23_GSM1900_GPRS(4 Tx slots)_Front_10mm_Ch512 Communication System: UID 0, GPRS/EDGE12 (0); Frequency: 1850.2 MHz;Duty Cycle: 1:2.08 Medium: MSL_1900_180720 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.521$ S/m; $\epsilon_r = 54.39$; $\rho = 1000$ kg/m³ Date: 2018.07.20 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.9 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3958; ConvF(8.27, 8.27, 8.27); Calibrated: 2018.01.11; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2017.12.19 - Phantom: SAM (Front) with CRP v5.0; Type: QD000P40CD; Serial: TP:1795 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch512/Area Scan (71x131x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.172 W/kg Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.301 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.259 W/kg SAR(1 g) = 0.148 W/kg; SAR(10 g) = 0.078 W/kg Maximum value of SAR (measured) = 0.207 W/kg ### 24_WCDMA V_RMC 12.2Kbps_Back_10mm_Ch4182 Communication System: UID 0, UMTS (0); Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium: MSL_835_180723 Medium parameters used: f = 836.4 MHz; $\sigma = 0.979$ S/m; $\varepsilon_r = 54.429$; Date: 2018.07.23 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.8 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3958; ConvF(10.19, 10.19, 10.19); Calibrated: 2018.01.11; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2017.12.19 - Phantom: SAM (Front) with CRP v5.0; Type: QD000P40CD; Serial: TP:1795 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch4182/Area Scan (71x131x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.134 W/kg **Ch4182/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.9050 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.144 W/kg SAR(1 g) = 0.116 W/kg; SAR(10 g) = 0.090 W/kg Maximum value of SAR (measured) = 0.132 W/kg ### 25_WCDMA IV_RMC 12.2Kbps_Back_10mm_Ch1413 Communication System: UID 0, UMTS (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1 Medium: MSL_1750_180720 Medium parameters used: f = 1732.6 MHz; $\sigma = 1.503$ S/m; $\varepsilon_r = 52.551$; $\rho = 1000$ kg/m³ Date: 2018.07.20 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C ### DASY5 Configuration: - Probe: EX3DV4 SN3958; ConvF(8.61, 8.61, 8.61); Calibrated: 2018.01.11; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2017.12.19 - Phantom: SAM (Front) with CRP v5.0; Type: QD000P40CD; Serial: TP:1795 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch1413/Area Scan (71x131x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.380 W/kg Ch1413/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.061 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.409 W/kg SAR(1 g) = 0.245 W/kg; SAR(10 g) = 0.133 W/kg Maximum value of SAR (measured) = 0.333 W/kg ### 26_WCDMA II_RMC 12.2Kbps_Front_10mm_Ch9262 Communication System: UID 0, UMTS (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: MSL_1900_180720 Medium parameters used: f = 1852.4 MHz; $\sigma = 1.523$ S/m; $\epsilon_r = 54.384$; $\rho = 1000$ kg/m³ Date: 2018.07.20 Ambient Temperature: 23.5 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3958; ConvF(8.27, 8.27, 8.27); Calibrated: 2018.01.11; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2017.12.19 - Phantom: SAM (Front) with CRP v5.0; Type: QD000P40CD; Serial: TP:1795 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) Ch9262/Area Scan (71x131x1): Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.215 W/kg Ch9262/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.470 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.308 W/kg SAR(1 g) = 0.174 W/kg; SAR(10 g) = 0.091 W/kg Maximum value of SAR (measured) = 0.226 W/kg Communication System: UID 0, LTE (0); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: MSL_835_180723 Medium parameters used: f = 836.5 MHz; $\sigma = 0.979$ S/m; $\epsilon_r = 54.428$; Date: 2018.07.23 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.8 °C; Liquid Temperature: 22.8 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3958; ConvF(10.19, 10.19, 10.19); Calibrated: 2018.01.11; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2017.12.19 - Phantom: SAM (Front) with CRP v5.0; Type: QD000P40CD; Serial: TP:1795 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch20525/Area Scan (71x131x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.116 W/kg Ch20525/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.193 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.126 W/kg SAR(1 g) = 0.102 W/kg; SAR(10 g) = 0.080 W/kg Maximum value of SAR (measured) = 0.115 W/kg ### 28 LTE Band 4 20M QPSK 1RB 49Offset Back 10mm Ch21750 Communication System: UID 0, LTE (0); Frequency: 1732.5 MHz;Duty Cycle: 1:1 Medium: MSL_1750_180720 Medium parameters used: f = 1732.5 MHz; $\sigma = 1.502$ S/m; $\epsilon_r ϵ_r Date: 2018.07.20 52.553; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.7 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3958; ConvF(8.61, 8.61, 8.61); Calibrated: 2018.01.11; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2017.12.19 - Phantom: SAM (Front) with CRP v5.0; Type: QD000P40CD; Serial: TP:1795 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch21750/Area Scan (71x131x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.553 W/kg Ch21750/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 1.233 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.556 W/kg SAR(1 g) = 0.338 W/kg; SAR(10 g) = 0.180 W/kg Maximum value of SAR (measured) = 0.454 W/kg ### 29 LTE Band 2 20M QPSK 1RB 49Offset Front 10mm Ch19100 Communication System: UID 0, LTE (0); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: MSL 1900 180720 Medium parameters used: f = 1900 MHz; $\sigma = 1.577$ S/m; $\varepsilon_r = 54.209$; Date: 2018.07.20 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.9 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3958; ConvF(8.27, 8.27, 8.27); Calibrated: 2018.01.11; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2017.12.19 - Phantom: SAM (Front) with CRP v5.0; Type: QD000P40CD; Serial: TP:1795 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch19100/Area Scan (71x131x1):** Interpolated grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.127 W/kg **Ch19100/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 0.9080 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.176 W/kg SAR(1 g) = 0.101 W/kg; SAR(10 g) = 0.052 W/kg Maximum value of SAR (measured) = 0.135 W/kg Communication System: UID 0, LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1 Medium: MSL_2600_180721 Medium parameters used: f = 2560 MHz; $\sigma = 2.137$ S/m; $\varepsilon_r = 51.063$; Date: 2018.07.21 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.6 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3958; ConvF(7.84, 7.84, 7.84); Calibrated: 2018.01.11; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2017.12.19 - Phantom: SAM (Front) with CRP v5.0; Type: QD000P40CD; Serial: TP:1795 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch21350/Area Scan (91x161x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.518 W/kg Ch21350/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.592 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.632 W/kg SAR(1 g) = 0.355 W/kg; SAR(10 g) = 0.197 W/kg Maximum value of SAR (measured) = 0.492 W/kg Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1.026 Medium: MSL_2450_180721 Medium parameters used: f = 2437 MHz; $\sigma = 1.931$ S/m; $\varepsilon_r = 51.715$; Date: 2018.07.21 $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3958; ConvF(8, 8, 8); Calibrated: 2018.01.11; - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1303; Calibrated: 2017.12.19 - Phantom: SAM (Front) with CRP v5.0; Type: QD000P40CD; Serial: TP:1795 - Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331) **Ch6/Area Scan (91x161x1):** Interpolated grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.428 W/kg Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.5980 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.568 W/kg SAR(1 g) = 0.297 W/kg; SAR(10 g) = 0.138 W/kg Maximum value of SAR (measured) = 0.446 W/kg #### Appendix C. **DASY Calibration Certificate** **Report No. : FA861105** The DASY calibration certificates are shown as follows. Sporton International (Shenzhen) Inc. TEL: +86-755-8637-9589 / FAX: +86-755-8637-9595 Issued Date: Aug. 03, 2018 Form version. : 170509 FCC ID: 2AIZN-X622 Page C1 of C1 ## S P e a g Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton **Certificate No:** Z17-97247 ### CALIBRATION GERTIFICATE Object D835V2 - SN: 4d162 Calibration Procedure(s)
FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: **December 5, 2017** This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|--| | 102196 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | 100596 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617 Jan17) | Jan-18 | | SN 536 | 09-Oct-17(CTTL-SPEAG,No.Z17-97198) | Oct-18 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | | Jan-18 | | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | 102196
100596
SN 3617
SN 536
ID#
MY49071430 | 102196 02-Mar-17 (CTTL, No.J17X01254) 100596 02-Mar-17 (CTTL, No.J17X01254) SN 3617 23-Jan-17(SPEAG,No.EX3-3617_Jan17) SN 536 09-Oct-17(CTTL-SPEAG,No.Z17-97198) ID# Cal Date(Calibrated by, Certificate No.) MY49071430 13-Jan-17 (CTTL, No.J17X00286) | Name **Function** Signature Calibrated by: Zhao Jing **SAR Test Engineer** Reviewed by: Lin Hao **SAR Test Engineer** Approved by: Qi Dianyuan **SAR Project Leader** Issued: December 9, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z17-97247 Page 1 of 8 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97247 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.7 ± 6 % | 0.88 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.34 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 9.56 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.54 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 6.26 mW /g ± 18.7 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.7 ± 6 % | 0.96 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | and and mad over | **SAR result with Body TSL** | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 2.38 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 9.56 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 1.58 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 6.34 mW /g ± 18.7 % (k=2) | Certificate No: Z17-97247 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | | 50.3Ω- 2.96jΩ | | |--------------------------------------|--|---------------|--| | Return Loss | | - 30.5dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed | point | 47.6Ω- 3.92jΩ | |--------------------------------|-------|---------------| | Return Loss | | - 26.6dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.264 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: Z17-97247 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Test Laboratory: CTTL, Beijing, China **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d162** Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.876$ S/m; $\varepsilon_r = 41.67$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: • Probe: EX3DV4 - SN3617; ConvF(9.73, 9.73, 9.73); Calibrated: 1/23/2017; Date: 12.04.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) ### Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.70V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.34 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.13 W/kg 0 dB = 3.13 W/kg = 4.96 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China **DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d162** Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.962$ S/m; $\varepsilon_r = 54.65$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5
Configuration: • Probe: EX3DV4 - SN3617; ConvF(9.64, 9.64, 9.64); Calibrated: 1/23/2017; Date: 12.05.2017 • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE3 Sn536; Calibrated: 10/9/2017 • Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.91 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.53 W/kg SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 3.15 W/kg 0 dB = 3.15 W/kg = 4.98 dBW/kg ### Impedance Measurement Plot for Body TSL Certificate No: Z17-97247 ## S D E A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn Client Sporton Certificate No: Z17-97260 ### CALIBRATION CERTIFICATE Object D1750V2 - SN: 1069 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 5, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) ™ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102196 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Power sensor NRV-Z5 | 100596 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | Reference Probe EX3DV4 | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | DAE3 | SN 536 | 09-Oct-17(CTTL-SPEAG,No.Z17-97198) | Oct-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 先生 | | Reviewed by: | Lin Hao | SAR Test Engineer | 献光 | | Approved by: | Qi Dianyuan | SAR Project Leader | and | Issued: December 9, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z17-97260 Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97260 Page 2 of 8 #### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1750 MHz ± 1 MHz | | | | The state of s | | ### Head TSL parameters The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|------------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.5 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | 1 200 | 593 | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.31 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 37.0 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.96 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 19.8 mW /g ± 18.7 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.8 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | **** | 222 | SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 9.40 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 38.0 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.03 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 20.3 mW /g ± 18.7 % (k=2) | Certificate No: Z17-97260 ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.3Ω+ 1.19 jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 37.2 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.3Ω+ 0.51 jΩ | |
--------------------------------------|----------------|--| | Return Loss | - 26.0 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.084 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|---------|--| | | 31 2.13 | | Page 4 of 8 Certificate No: Z17-97260 ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1069 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.378$ S/m; $\epsilon r = 39.46$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.49, 8.49, 8.49); Calibrated: 1/23/2017; Date: 12.05.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.28 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.31 W/kg; SAR(10 g) = 4.96 W/kg Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 14.3 W/kg = 11.55 dBW/kg Certificate No: Z17-97260 Page 5 of 8 ### Impedance Measurement Plot for Head TSL ### DASY5 Validation Report for Body TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1069 Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle; 1:1 Medium parameters used: f = 1750 MHz; $\sigma = 1.469 \text{ S/m}$; $\epsilon_r = 53.75$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(8.21, 8.21, 8.21); Calibrated: 1/23/2017; Date: 12.05.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.22 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.4 W/kg; SAR(10 g) = 5.03 W/kg Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 14.3 W/kg = 11.55 dBW/kg Certificate No: Z17-97260 Page 7 of 8 ### Impedance Measurement Plot for Body TSL In Collaboration with ## CALIBRATION LABORATORY Z17-97250 CALIBRATION **CNAS L0570** Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton Certificate No: ### Aldibranion Gerilli Gane Object D1900V2 - SN: 5d182 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 6, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|---| | 102196 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | 100596 | 02-Mar-17 (CTTL, No.J17X01254) | Mar-18 | | SN 3617 | 23-Jan-17(SPEAG,No.EX3-3617_Jan17) | Jan-18 | | SN 536 | 09-Oct-17(CTTL-SPEAG,No.Z17-97198) | Oct-18 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 13-Jan-17 (CTTL, No.J17X00286) | Jan-18 | | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan-18 | | | 102196
100596
SN 3617
SN 536
ID#
MY49071430 | 102196 02-Mar-17 (CTTL, No.J17X01254)
100596 02-Mar-17 (CTTL, No.J17X01254)
SN 3617 23-Jan-17(SPEAG,No.EX3-3617_Jan17)
SN 536 09-Oct-17(CTTL-SPEAG,No.Z17-97198) | **Function** Name Calibrated by: **SAR Test Engineer** Zhao Jing Reviewed by: **SAR Test Engineer** Lin Hao Approved by: Certificate No: Z17-97250 Qi Dianyuan SAR Project Leader Issued: December 10, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. lossary: **TSL** tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z17-97250 Page 2 of 8 **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | 52.10.0.1446 | |------------------------------|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.41 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 10.1 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 40.1 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.27 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 21.0 mW /g ± 18.7 % (k=2) | **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.9 ± 6 % | 1.54 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | |
---|--------------------|---------------------------| | SAR measured | 250 mW input power | 10.2 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 40.4 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.29 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 mW /g ± 18.7 % (k=2) | Certificate No: Z17-97250 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ### Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.2Ω+ 5.30jΩ | |--------------------------------------|---------------| | Return Loss | - 25.0dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 48.8Ω+ 5.25jΩ | |--------------------------------------|---------------| | Return Loss | - 25.3dB | ### **General Antenna Parameters and Design** | | | $\overline{}$ | |----------------------------------|----------|---------------| | Electrical Delay (one direction) | 1.066 ns | - | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | |
 | | |-----------------|------|-------| | Manufactured by | | SPEAG | | | | | Certificate No: Z17-97250 Page 4 of 8 ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.409$ S/m; $\epsilon r = 39.36$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: • Probe: EX3DV4 - SN3617; ConvF(8.26, 8.26, 8.26); Calibrated: 1/23/2017; Date: 12.06.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.7 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 10.1 W/kg; SAR(10 g) = 5.27 W/kg Maximum value of SAR (measured) = 15.9 W/kg 0 dB = 15.9 W/kg = 12.01 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d182 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.542$ S/m; $\varepsilon_r = 52.89$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.95, 7.95, 7.95); Calibrated: 1/23/2017; Date: 12.06.2017 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) ### System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.89 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.29 W/kg Maximum value of SAR (measured) = 15.7 W/kg 0 dB = 15.7 W/kg = 11.96 dBW/kg ### Impedance Measurement Plot for Body TSL Certificate No: Z17-97250 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com In Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Client **Sporton** **Certificate No:** Z18-60051 ### omieration deriihoate Object D2450V2 - SN: 924 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: March 22, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|--|-----------------------| | Power Meter NRVD | 102083 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Power sensor NRV-Z5 | 100542 | 01-Nov-17 (CTTL, No.J17X08756) | Oct-18 | | Reference Probe EX3DV4 | SN 7464 | 12-Sep-17(SPEAG,No.EX3-7464_Sep17) | Sep-18 | | DAE4 | SN 1525 | 02-Oct-17(SPEAG,No.DAE4-1525_Oct17) | Oct-18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 23-Jan-18 (CTTL, No.J18X00560) | Jan-19 | | NetworkAnalyzer E5239A | MY55491241 | 29-Jun-17 (CTTL, No.J18X00561) | Jun-18 | | • | | | | Name **Function** Calibrated by: Zhao Jing **SAR Test Engineer** Reviewed by: Lin Hao **SAR Test Engineer** Approved by: Qi Dianyuan **SAR Project Leader** Issued: March 25, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z18-60051 Page 1 of 8 In Collaboration with # **CALIBRATION LABORATORY** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz ### **Additional Documentation:** e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Page 2 of 8 Certificate No: Z18-60051 ## **CALIBRATION LABORATORY** Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com **Measurement Conditions** DASY system configuration, as far as not given on page 1. | ASY system configuration, as far as DASY Version | DASY52 | 52.10.0.1446 | |--|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and calculations were applied. | he following parameters and calculations were | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters |
22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.3 ± 6 % | 1.84 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | SAR result with Head TSL | R result with Head <u>ISL</u> | | | |---|--------------------|---------------------------| | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 13.0 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 51.8 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 5.98 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 mW /g ± 18.7 % (k=2) | **Body TSL parameters** The following parameters and calculations were applied | ne following parameters and calculations were | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.3 ± 6 % | 2.00 mho/m ± 6 % | | Body TSL temperature change during test | <1.0 °C | | | SAR result with Body TSL | SAR averaged over 1 cm^3 (1 g) of Body TSL | Condition | | |--|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.9 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 50.7 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm^3 (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 5.88 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 23.3 mW /g ± 18.7 % (k=2) | Page 3 of 8 Certificate No: Z18-60051 ## S D E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.9Ω+ 4.08jΩ | |--------------------------------------|---------------| | Return Loss | - 27.7dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 50.8Ω+ 4.69jΩ | |--------------------------------------|---------------| | Return Loss | - 26.5dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.060 ns | |-----------------------------------|----------| | Liectifical Delay (one direction) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |--------------------|-------| | iviality active by | | Certificate No: Z18-60051 Page 4 of 8 ## S P C A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.841$ S/m; $\epsilon r = 40.32$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Certificate No: Z18-60051 Probe: EX3DV4 - SN7464; ConvF(7.89, 7.89, 7.89); Calibrated: 9/12/2017; Date: 03.22.2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1525; Calibrated: 10/2/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.2 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 27.2 W/kg SAR(1 g) = 13 W/kg; SAR(10 g) = 5.98 W/kg Maximum value of SAR (measured) = 22.0 W/kg 0 dB = 22.0 W/kg = 13.42 dBW/kg Certificate No: Z18-60051 in Collaboration with # S P C A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Head TSL ## S D E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### **DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 924 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.998$ S/m; $\epsilon_r = 51.28$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN7464; ConvF(8.09, 8.09, 8.09); Calibrated: 9/12/2017; Date: 03.22.2018 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1525; Calibrated: 10/2/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) **Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.09 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 27.1 W/kg SAR(1 g) = 12.9 W/kg; SAR(10 g) = 5.88 W/kg Maximum value of SAR (measured) = 21.5 W/kg 0 dB = 21.5 W/kg = 13.32 dBW/kg Certificate No: Z18-60051 Page 7 of 8 ## S D C A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ### Impedance Measurement Plot for Body TSL Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com in Collaboration with Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn Client Sporton **Certificate No:** Z17-97251 ## DALLIBRATION GERTIFICATIE Object D2600V2 - SN: 1070 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 7, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | D. Ctandondo | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |--|--|--|---| | Primary Standards Power Meter NRVD Power sensor NRV-Z5 Reference Probe EX3DV4 DAE3 | 102196
100596
SN 3617
SN 536 | 02-Mar-17 (CTTL, No.J17X01254)
02-Mar-17 (CTTL, No.J17X01254)
23-Jan-17(SPEAG,No.EX3-3617_Jan17)
09-Oct-17(CTTL-SPEAG,No.Z17-97198) | Mar-18
Mar-18
Jan-18
Oct-18 | | Secondary Standards Signal Generator E4438C Network Analyzer E5071C | I <u>D</u> #
MY49071430
MY46110673 | Cal Date(Calibrated by, Certificate No.) 13-Jan-17 (CTTL, No.J17X00286) 13-Jan-17 (CTTL, No.J17X00285) | Scheduled Calibration
Jan-18
Jan-18 | Name **Function** Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 10, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z17-97251 Page 1 of 8 ## CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com Glossary: TSL tissue simulating liquid sensitivity in TSL / NORMx,y,z ConvF not applicable or not measured N/A ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: Measurement Conditions: Further details are available from the Validation Report at
the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. SAR measured: SAR measured at the stated antenna input power. SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Page 2 of 8 Certificate No: Z17-97251 # CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2079 http://www.chinattl.cn E-mail: cttl@chinattl.com **Measurement Conditions** | | 4. | | given on page | 1 | |--------------|--------------|------------------|-----------------|---| | | | ae tar ae nai | MIVELL OIL DAGE | | | INACO evetam | CONTROLLANOL | . AS IOI 03 110L | CHACH OH becal | | | | | | | | | ASY system configuration, as far as DASY Version | DASY52 | 52.10.0.1446 | |--|--------------------------|--------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2600 MHz ± 1 MHz | | **Head TSL parameters** | he following parameters and calculations were | Temperature | Permittivity | Conductivity | | |---|-----------------|--------------|------------------|--| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.4 ± 6 % | 1.99 mho/m ± 6 % | | | Head TSL temperature change during test | <1.0 °C | | | | SAR result with Head TSL | Condition | | |--------------------|--| | 250 mW input power | 14.6 mW / g | | normalized to 1W | 58.2 mW /g ± 18.8 % (k=2) | | Condition | | | 250 mW input power | 6.51 mW / g | | normalized to 1W | 26.0 mW /g ± 18.7 % (k=2) | | | 250 mW input power normalized to 1W Condition 250 mW input power | **Body TSL parameters** The following parameters and calculations were applied. | ne following parameters and calculations were | Temperature | Permittivity | Conductivity | | |---|-----------------|--------------|------------------|--| | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.6 ± 6 % | 2.13 mho/m ± 6 % | | | Body TSL temperature change during test | <1.0 °C | | | | SAR result with Body TSL | Result with body 13L | | T | |---|--------------------|---------------------------| | SAR averaged over 1-cm ³ (1 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 13.7 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 55.2 mW /g ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | Condition | | | SAR measured | 250 mW input power | 6.11 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.5 mW /g ± 18.7 % (k=2) | Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn ## Appendix(Additional assessments outside the scope of CNAS L0570) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 47.3Ω- 5.52jΩ | |--------------------------------------|---------------| | Return Loss |
- 24.0dB | | Retuin Loss | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.5Ω- 4.72jΩ | |--------------------------------------|---------------| | Return Loss | - 23.3dB | ### General Antenna Parameters and Design | 1 | Electrical Delay (one direction) | 1.011 ns | | |-----|----------------------------------|----------|--| | - 1 | · | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | | | | i . | |-----------------|----------|-------|-----| | Manufactured by | | SPEAG | | | Mandadarea 27 | <u> </u> | | | Certificate No: Z17-97251 Page 4 of 8 Date: 12.07.2017 Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn ### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.985$ S/m; $\epsilon r = 39.42$; $\rho = 1000$ kg/m³ Phantom section: Center Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: Probe: EX3DV4 - SN3617; ConvF(7.3, 7.3, 7.3); Calibrated: 1/23/2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE3 Sn536; Calibrated: 10/9/2017 Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Certificate No: Z17-97251 Reference Value = 107.8 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 14.6 W/kg; SAR(10 g) = 6.51 W/kg Maximum value of SAR (measured) = 25.2 W/kg 0 dB = 25.2 W/kg = 14.01 dBW/kg ## S P C A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Head TSL ## S P E A G Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn **DASY5 Validation Report for Body TSL** Date: 12.07.2017 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1070 Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 2.127$ S/m; $\epsilon_r = 52.63$; $\rho = 1000$ kg/m³ Phantom section: Left Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(7.48, 7.48, 7.48); Calibrated: 1/23/2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE3 Sn536; Calibrated: 10/9/2017 - Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1 - Measurement SW: DASY52, Version 52.10 (0); SEMCAD X Version 14.6.10 (7417) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Certificate No: Z17-97251 Reference Value = 100.1 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.11 W/kg Maximum value of SAR (measured) = 23.6 W/kg 0 dB = 23.6 W/kg = 13.73 dBW/kg Certificate No: Z17-97251 #### In Collaboration with ## S D E A G CALIBRATION LABORATORY Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Body TSL Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2209 Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com Http://www.chinattl.cn Client: Sporton 中国认可 CALIBRATION **CNAS L0570** Certificate No: Z17-97269 ## CALIBRATION CERTIFICATE Object DAE4 - SN: 1303 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: December 19, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) **Scheduled Calibration** Cal Date(Calibrated by, Certificate No.) ID# **Primary Standards** June-18 27-Jun-17 (CTTL, No.J17X05859) **Process Calibrator 753** 1971018 Name Function Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao **SAR Test Engineer** Approved by: Certificate No: Z17-97269 Qi Dianyuan SAR Project Leader Issued: December 22, 2017 This calibration certificate shall not be reproduced except in full without written
approval of the laboratory. Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2218 Fax: +86-10-62304633-2209 E-mail: cttl@chinattl.com Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. Methods Applied and Interpretation of Parameters: DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Page 2 of 3 Certificate No: Z17-97269 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2209 Tel: +86-10-62304633-2218 E-mail: cttl@chinattl.com Http://www.chinattl.cn ### **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = full range = $6.1\mu V$, -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 405.569 ± 0.15% (k=2) | 403.452 ± 0.15% (k=2) | 404.893 ± 0.15% (k=2) | | Low Range | 3.96471 ± 0.7% (k=2) | 3.99229 ± 0.7% (k=2) | 4.01287 ± 0.7% (k=2) | #### **Connector Angle** | Connector Angle to be used in DASY system | 36.5° ± 1 ° | |---|-------------| | Connector Aligie to be used in Briot System | |