MPE Calculation Method

 $E (V/m) = (30*P*G)^{0.5}/d$

Power Density: Pd $(W/m2) = E^2/377$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

 $Pd = (30*P*G) / (377*d^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

 ${\tt Calculated\ Result\ and\ Limit(WORSE\ CASE\ IS\ AS\ BELOW)}$

WIFI:

Antenna	Peak Output	Power Density	Limit of Power	Test
Gain	Power (mW)	(S) (mW/cm2)	Density (S)	Result
(Numeric)			(mW/cm2)	
3.556	45.394 (0.032	1	Compiles
(2.5+10log	16.57dBm)			
2=5.51dBi)				

BLE:

Antenna	Peak Output	Power Density	Limit of Power	Test
Gain	Power (mW)	(S) (mW/cm2)	Density (S)	Result
(Numeric)			(mW/cm2)	
1.585(2dBi)	82.04	0.026	1	Compiles
	(19.14dBm)			

0.032+0.026 = 0.058 < 1