pre-scan

Measurement	Duty cycle	RBW	Video B/W
РК	Any	1MHz	3 MHz
	>98%	1MHz	5 kHz
AV	<98%	1MHz	≥1/Ton, not less than 5 kHz

TR-EM-RF011

Final measurement for emission identified during pre-scan

Measurement	Duty cycle	RBW	Video B/W
РК	Any	1MHz	3 MHz
A 17	>98%	1MHz	10 Hz
AV	<98%	1MHz	≥1/Ton

Note: Ton is minimum transmission duration

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/ Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	22~25.5 °C
Relative Humidity:	50~54 %
ATM Pressure:	101 kPa

The testing was performed by Anson Su on 2024-10-25 for below 1GHz and Karl Xu on 2024-10-25 and 2024-10-28 for above 1GHz.

EUT operation mode: Transmitting

Note: Pre-scan in the X, Y and Z axes of orientation, the worst case Z-axis of orientation was recorded;

TR-EM-RF011

Page 18 of 69

Version 3.0

9 kHz-30MHz: (Maximum output power mode, BLE 2M, Low Channel)

Note: The spurious emission from 9 kHz-30MHz of IC RSS-247 standard, the unit of final result on the test plots are $dB\mu V/m$, so the limit should be added by 51,5 dB from $dB\mu A/m$ to $dB\mu V/m$.

Parallel (worst case)

:	Chamber A
:	Зm
:	2401V85171E-RF-R
:	BLE Transmitting
:	Anson Su
	:::::::::::::::::::::::::::::::::::::::

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	0.01	37.11	26.68	63.79	126.67	-62.88	Peak	
2	0.03	28.36	22.39	50.75	118.58	-67.83	Peak	
3	0.06	22.01	23.46	45.47	112.35	-66.88	Peak	
4	0.08	19.29	21.75	41.04	109.75	-68.71	Peak	
5	0.13	15.49	20.70	36.19	105.10	-68.91	Peak	
6	0.22	11.35	20.78	32.13	100.67	-68.54	Peak	

Site :	Chamber A
Condition :	Зm
Project Number:	2401V85171E-RF-R
Test Mode :	BLE Transmitting
Tester :	Anson Su

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	0.49	3.66	35.62	39.28	73.77	-34.49	Peak	
2	0.59	2.39	35.36	37.75	72.14	-34.39	Peak	
3	0.83	-0.30	33.90	33.60	69.17	-35.57	Peak	
4	0.98	-1.42	34.96	33.54	67.68	-34.14	Peak	
5	1.13	-2.03	34.10	32.07	66.41	-34.34	Peak	
6	1.31	-2.66	34.64	31.98	65.10	-33.12	Peak	

TR-EM-RF011

30MHz-1GHz: (Maximum output power mode, BLE 2M, Low Channel)

Horizontal

Site :	Chamber A		
Condition :	3m Horizontal		
Project Number:	2401V85171E-RF-R		
Test Mode :	BLE Transmitting		
Tester :	Anson Su		

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	42.08	-14.77	25.43	10.66	40.00	-29.34	QP
2	98.88	-17.00	25.60	8.60	43.50	-34.90	QP
3	130.04	-12.40	26.65	14.25	43.50	-29.25	QP
4	368.27	-11.74	26.57	14.83	46.00	-31.17	QP
5	680.85	-6.74	26.22	19.48	46.00	-26.52	QP
6	886.83	-3.77	25.57	21.80	46.00	-24.20	QP

Site :		
:	3m Vertical	
:	2401V85171E-RF-R	
:	BLE Transmitting	
:	Anson Su	

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	40.35	-13.44	23.51	10.07	40.00	-29.93	QP
2	96.48	-17.66	25.45	7.79	43.50	-35.71	QP
3	128.68	-12.37	25.76	13.39	43.50	-30.11	QP
4	382.09	-11.43	25.73	14.30	46.00	-31.70	QP
5	649.38	-7.11	26.24	19.13	46.00	-26.87	QP
6	883.34	-3.81	25.36	21.55	46.00	-24.45	QP

1-25 GHz:

Frequency	Rece	iver	Polor	Factor	Corrected	Limit	Margin
(MHz)	Reading (dBµV)	PK/AV	(H/V)	(dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
			BLE 1M				
		Lo	w Channel 2402MH	łz			
4804.00	53.43	РК	Н	2.42	55.85	74	-18.15
4804.00	47.66	AV	Н	2.42	50.08	54	-3.92
4804.00	50.39	РК	V	2.42	52.81	74	-21.19
4804.00	39.83	AV	V	2.42	42.25	54	-11.75
		Mid	dle Channel 2440M	Hz			
4880.00	52.79	PK	Н	2.58	55.37	74	-18.63
4880.00	47.82	AV	Н	2.58	50.40	54	-3.60
4880.00	50.11	РК	V	2.58	52.69	74	-21.31
4880.00	42.65	AV	V	2.58	45.23	54	-8.77
		Hi	gh Channel 2480MI	Ηz			
4960.00	52.16	PK	Н	2.69	54.85	74	-19.15
4960.00	48.12	AV	Н	2.69	50.81	54	-3.19
4960.00	49.9	РК	V	2.69	52.59	74	-21.41
4960.00	45.28	AV	V	2.69	47.97	54	-6.03
			BLE 2M				
		Lo	w Channel 2402MF	Iz			
4804.00	50.76	PK	Н	2.42	53.18	74	-20.82
4804.00	47.04	AV	Н	2.42	49.46	54	-4.54
4804.00	49.21	PK	V	2.42	51.63	74	-22.37
4804.00	43.95	AV	V	2.42	46.37	54	-7.63
		Mid	dle Channel 2440M	Hz			
4880.00	51.24	PK	Н	2.58	53.82	74	-20.18
4880.00	47.89	AV	Н	2.58	50.47	54	-3.53
4880.00	49.13	PK	V	2.58	51.71	74	-22.29
4880.00	44.13	AV	V	2.58	46.71	54	-7.29
		Hig	gh Channel 2480MI	łz			
4960.00	51.53	PK	Н	2.69	54.22	74	-19.78
4960.00	48.52	AV	Н	2.69	51.21	54	-2.79
4960.00	49.09	PK	V	2.69	51.78	74	-22.22
4960.00	45.47	AV	V	2.69	48.16	54	-5.84

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor

Corrected Amplitude/Level = Corrected Factor + Reading Margin = Corrected Amplitude/Level - Limit

The other spurious emission which is in the noise floor level was not recorded.

Report No.: 2401V85171E-RFD

TR-EM-RF011

TR-EM-RF011

Bay Area Compliance Laboratories Corp. (Shenzhen) Report No.: 2401V85171E-RFD BLE 1M **Test Channel:** 2480MHz Ant. Polar. : Horizontal-Peak 120 Level (dBuV/m) Date: 2024-10-25 110 90 70 12 50 30 10 0 2410 2450 Frequency (MHz) 2500 2420 Condition : Horizontal Project No: 2401V85171E-RF-R Tester : Karl Xu Note : BLE 1M 2480 Read Limit Over Freq Factor Level Level Line Limit Remark MHz dB/m dBuV dBuV/m dBuV/m dB 1 2483.500 -3.17 57.21 54.04 74.00 -19.96 Peak 2 2484.901 -3.17 57.97 54.80 74.00 -19.20 peak TR-EM-RF011 Page 26 of 69 Version 3.0

Report No.: 2401V85171E-RFD

TR-EM-RF011

Bay Area Compliance Laboratories Corp. (Shenzhen) Report No.: 2401V85171E-RFD BLE 2M **Test Channel:** 2480MHz Ant. Polar. : Horizontal 120 Level (dBuV/m) Date: 2024-10-25 110 90 70 2 50 30 10 0 2410 2450 Frequency (MHz) 2500 2420 Condition : Horizontal Project No: 2401V85171E-RF-R Tester : Karl Xu Note : BLE 2M 2480 Read Limit Over Freq Factor Level Level Line Limit Remark MHz dB/m dBuV dBuV/m dBuV/m dB 1 2483.500 -3.17 56.43 53.26 74.00 -20.74 Peak 2 2485.216 -3.17 56.93 53.76 74.00 -20.24 peak

Horizontal Date: 2024-10-28 90 Level (dBuV/m) 80 70 Fundamental Test with Band Rejection Filter 60 50 40 dana 30 20 10 0 1000 1100 1200 2000 Frequency (MHz) 1500 4000 Site : chamber B 1-4GHz Condition : Horizontal Project No: 2401V85171E-RF_R Tester : Karl Xu Note : BLE 2M_2480 Read Limit Over Freq Factor Level Level Line Limit Remark dB/m dBuV dBuV/m dBuV/m dB MHz 1 2437.180 -3.14 53.14 50.00 74.00 -24.00 Peak 2 3948.994 -0.18 30.92 30.74 54.00 -23.26 Average 3 3948.994 -0.18 48.93 48.75 74.00 -25.25 Peak

Listed with the worst harmonic margin test plot:(BLE 2M, High Channel)

TR-EM-RF011

Report No.: 2401V85171E-RFD

Report No.: 2401V85171E-RFD

TR-EM-RF011

Report No.: 2401V85171E-RFD

Report No.: 2401V85171E-RFD

Report No.: 2401V85171E-RFD

TR-EM-RF011

Report No.: 2401V85171E-RFD

Report No.: 2401V85171E-RFD

FCC §15.247(a) (2), RSS-GEN § 6.7 & RSS-247 § 5.2 (a) - 99% OCCUPIED BANDWIDTH & 6 dB EMISSON BANDWIDTH

Standard Applicable

According to FCC §15.247(a) (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

According to RSS-247 §5.2 a) The minimum 6 dB bandwidth shall be 500 kHz.

According to RSS-Gen §6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs. In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

The following conditions shall be observed for measuring the occupied bandwidth and x dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.8.1 & Clause 6.9.3& RSS-Gen §6.7

- a. Set RBW = 100 kHz.
- b. Set the VBW \geq [3×RBW].
- c. Detector = peak.
- d. Trace mode = max hold.
- e. Sweep = auto couple.
- f. Allow the trace to stabilize.
- g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by6 dB relative to the maximum level measured in the fundamental emission.

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. Procedure as below

- a. The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b. The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW (for RSS rules, VBW shall not be smaller than three times the RBW, unless otherwise specified by the applicable requirement).
- c. Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- d. Step a) through step c) might require iteration to adjust within the specified range.
- e. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f. Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g. If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h. The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data maybe reported in addition to the plot(s).

Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-10-31.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(b) (3), RSS-247 §5.4 (d) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to RSS-247§5.4 d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W. Except as provided in Section 5.4(e), the e.i.r.p. shall not exceed 4 W.

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.9.1.1

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.
- 4. Set the RBW \geq DTS bandwidth.
- 5. Set the VBW \geq [3 × RBW].
- 6. Set span $\geq [3 \times \text{RBW}]$.
- 7. Sweep time = auto couple.
- 8. Detector = peak.
- 9. Trace mode = max hold.
- 10. Allow the trace to stabilize.
- 11. Use peak marker function to determine the peak amplitude level

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable loss

TR-EM-RF011

Page 44 of 69

Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-10-31.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(e), RSS-247 §5.2 (b) – POWER SPECTRAL DENSITY

Applicable Standard

According to FCC §15.247(e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

According to RSS-247 §5.2 b):

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power)

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.10.2

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set analyzer center frequency to DTS channel center frequency
- 3. Set the span to 1.5 times the DTS bandwidth.
- 4. Set the RBW to: $3kHz \leq RBW \leq 100 kHz$.
- 5. Set the VBW \geq 3 × RBW.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Attenuator

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable loss

Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-10-31.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(d) & RSS-247 §5.5 - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Set the RBW =100 kHz.
- 2. Set the VBW \geq 3 × RBW.
- 3. Detector = peak
- 4. Sweep time = auto couple.
- 5. Trace mode=max hold
- 6. All trace to fully stabilize
- 7. Use the peak marker function to determine the maximum amplitude level. Ensure that amplitude of all unwanted emissions outside of the authorized frequency band(excluding restricted frequency bands) is attenuated by at least the minimum requirement specified in 11.11. Report the three highest emissions relative to the limit.

Test Data

Environmental Conditions

Temperature:	26 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-10-31.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

EUT PHOTOGRAPHS

Please refer to the attachment 2401V85171E-RFA External photo and 2401V85171E-RFA Internal photo.

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2401V85171E-RFE Test Setup photo.

TR-EM-RF011

APPENDIX

Appendix A: DTS Bandwidth

Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2402	0.66	0.5	PASS
BLE_1M	Ant1	2440	0.65	0.5	PASS
		2480	0.65	0.5	PASS
BLE_2M	Ant1	2402	1.15	0.5	PASS
		2440	1.16	0.5	PASS
		2480	1.16	0.5	PASS

Test Graphs

Report No.: 2401V85171E-RFD

Report No.: 2401V85171E-RFD

Appendix B: Occupied Channel Bandwidth

Test Result

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2402	1.027		
BLE_1M	Ant1	2440	1.027		
		2480	1.023		
BLE_2M	Ant1	2402	2.022		
		2440	2.022		
		2480	2.022		

TR-EM-RF011

Test Graphs

Report No.: 2401V85171E-RFD

Report No.: 2401V85171E-RFD

Appendix C: Maximum conducted output power

1000		oun					
Test Mode	Antenna	Frequency[MHz]	Conducted Peak Power[dBm]	Conducted Limit[dBm]	EIRP[dBm]	EIRP Limit[dBm]	Verdict
		2402	2.78	≤30	4.73	≤36	PASS
BLE_1M	Ant1	2440	2.37	≤30	4.32	≤36	PASS
		2480	2.25	≤30	4.20	≤36	PASS
		2402	2.90	≤30	4.85	≤36	PASS
BLE_2M	Ant1	2440	2.51	≤30	4.46	≤36	PASS
		2480	2.41	≤30	4.36	≤36	PASS

Test Result Peak

Test Graphs Peak

			DLC		4NU _ 24	f02			
Spectrur	n								Ē
Ref Leve	1 30.00 dBn	n Offset	20.32 dB 👄	RBW 3 M	Ηz				('
Att Count 100	20 di /100	B SWT	1 ms 👄	VBW 10 MH	IZ Mode A	uto Sweep			
●1Pk View	, 100								
					M1[[1]		0.401	2.78 dBm
20 d8m-							<u> </u>	2.101	70020 0112
10 dBm									
				M1					
0 dBm-							/	_	
-10 dBm								/	
10 000									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm-									
00 0011									
-60 dBm									
CE 2,402	GH2			1001	nts			Sna	18.0 MHz
Ref Leve	I 30.00 dBn	n Offset	20.06 dB 👄						
e Att			20.00 08	RBW 3 M	Hz				(*
Count 100	20 di /100	B SWT	1 ms 🖷	VBW 3 MH	Hz Hz Mode A	uto Sweep	1		(•
 1Pk View 	20 dE /100	B SWT	1 ms 🖷	VBW 10 MH	Hz Hz Mode A	uto Sweep			(•
● 1Pk View	20 d8 /100	swt	1 ms -	RBW 3 MH	Hz Mode An M1Z Mode An M1[uto Sweep	1	2.439	2.37 dBm 76820 GHz
● 1Pk View 20 dBm	20 df /100	B SWT	1 ms e	RBW 3 MH	HZ HZ Mode An M1	uto Sweep		2.439	2.37 dBm 76820 GHz
● 1Pk View 20 dBm	20 d8 /100	3 SWT	1 ms -	RBW 3 MH	HZ HZ Mode An M1	uto Sweep [1]		2.439	2.37 dBm 76820 GHz
20 dBm	20 dt /100	B SWT	1 ms •	RBW 3 Mi VBW 10 Mi	HZ Mode A	uto Sweep		2.439	2.37 dBm 76820 GHz
20 dBm-	20 dt /100	3 SWT	1 ms •	RBW 3 Mi VBW 10 Mi	12 H2 Mode A	uto Sweep		2.439	2.37 dBm 76820 GHz
20 dBm	20 dt	3 SWT	1 ms •	RBW 3 Mi VBW 10 Mi	HZ Mode A	uto Sweep		2.439	2.37 dBm 76820 GHz
Count 100 IPk View 20 dBm 0 dBm 0 dBm	20 dt	3 SWT		RBW 3 Mi VBW 10 Mi	HZ Mode AI	I1]		2.439	2.37 dBm 76820 GHz
20 dBm	20 dt	3 SWT		RBW 3 Mi VBW 10 Mi	HZ Mode A	(1)		2.439	2.37 dBm 76820 GHz
20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	20 di	3 SWT		RBW 3 MI VBW 10 MI	HZ Mode A	uto Sweep		2.439	2.37 dBm 76820 GHz
20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	20 dt	3 SWT		RBW 3 Mi VBW 10 Mi	HZ Mode A	(1)		2.439	2.37 dBm 76820 GHz
20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	20 dt	3 SWT		M11	H2 T2 Mode A	(1)		2.439	2.37 dBm 76820 GHz
20 dBm 10 dBm 10 dBm −20 dBm −20 dBm −30 dBm −40 dBm	20 dt	3 SWT		M11	HZ HZ Mode Ar	(1)		2,439	2.37 dBm 76820 GHz
0 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20 dt	3 SWT		M1	HZ HZ MODE AN	[1]		2.439	2.37 dBm 76820 GHz
20 d8m 10 d8m 0 d8m -10 d8m -30 d8m -30 d8m -50 d8m	20 dt	3 SWT		M1	HZ HZ Mode A	[1]		2.439	2.37 dBm 76820 GHz
0 d8m 10 d8m 0 d8m 0 d8m -10 d8m -30 d8m -30 d8m -50 d8m	20 dt	3 SWT		M1	H2 H2 Mode A M1	(1)		2.439	2.37 dBm 76820 GHz
0 d8m 10 d8m 0 d8m -10 d8m -30 d8m -30 d8m -50 d8m -50 d8m	20 dt	3 SWT		M1		(1)		2.439	2.37 dBm 76820 GHz
20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	20 dt	3 SWT		M1		(1)		2.439	2.97 dBm 76820 GHz
20 d8m 10 d8m 0 d8m -10 d8m -20 d8m -30 d8m -30 d8m -50 d8m -60 d8m -60 d8m	20 di /100	3 SWT		M1	12 12 Mode A M1	(1)		2.439	2.37 dBm 76820 GHz
20 d8m 10 d8m 0 d8m 0 d8m -10 d8m -20 d8m -30 d8m -30 d8m -50 d8m -60 d8m -60 d8m -70 d8m	20 di /100	3 SWT	1 ms	M1 1001	12 12 Mode A M1	(1)		2.439	2.37 dBm 76820 GHz

Report No.: 2401V85171E-RFD

				BL	E 1M	Anti	2480			
Spectru	ım									Ē
Ref Lev	vel 30.0	0 dBm	Offset	20.06 dB	RBW 3	MHz				(v
e Att		20 dB	SWT	1 ms 🗧	• VBW 10	MHz Mod	e Auto Swee	p		
Ount 10	JU/1UU 4									
							M1[1]			2.25 dBm
00 40							1	1	2.479	81620 GHz
20 uBm-										
10 dBm-										
10 0.011					м	ı 🗌				
0 dBm-	_							-		
-10 dBm-	-					-				-
-20 dBm-	+									
20 d0 -										
-30 aBM-										
-40 dBm-										
10 0.011										
-50 dBm-	_				_		_			
-60 dBm-										
									0	n 8 0 MHz
CF 2.48	GHz	V85171E	S-RF-R T	ester:Nav:	10 ilite.Cai	D1 pts			spa	10.0 1112
CF 2.48 ProjectNo Date: 31.	GHz .:2401 OCT.20	V85171E 24 17:	5-RF-R T	ester:Nav	10 ilite.Cai	01 pts	0.400		spa	0.01112
CF 2.48 ProjectNo Date: 31.	GHz .:2401 OCT.20	v85171E	S-RF-R T	ester:Nav	10 ilite.Cai E_2M	Ant1	2402		spa	(77
CF 2.48 ProjectNo Date: 31.	GHz .:2401 OCT.20	v85171F 24 17:	3-RF-R T	ester:Navi	10 ilite.Cai E_2M_	_Ant1_	2402		spa	
CF 2.48 ProjectNo Date: 31. Spectru Ref Lev	GHz 0.:2401 0CT.20 Im rel 30.0	v85171E 24 17: 00 dBm 20 dB	S-RF-R Te 26:10 Offset SWT	BL 20.32 dB	10 Illite.Cai E_2M_ RBW 3 VBW 10	Ant1_	2402	n	spa	
CF 2.48 ProjectNo Date: 31. Spectru Ref Lev Att Count 10	GHz :2401 oct.20 im vel 30.0	v85171E 24 17: 20 dBm 20 dB	S-RF-R T 26:10 Offset SWT	BL 20.32 dB 1 ms	Ilite.Cai E_2M RBW 3 VBW 10	Ant1	2402 9 Auto Swee	p	spa	(The second seco
CF 2.48 ProjectNo Date: 31. Spectru Ref Lev • Att Count 10 • 1Pk Viev	GHz :2401' oct.20: Im vel 30.0 00/100	v85171E 24 17: 00 dBm 20 dB	C-RF-R To 26:10 Offset SWT	BL 20.32 dB 1 ms	E_2M RBW 3 VBW 10	Ant1	2402 9 Auto Swee	p	Spa	
CF 2.48 ProjectNo Date: 31. Spectru Ref Lev Att Count 10 ● 1Pk Viev	GHz .::2401' oct.:20: ///////////////////////////////////	v85171E 24 17: 20 dBm 20 dB	3-RF-R Tr 26:10 Offset SWT	20.32 dB 4 1 ms 4	E_2M_	Ant1	2402 a Auto Swee M1[1]	p	2.401	2.90 dBm 59240 GH2
CF 2.48 ProjectNo Date: 31. Spectru RefLe Count 10 ● 1Pk Viev 20 dBm—	GH2 :2401' 0CT.20: 	v85171E 24 17: 20 dBm 20 dB	Contraction of the second seco	20.32 dB (1 ms (10 Illite.Cai E 2M VBW 10	Ant1	2402 # Auto Swee M1[1]	p	2.401	2.90 dBm 59240 GH2
CF 2.48 ProjectNC Date: 31. Spectru Ref Lev Att Count 10 • 1Pk View 20 dBm-	GH2 :2401' OCT.20: Im rel 30.0 00/100 v	v85171E 24 17: 00 dBm 20 dB	Offset	20.32 dB 4 1 ms 4	ID Illite.Cai E_2M RBW 3 VBW 10	Ant1 MHz Mod	2402 a Auto Swee M1[1]	p	2.401	2.90 dBm 59240 GHz
CF 2.48 ProjectNo Date: 31. Spectru Ref Lev Att Count 10 @ 1Pk View 20 dBm- 10 dBm-	GHz :2401' oct.20: 	v85171E 24 17: 00 dBm 20 dB	C-RF-R Tr 26:10 Offset SWT	20.32 dB 1 ms 1	10 illite.Cai E_2M_ RBW 3 VBW 10	Ant1	2402 Auto Swee M1[1]	p	2.401	2.90 dBm 59240 GHz
CF 2.48 ProjectNo Date: 31. Spectru Ref Lev Att Count 10 @ IPk View 20 dBm 10 dBm	GHz :2401' oct.20: ////////////////////////////////////	v85171E 24 17: 00 dBm 20 dB	C-RF-R To 26:10 Offset SWT	20.32 dB = 1 ms =	10 ilite.cai E_2M_ RBW 3 VBW 10 M1	Ant1_	2402 a Auto Swee m1[1]	p	2.401	(₩ 2.90 dBm 59240 GHz
CF 2.46 Projective Date: 31. Spectric Ref Lex Att Count 10 ● TPK View 20 dBm— 10 dBm— 0 dBm—	GHz :2401' oct.20: im vel 30.0 00/100 v	v85171E 24 17: 00 dBm 20 dB	Offset	BL 20.32 dB = 1 ms =	IO IIIIte.Cai E_2M_ RBW 3 VBW 10 M1	Ant1	2402 a Auto Swee M1[1]	p	2.401	2.90 dBm 59240 GHz
CF 2.48 d Projectiva Date: 31. Spectru Ref Lev Att Count 11 © 1Pk Viev 20 dBm 10 dBm 0 dBm 0 dBm	GHz :2401' oct.20: im vel 30.0 00/100 v	v85171E	Offset	BL 20.32 dB 1 1 ms	10 Illite.Cai E_2M_ RBW 3 VBW 10 M1	Ant1	2402 9 Auto Swee M1[1]	p	2.401	
CF 2.48 i Projectike Date: 31. Spectru Ref Lev Att Count 11 @1Pk Viev 20 dBm— 10 dBm— 0 dBm—	GHz :2401' oct.200 vel 30.0 00/100 v	v85171E 24 17: 00 dBm 20 dB	C-RF-R T/ 226:10 Offset SWT	20.32 dB 4 1 ms 4	III III III III IIII IIII IIIIIIIIIIII	Ant1	2402 a Auto Swee M1[1]	p	2.401	2.90 dBm 59240 GH2
CF 2.48 I ProjectNo Date: 31. Spectru Ref Lev Att Count II 0 1Pk Viev 20 dBm- 0 dBm- -10 dBm- -20 dBm-	IIIT vel 30.00 vv	v85171E 24 17: 00 dBm 20 dB	Offset SWT	20.32 dB (1 ms)	IIIIte.cai	Ant1	2402 a Auto Swee M1[1]	P	2.401	2.90 dBm 59240 GH2
CF 2.46 ProjectNo Date: 31. Spectru Ref Lev Att Count 10 9 1Pk View 20 dBm— 10 dBm— -10 dBm— -20 dBm-	Im 1000000000000000000000000000000000000	V85171E	Offset SWT	BL 20.32 dB = 1 ms =	IIIIte.cai	Ant1 WHZ Mod	2402 a Auto Swee M1[1]	P	2,401	2.90 dBm 59240 GHz
CF 2.46 I ProjectNo Date: 31. Spectrr. Ref Lev. 20 dBm- 10 dBm- 0 dBm- -10.dBm- -20 dBm- -30 dBm-	Im 0007100 V	V85171E	Offset SWT	20.32 dB = 1 ms =	ID Illite.Cai RBW 3 VBW 10 MI	Ant1 MH2 Mode	2402 • Auto Swee M1[1]	P	2.401	2.90 dBm 59240 GHz
CF 2.48 i Projectiva Date: 31. Spectru Ref Lev Att Count 11 © 1Pk Viev 20 dBm 10 dBm 10 dBm -10 dBm -30 dBm	GH2 :24011 IIM rel 30.0 00/100 W	V85171E	Offset SWT	BL 20.32 dB (1 ms (Illite.Cai	Ant1	2402 9 Auto Swee M1[1]	p	2.401	2.90 dBm 59240 GHz
CF 2.48 i Projective Date: 31. Spectru Ref Lev Other 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	Im rel 30.00/100 v	vv35171E4 17 :	Offset SWT	BL 20.32 dB « 1 ms «	ID Illite.Cai	Ant1	2402 Auto Swee M1[1]	P	2.401	2.90 dBm 59240 GHz
CF 2.48 (ProjectNo Date: 31. Spectru Ref Lev Att Count 10 91Pk Viev 20 dBm- 10 dBm- -20 dBm- -20 dBm- -40 dBm-	GH2 :2401'' ooct.20: mm ref 30.0 0/100 v	v35171E4 17:	Coffset SWT	BL 20.32 dB « 1 ms «	ID Illite.Cai E_2M RBW 3 VBW 10 M1	Ant1	2402	P	2.401	2.90 dBm 59240 GH2
CF 2.46 ProjectNo Date: 31. Spectrr. Ref Lev. Att Count 10 9 TPK View 20 dBm- 10 dBm- 10 dBm- -20 dBm- -30 dBm- -30 dBm- -50 dBm-	GH224011	V05171EH	S-RF-R T- 226:10 Offset SWT	20.32 dB 1 1 ms 1	ID Illite.Cai	Ant1	2402	p	2.401	2.90 dBm 59240 GHz
CF 2.48 i Projectild Date: 31. Spectry RefLex Att Count 11 © IPk View 20 dBm 10 dBm 10 dBm -20 dBm -30 dBm -3	GH224011	VV85171EF	Offset SWT	BL 20.32 dB « 1 ms «	ID Illite.Cai	Ant1 MH2 Mode	2402 Auto Swee M1[1]	P	2.401	2.90 dBm 59240 GHz
CF 2.48 i Projectiva Date: 31. Spectru Ref Lev Count 11 PrViev 20 dBm 10 dBm 10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -50 dBm	GH2 :24011 oct.20. rel 30.0 y0/100 v	V05171E4 17:	Offset SWT	BL 20.32 dB (1 ms (ID Illite.Cai	Ant1	2402	P	2.401	2.90 dBm 59240 GHz
CF 2.48 (ProjectNo Date: 31. Spectru Ref Lev Att Count II 91Pk Viev 20 dBm- 10 dBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm- -60 dBm-	GH2 :24011 oct.20. IIM rel 30.00 00/100 v	V05171HH 20 dBm 20 dB	Offset SWT	BL 20.32 dB (1 ms (ID ILIIE	Ant1	2402		2.401	2.90 dBm 59240 GH2

Report No.: 2401V85171E-RFD

				BL	.E_2M	Ant1	2440			
Spectr	um									[₩
Ref Le	evel 30.	00 dBm	Offset	20.06 dB	RBW 3 0 UBW 10	MHz				
Count 1	100/100	20 UB	501	1 ms	S APM 10	MOQ	a Auto Sweep)		
●1Pk Vie	3W						M1[1]			0.51.40
									2,439	50450 GHz
20 dBm-										
10 dBm-										
					M1					
0 dBm-									_	
-10 dem										
10,000										
-20 dBm-										
20 d0m										
-30 asm										
-40 dBm-	_									
-50 dBm-										
-60 dBm	_					_				
					10	11 ntc			Spar	n 8.0 MHz
CF 2.44 ProjectN Date: 31	GHz 10.:2401 .0CT.20	1V851711)24 17:	E-RF-R T :28:08	ester:Na	rilite.Cai	51 pts				
CF 2.44 ProjectN Date: 31	GHz 0.:2401 .0CT.20	1V851718 024 17:	E-RF-R T :28:08	'ester:Na	ilite.Cai	Ant1	2480			
CF 2.44 ProjectN Date: 31	GHz 10.:2401 .0CT.20	10851711	E-RF-R T :28:08	ester:Na Bl	rilite.Cai	_Ant1_	2480			(mg
CF 2.44 ProjectN Date: 31 Spectr Ref Le	GHz 	1V85171F 024 17: 00 dBm	E-RF-R T :28:08 Offset	'ester:Na Bl 20.06 dB	• RBW 3	Ant1_	2480			
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1	GHz 10.:2401 .0CT.20 rum evel 30.0	00 dBm 20 dB	E-RF-R T :28:08 Offset SWT	'ester:Na Bl 20.06 dB 1 ms	• RBW 3 • VBW 10	Ant1	2480 Auto Sweep	,		₩
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 @1Pk Vie	GH2	00 dBm 20 dB	E-RF-R T :28:08 Offset SWT	Cester:Nav Bl 20.06 dB 1 ms	E_2M RBW 3 VBW 10	Ant1_	2480 3 Auto Sweep	1		
CF 2.44 ProjectN Date: 31 Spectr Ref Le Ount 1 PIPk Vie	GHZ 10.:2401 .0CT.20 rum evel 30. 100/100 sw	00 dBm 20 dB	E-RF-R T :28:08 Offset SWT	20.06 dB 1 ms	• RBW 3 • VBW 10	Ant1	2480 3 Auto Sweep M1[1]	,	2.479	2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 IPk Vie 20 dBm-	- GHZ 	00 dBm 20 dB	E-RF-R T :28:08 Offset SWT	*ester:Net BL 20.06 dB 1 ms	E_2M RBW 3 VBW 10	Ant1	2480 Auto Sweep M1[1]	, , 	2.479	2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att 20 dBm- 10 dep-	• GHz	00 dBm 20 dB	E-RF-R T :28:08 Offset SWT	20.06 dB 1 ms	E_2M	Ant1	2480 Auto Sweep M1[1]	, ,	2.479	2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 E 10k Vie 20 dBm- 10 dBm-	+ GHz 10.:2401 oct.20 	00 dBm 20 dB	E-RF-R T :28:08 Offset SWT	20.06 dB 1 ms	E_2M_	Ant1	2480 Auto Sweep M1[1]	,	2.479	(mm ⊽ 2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 © 1Pk Vie 20 dBm- 10 dBm- 0 dBm-	+ GHz Io.:2401 .oct.20 	00 dBm 20 dB	E-RF-R T :28:08 Offset SWT	'ester:Na' Bl 20.06 dB 1 ms	E 2M RBW 3 VBW 10	Ant1_ MHz Modu	2480 a Auto Sweep M1[1]		2.479	(₩ ▼ 2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 0 1Pk Vie 20 dBm- 10 dBm- 0 dBm-	+ GHz to.:2401 .oct.20 	00 dBm 20 dB	E-RF-R T :28:08 Offset SWT	'ester:Na' Bl 20.06 dB 1 ms	E_2M RBW 3 VBW 10	Ant1	2480 2480 Auto Sweep M1[1]		2.479	(₩ ▼ 2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 1Pk Vie 20 dBm- 10 dBm- 0 dBm- -10 dBm-	+ GHz	00 dBm 20 dB	E-RF-R T :28:08 Offset SWT	20.06 dB 1 ms	E_2M	Ant1	2480		2.479	(₩ 2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 ProjectN Ref Le Att Count 1 0 dBm- 0 dBm- -10 dBm- -20 dBm	* GHz	00 dBm 20 dB	E-RF-R T :28:08	20.06 dB 1 ms	E_2M	Ant1	2480 a Auto Sweep m1[1]		2.479	(₩ 2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Rof Le Att Count 1 0 4Bm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	+ GHz 	00 dBm 20 dB	Contraction of the second seco	20.06 dB 1 ms	RBW 3 • VBW 10	Ant1_ MHz Mode	2480		2.479	(₩ 2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 0 dBm- 0 dBm- 0 dBm- -20 dBm- -30 dBm-	+ GHz .oct.2401 .oct.20 .vvel 30. .00/100	20 dB	Offset	**************************************	RBW 3 • VBW 10	Ant1	2480 Auto Sweep M1[1]		2.479	(₩ 2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 0 dBm- 10 dBm- 10 dBm- -10 dBm- -20 dBm -30 dBm	+ GHz	2000 dBm 2000 dBm 20 dB	Contraction of the second seco	20.06 dB 1 ms	RBW 3 VBW 10	Ant1_	2480 Auto Sweep M1[1]		2.479	(₩ ▼ 2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 0 dBm- 10 dBm- 10 dBm- -20 dBm- -30 dBm-	+ CH2 .oct.2401 .um .vvel 30. .000/100 ?w	2000 dBm 20 dB	E-RF-R T 28:08 Offset SWT	**************************************	RBW 3 VBW 10	Ant1_	2480 Auto Sweep M1[1]		2.479	(₩ 2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 0 dBm- 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -30 dBm-	+ CH2 .oct.2401 .um .vvel 30. .000/100 ?w	109517111 224 17:: 200 dBm 20 dB	E-RF-R T 28:08	**************************************	RBW 3 VBW 10	Ant1_	2480		2.479	(₩ 2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 0 dBm- 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm -30 dBm	+ CH2 .oct.2401 .oct.201 .oct.	109517111 224 17: 200 dBm 20 dB	E-RF-R T 28:09	**************************************	RBW 3 • RBW 3 • VBW 10	Ant1_	2480		2.479	2.41 dBm 51250 GHz
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 Pik Vie 20 dBm- 10 dBm- 10 dBm- -0 dBm- -20 dBm- -30 dBm- -50 dBm-	+ CH2 .oct.2401 .oct.2401 .oct.201 .oct	000 dBm 20 dB	E-RF-R T 28:09	**************************************	RBW 3 WBW 10	Ant1_	2480		2.479	(
CF 2.44 ProjectN Date: 31 Spectr Ref Le Att Count 1 PR Vie 20 dBm- 10 dBm- 10 dBm- -0 dBm- -20 dBm- -30 dBm- -50 dBm- -50 dBm-	- CH2	000 dBm 20 dB	E-RF-R T 28:09	**************************************	RBW 3 WBW 10	Ant1_	2480		2.479	(mr 2.41 dBm 51250 GHz

Appendix D: Maximum power spectral density

Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
	2402	-13.23	≤8.00	PASS	
BLE_1M	Ant1	2440	-13.71	≤8.00	PASS
		2480	-13.79	≤8.00	PASS
		2402	-15.86	≤8.00	PASS
BLE_2M	Ant1	2440	-16.18	≤8.00	PASS
		2480	-16.14	≤8.00	PASS

Test Graphs

Report No.: 2401V85171E-RFD

Report No.: 2401V85171E-RFD

Appendix E: Band edge measurements

Test Graphs

Report No.: 2401V85171E-RFD

Appendix F: Duty Cycle

Test Result

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	1/Ton (Hz)	VBW setting (Hz)
BLE_1M	Ant1	2440	0.37	0.63	58.73	2702	3000
BLE_2M	Ant1	2440	0.25	0.63	39.68	4000	5000

Test Graphs

***** END OF REPORT *****

TR-EM-RF011

Page 69 of 69