

MIPRO ELECTRONICS CO., LTD.

Federal Communications Commission Authorization and Evaluation Division Equipment Authorization Branch 7435 Oakland Mills Road Columbia, MD 21046

Applicant's declaration concerning RF Radiation Exposure

We hereby indicate that the product

Product description: 2.4GHz Digital Stereo Transmitter

Model No: MTM-24, MXX-2XXXXX (X=0~9,a~z,A~Z or Blank)

The equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. The integral antennas used for this transmitter must not be co-located or operating in conjunction with any other antenna or transmitter within the host device.

A safety statement concerning minimum separation distances from enclosure of the Product: 2.4GHz Digital Stereo Transmitter will be integrated in the user's manual to provide end-users with transmitter operating conditions for satisfying RF exposure compliance.

The appropriate information can be drawn from the test report no: W6M22104-20822-C-1 and the accompanying calculations.

Company: MIPRO Electronics Co., Ltd.

Address: 814, Beigang Rd., Chiayi City 600079, Taiwan, R.O.C

Date: 2021-04-28

MIPRO ELECTRONICS CO., LTD.

Registration number: W6M22104-20822-C-1

FCC ID: M5X-MI24TDNT

3.2 Equivalent Isotropic Radiated Power (EIRP)

FCC Rule: 15.247(b)(3)

EIRP = max. conducted output power + antenna gain

EIRP = 14.63 dBm + 0 dBi [antenna gain claimed by manufacturer] = 14.63 dBm = 29.0402 mW

3.3 Exemption Limits for Routine Evaluation according to 47 CFR FCC Part 2 Subpart J, section 2.1091

FCC OET Bulletin 65 Edition 97.01 determines the equations for predicting RF fields and applicable limits.

The prediction for power density in the far-field but will over-predict power density in the near field, where it could be used for walking a "worst case" or conservative prediction.

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 20 cm normally can be maintained between the user and the device.

MPE Calculation Method

(A) Limits for Occupational/Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	$(900/f^2)*$	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6

(B) Limits for General Population/Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	$(180/f^2)*$	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

^{*}Plane-wave equivalent power density

Worldwide Testing Services(Taiwan) Co., Ltd.

Registration number: W6M22104-20822-C-1

FCC ID: M5X-MI24TDNT

E = Electric field (V/m) P = output power (W) G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to mW/m2.

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

Established separation distance is 20 cm.

Operating frequency band: 2403.5~2477 MHz The product meets RF exposure requirement.

Because the power density of 0.0058 mW/cm^2 at 2403.5 MHz is below the power density limit of 1 mW/cm^2 .