

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT www.wsct-cert.com

W51

Member of the WSCT INC

TEST REPORT

FCC ID: 2AXYP-OTW-340-L Product: True Wireless Earbuds Model No.: OTW-340 Trade Mark: oraimo Report No.: WSCT-A2LA-R&E231200024A-LE Issued Date: 28 December 2023

Issued for:

ORAIMO TECHNOLOGY LIMITED FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd. Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

146-51-1

ijon & Testi

NSL

tailyzation Certification & Tegin

WSET

Page 1 of 45

Contration & Test

W5E7

BUOM * PT

dizatio

anoup (Shenza

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200024A-LE

TABLE OF CONTENTS

1	AVATA A		A1141		A16741	111	5141
1.	Test Certific	cation					
2.	Test Result	Summary		<u> </u>		4	
3.	EUT Descri	ption	WSET	AUSET		507 5	
4.	Genera Info				<u> </u>	6	\checkmark
	4.1. TEST ENVIRO	NMENT AND MODE				6	
-/	4.2. DESCRIPTION	N OF SUPPORT UNITS				6	517
5.	Facilities ar	d Accreditati	ons	<u>X</u>			
-						7	
		ATIONS		/			
	5.3. MEASUREME	INT UNCERTAINTY	·····			8	\times
		MENT INSTRUMEN				9	1
6.	Test Result	s and Measur	ement Data				50
1	6.1. ANTENNA RE	QUIREMENT					
1		EMISSION					
CT		OUTPUT POWER			A		_
							\checkmark
		CTRAL DENSITY				/	
1	6.6. CONDUCTED	BAND EDGE AND SPU	JRIOUS EMISSION ME	EASUREMENT	AUSET		SE 1
/	6.7. RADIATED S	PURIOUS EMISSION M	EASUREMENT				

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

Certificate Number 5768.01

Report No. WSCT-A2LA-R&E231200024A-LE **1. Test Certification**

Duri	www.wsct-cerl.com
Product:	True Wireless Earbuds
Model No.:	OTW-340
Trade Mark:	oraimo
Applicant:	ORAIMO TECHNOLOGY LIMITED
	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Manufacturer:	ORAIMO TECHNOLOGY LIMITED
	SHAN MEI STREET FOTAN NT HONGKONG
Date of Test:	15 December 2023 to 27 December 2023
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 KDB 558074 D01 DTS Meas Guidance v04
he show aquina	

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: _	Way Xiay	Checked By:	Cino his gum	WISET
\times	(Wang Xiang)		(Qin Shuiquan)	sation & Testing city
Approved By:	(Liu Fuxin)	Date: 2	Beenher 2005	WSEF.
ion & Tesu	WIST	WEIT	WISET	WISET
Id Stantial Status Certifications & Testing Graph Status Certifications & Sono Graph Market & Status & Sono Graph Market & Sono Grap	STATE WIST	WISI	T WEI	
Id Stank a Stratton Certificationの (Song Group (パッパ 米・PiT	标检测认证股份 Shenzhen) Co., Ltd. Page 3 c	306 FAX:86-755-86376605 E-ma	hi Road, Bao'an District, Shenzhen, Gi ill: Fengbing.Wang@wsct-cert.com Http:v Memb	uangdong, China www.wscl-cert.com er of the WSCT INC.

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

^{58.01} For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200024A-LE

2. Test Result Summary

	AULT AND AULT		All And	112 day
7	Requirement	CFR 47 Section	Result	
1	Antenna requirement	§15.203/§15.247 (c)	PASS	
7	AC Power Line Conducted Emission	§15.207	N/A	\checkmark
-	Conducted Peak Output Power	§15.247 (b)(3) §2.1046	PASS	175777
	6dB Emission Bandwidth	§15.247 (a)(2) §2.1049	PASS	
	Power Spectral Density	§15.247 (e)	PASS	\checkmark
	Band Edge	1§5.247(d) §2.1051, §2.1057	PASS	WEITER
	Spurious Emission	§15.205/§15.209 §2.1053, §2.1057	PASS	

Note:

mon & Tes

WSE1

S DUOM * PT

YOUP (Shen

60

Certifit

dizatio

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E231200024A-LE

EUT Description 3.

3. EUT Description		www.wsct-cert.com
Product Name:	True Wireless Earbuds	A
Model :	OTW-340	
Trade Mark:	oraimo	
Operation Frequency:	2402MHz~2480MHz	
Channel Separation:	2MHz	\times
Number of Channel:	(407 WSET WSET	AVISTA
Modulation Technology:	GFSK	
Antenna Type:	FPC Antenna	
Antenna Gain:	1.81dBi	
ATTEN A	Li-ion Battery: 501012 Voltage: 3.7V Rated Capacity: 40mAh	AFTER
Operating Voltage	Limited Charge Voltage: 4.2V Charging Box : 802035 Input: 5V0.5A Output: 5V150mA*2	
	Capacity:500mAh 3.7V 1.85Wh	
Remark:	N/A.	\sim

Operation Frequency each of channel

ALATAN

AVERT

ation & Tes

W5C1

S PLOM * PT

youp (Shenz)

60

Cottine

dizatio

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
\sim		\sim		\sim				
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
21195CT	2420MHz	19.7	2440MHz	29	2460MHz	39	2480MHz	
Remark:	Remark: Channel 0, 19 & 39 have been tested.							

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86/755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com 世标枪测认证股份

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200024A-LE

4. Genera Information

4.1. Test environment and mode

Operating Environment:

Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar

Test Mode:

Engineering mode:

Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%) with Fully-charged battery.

The sample was placed (0.1m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

1	Equipment	Model No.	Serial No.	FCC ID	Trade Name
				/	

Note:

MOM * P

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended

use.

S

3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China Stenzien Co. Lin TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200024A-LE

5. Facilities and Accreditations

5.1. Facilities

ion & Tes

MOM * P

S

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.2.ACCREDITATIONS CNAS - Registration Number: L3732

China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA).Certification Number: 5768.01

non & Tee

W5C

PHOM * PT

oup (Shen

Cor

dizatio

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200024A-LE

5.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	-	Item	MU
1		Power Spectral Density	±3.2dB
2	X	Duty Cycle and Tx-Sequence and Tx-Gap	±1%
3	15/4	Medium Utilisation Factor	±1.3%
4		Occupied Channel Bandwidth	±2.4%
5		Transmitter Unwanted Emission in the out-of Band	±1.3%
6		Transmitter Unwanted Emissions in the Spurious Domain	±2.5%
7	X	Receiver Spurious Emissions	±2.5%
8	1-1-1	Conducted Emission Test	±3.2dB
9		RF power, conducted	±0.16dB
10		Spurious emissions, conducted	±0.21dB
11		All emissions, radiated(<1GHz)	±4.7dB
12	X	All emissions, radiated(>1GHz)	±4.7dB
13	1-14	Temperature	±0.5°C
14		Humidity	±2.0%

ation & Tee

W5L

SPON * PT

oup (Shenza

60

Costific

dizatio

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01 Fo

Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200024A-LE

5.4.MEASUREMENT INSTRUMENTS

	J.4. WIEASUREN	\wedge	www.wso	ct-cert.cor			
	NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.	54
	Test software	<	EZ-EMC	CON-03A	-	X	
4	Test software	- /	MTS8310	(VIII)	- /	ATAT	
	EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024	1
	LISN	AFJ	LS16	16010222119	11/05/2023	11/04/2024	$^{\times}$
	LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024	517
1	Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024	
ý	Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024	
	GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024	1
	Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024	\wedge
	Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024	511
/	Pre-Amplifier	CDSI	PAP-1G18-38	\sim	11/05/2023	11/04/2024	
-	Bi-log Antenna	SCHWARZBECK	VULB9168	01488	7/29/2023	7/28/2024	
2	9*6*6 Anechoic		TELET	WISCT	11/05/2023	11/04/2024	
	Horn Antenna	COMPLIANCE ENGINEERING	CE18000	-	11/05/2023	11/04/2024	\times
	Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024	
	Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024	<u> </u>
	System-Controller	ccs	N/A	N/A	N.C.R	N.C.R	
	Turn Table	ccs	N/A	N/A	N.C.R	N.C.R	
	Antenna Tower	CCS	N/A	N/A	N.C.R	N.C.R	
	RF cable	Murata	MXHQ87WA300 0	-	11/05/2023	11/04/2024	\times
	Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024	1514
1	Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024	
-	Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024	
d	Power sensor	Anritsu	MX248XD	WISET	11/05/2023	11/04/2024	
	Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024	V
							~

世标检测认证数例 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China m(Shenzhen) Co. Ltt

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Member of the WSCT INC

Report No.: WSCT-A2LA-R&E231200024A-LE

6. Test Results and Measurement Data

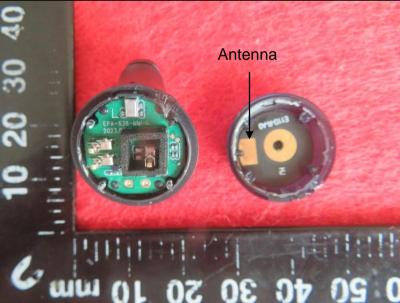
6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:


(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

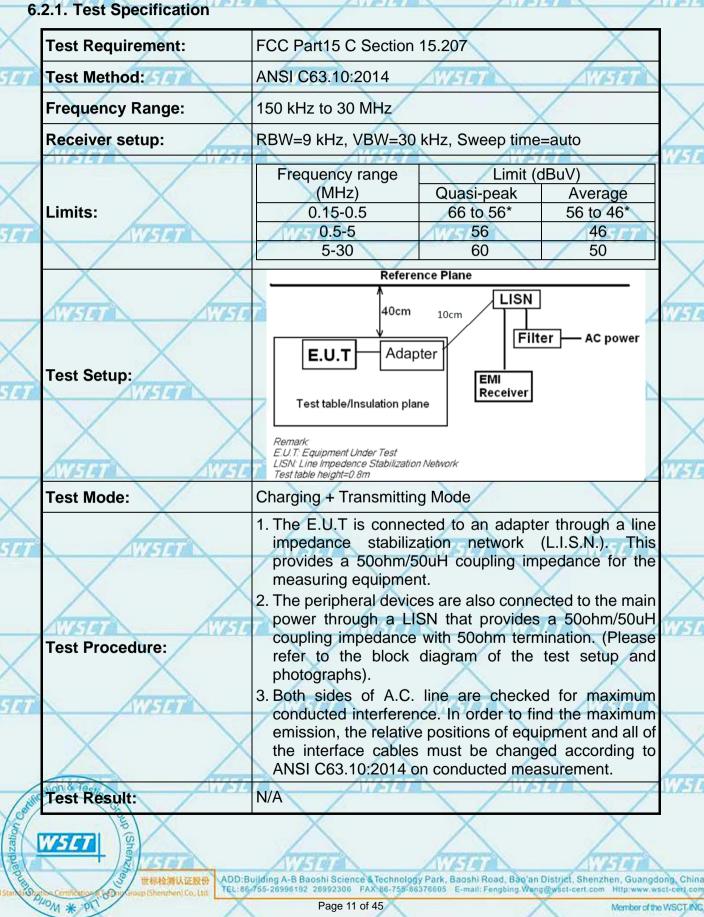
E.U.T Antenna:

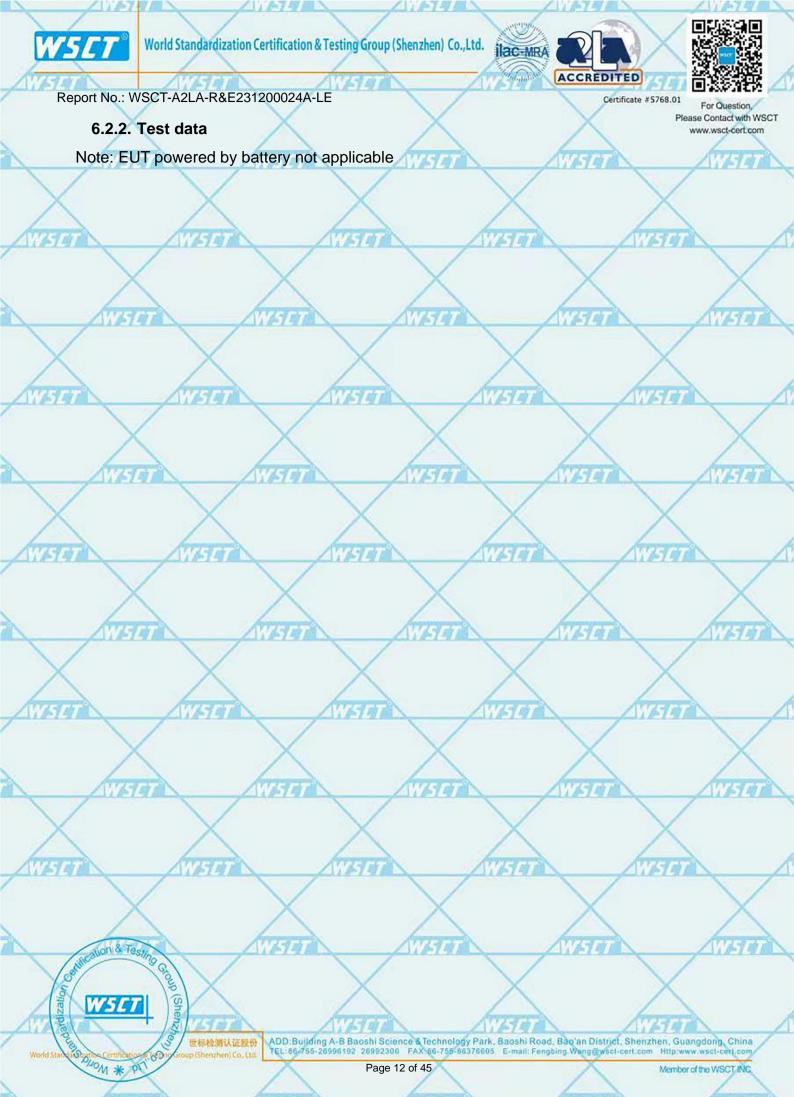
S

MOM * P

The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is 1.81dBi.

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA





For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200024A-LE

6.2. Conducted Emission

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200024A-LE

6.3. Conducted Output Power

6.3.1. Test Specification

ation & Tes

W5E

BBUOM * PT

YOUP (Shenzy

60

Costific

dizatio

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074
Limit:	30dBm
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v04. Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 x RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS
THE	THE THE AVER
X	X X X X

110

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

1

Report No.: WSCT-A2LA-R&E231200024A-LE

6.3.2. Test Data

BLE 1M						
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result			
Lowest	-2.88	30.00	PASS			
Middle	-2.09	30.00	PASS			
Highest	-1.91	30.00	PASS			

BLE 2M					
Test channel	Maximum Conducted Output Power (dBm)	Limit (dBm)	Result		
Lowest	-2.83	30.00	PASS		
Middle	-2.04	30.00	PASS		
Highest	-1.84	30.00	PASS		

Test plots as follows:

1.11

Sentication & Test

WSET

BBUOM * PT

dizatio

Ctoup (Shenzy

60

1511

世标检测认证数例 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China m(Shenzhen) Co. Ltt

15

1.13

dardizatio

W5L

BIS BLOM * PT

(Shenz

60

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E231200024A-LE

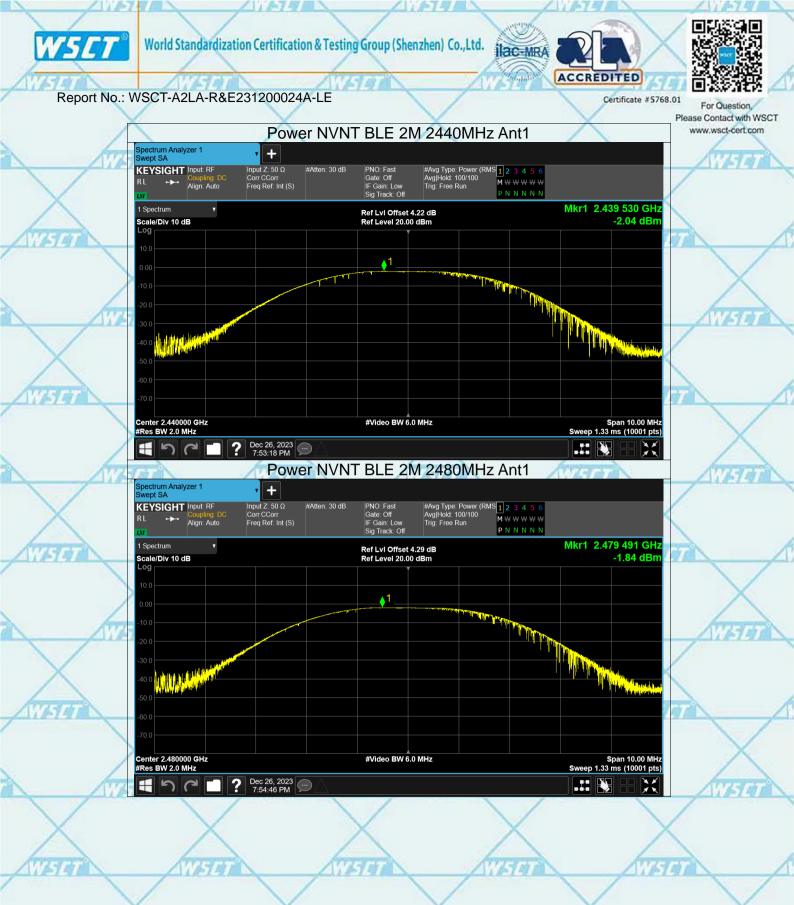
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标枪测认证股份

世标检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Ltr. TEL:86-755-26996192 26992308 FAX-86-755-86376605. E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

Sentication & Test

W5L

BB BLOM * PT


Zati

Gtoup

60

(Shenz)

Member of the WSCT INC.

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Lin

Sentication & Test

W5L

BB BLOM * PT

Zati

Group

60

(Shenz)

Contincation & Test

WSE1

BB BLOM * PT

dizatio

YOUP (Shenzy

60

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Report No.: WSCT-A2LA-R&E231200024A-LE

6.4. Emission Bandwidth

For Question, Please Contact with WSCT www.wsct-cert.com

6.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074
Limit:	>500kHz
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v04. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS
AWSET	AVISIAN AVISIAN

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

>500k

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200024A-LE

6.4.2. Test data

DI	LE 1M	$ \rightarrow $	-		4
		6dB Emission I	Bandwidth (kHz)		WATA1
X	Test channel	BT LE mode	Limit	Result	
SET	Lowest	0.500	>500k	WISIT	
	Middle	0.502	>500k	PASS	\bigvee
	Highest	0.506	>500k		\wedge
B	E 2M	1270	AVIS		WSET
1	Testshornel	6dB Emission I	Bandwidth (kHz))	
	Test channel	BT LE mode	Limit	Result	
SET	Lowest	0.847	>500k	WISET	
	Middle	0.850	>500k	PASS	1

0.840

Test plots as follows:

1-10

Sentification & Test

WSET

DPUOM * PT

dizatio

anoup (Shenza

60

Highest

1.1

世标检测认证数例 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China m(Shenzhen) Co. Ltt

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

Report No.: WSCT-A2LA-R&E231200024A-LE

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

8.01 For Question, Please Contact with WSCT

www.wsct-cert.com

6.5. Power Spectral Density

Report No.: WSCT-A2LA-R&E231200024A-LE

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074
Limit:	The peak power spectral density shall not be greate than 8dBm in any 3kHz band at any time interval o continuous transmission.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No.558074 D01 DTS Meas. Guidance v04 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

6.5.2. Test Instruments

RF Test Room							
Equipment	ipment Manufacturer Model Serial N		Serial Number	Calibration Due			
Spectrum Analyzer	R&S	FSU	200054	Sep. 27, 2018			
RF cable (9kHz-26.5GHz)	тст	RE-06	N/A	Sep. 27, 2018			
Antenna Connector	тст	RFC-01	N/A	Sep. 27, 2018			

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to

international system unit (SI).

PHOM * PT

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) [a. Ivi

110

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

For Question, Please Contact with WSCT

Report No.: WSCT-A2LA-R&E231200024A-LE

6.5.3. Test data

5.5.5. Test data		\wedge			w	www.wsct-cert.com		
	Test channel	Powe	r Spectral D	ensity (dBm/3kł	Hz)	WEIT		
	Test channel	BLE 1M		Limit	Result			
	Lowest	-21.77		8 dBm/3kHz	\sim			
3	Middle	-20.68		8 dBm/3kHz	PASS			
	Highest	-20.19	\bigvee	8 dBm/3kHz	/	\bigvee		
	\wedge	~						

-	Test channel	Power Spectral Density (dBm/3kHz)					
2	Test channer	BLE 2M	Limit	Result			
	Lowest	-23.94	8 dBm/3kHz	\wedge			
2	Middle	-23.05	8 dBm/3kHz	PASS			
	Highest	-22.85	8 dBm/3kHz				

1517

Test plots as follows:

1.10

Sentification & Test

WSET

BB BLOM * PT

dardization

1511

 \mathcal{L}

Croup (Shenzy

60

1.71

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China p(Shenzhen) Co. Lts. TEL:86-755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing:Wang@wscl-cert.com Http://www.wscl-cert.com

110

1

1/5/1

Contration & Test

W5L

BB BLOM * PT

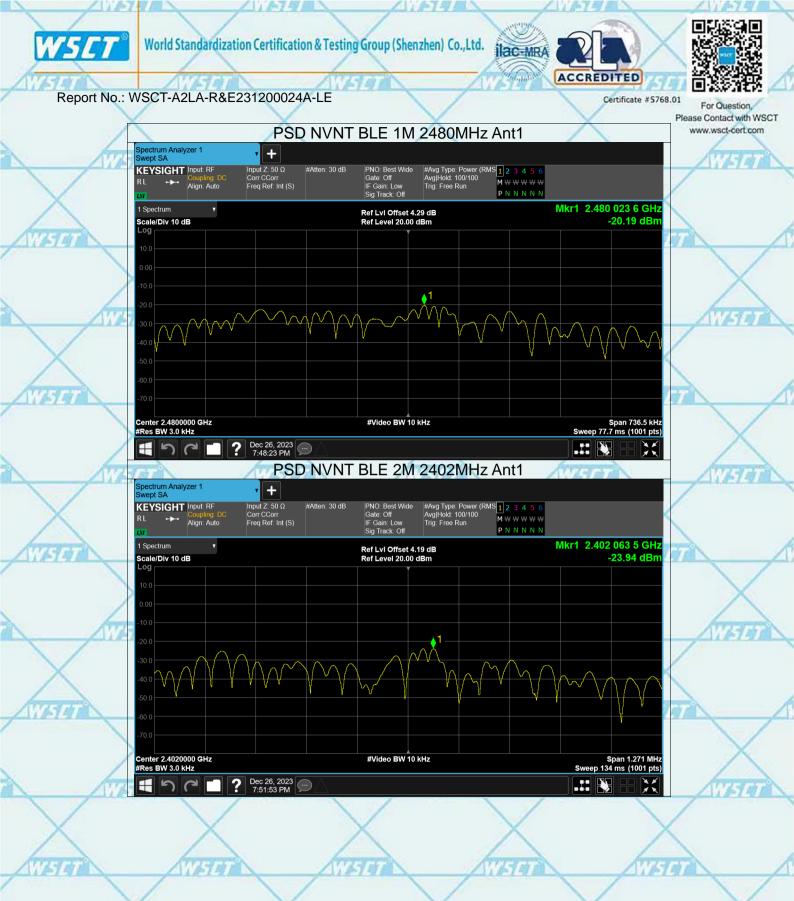
Zati

Group

60

(Shenz

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA



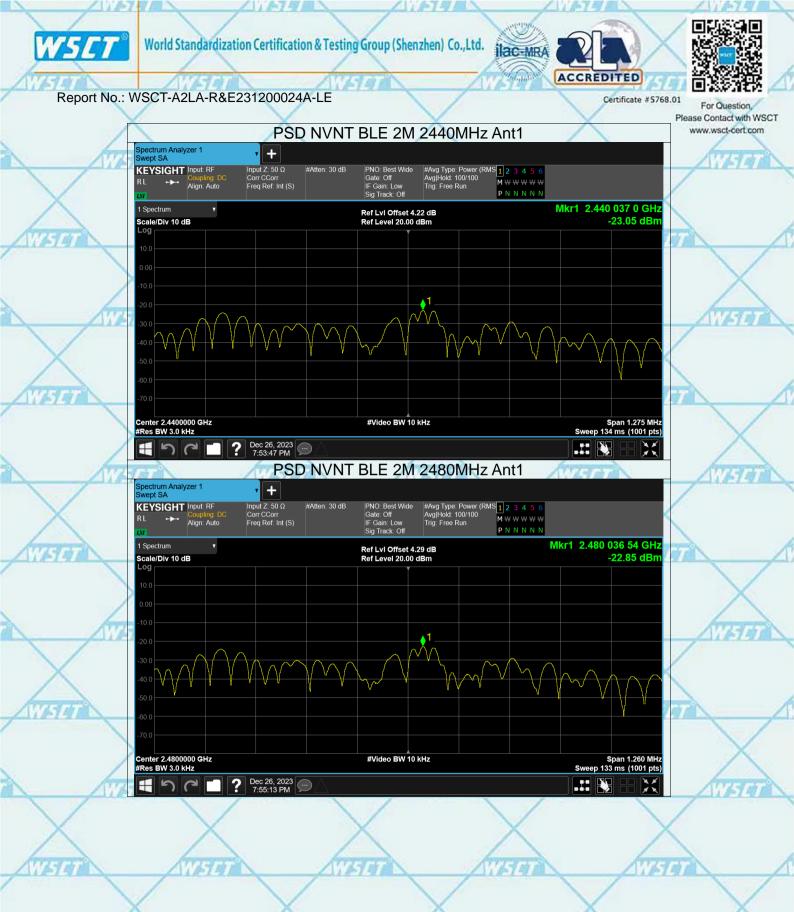
Report No.: WSCT-A2LA-R&E231200024A-LE

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

世标检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shandwalfo, Lui) TEL:86-755-26998192 26992308 FAX:86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Hitp:www.wsci-cert.com

Sentication & Test

W 51


BB BLOM * PT

Zati

Group

60

(Shenz

世标检测认证数码 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Lin

Contration & Test

BB BLOM * PT

Zati

Group

60

(Shenz

Member of the WSCT INC.

Cor

WSL

PHOM * PI

Zatio

nup (Shen

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd. ILAC-MRA

Report No.: WSCT-A2LA-R&E231200024A-LE

For Question, Please Contact with WSCT www.wsct-cert.com

6.6. Conducted Band Edge and Spurious Emission Measurement 6.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 4.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
	against the limit line in the operating nequency band.

Member of the WSCT INC.

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd. ilac-MRA

For Question,

Report No.: WSCT-A2LA-R&E231200024A-LE Test Data

Contration & Test

W5E

BB BLOM * PT

Zati

Group

60

(Shenz)

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

Croup

60

Zati

W5L

BB BLOM * PT

(Shenz)

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

Zati

DUOM * PT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com 世标检测认证股份

Group

60

Zati

BB BLOM * PT

(Shenz

Member of the WSCT INC

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen) Co. Uni TEL:86/755-26996192 26992306 FAX 86-755-86376605 E-mail: Fengbing Wang@wsci-cert.com Http://www.wsci-cert.com

BB BLOM * PT

60

Member of the WSCT INC

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

BB BLOM * PT

世标检测认证数的 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China n(Shenzhen Fo. Int) TEL:86-755-26996192 26992300 FAX 66-755-86376605. E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com

BB BLOM * PT

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

BB BLOM * PT

Page 37 of 45

BB BLOM * PT

60

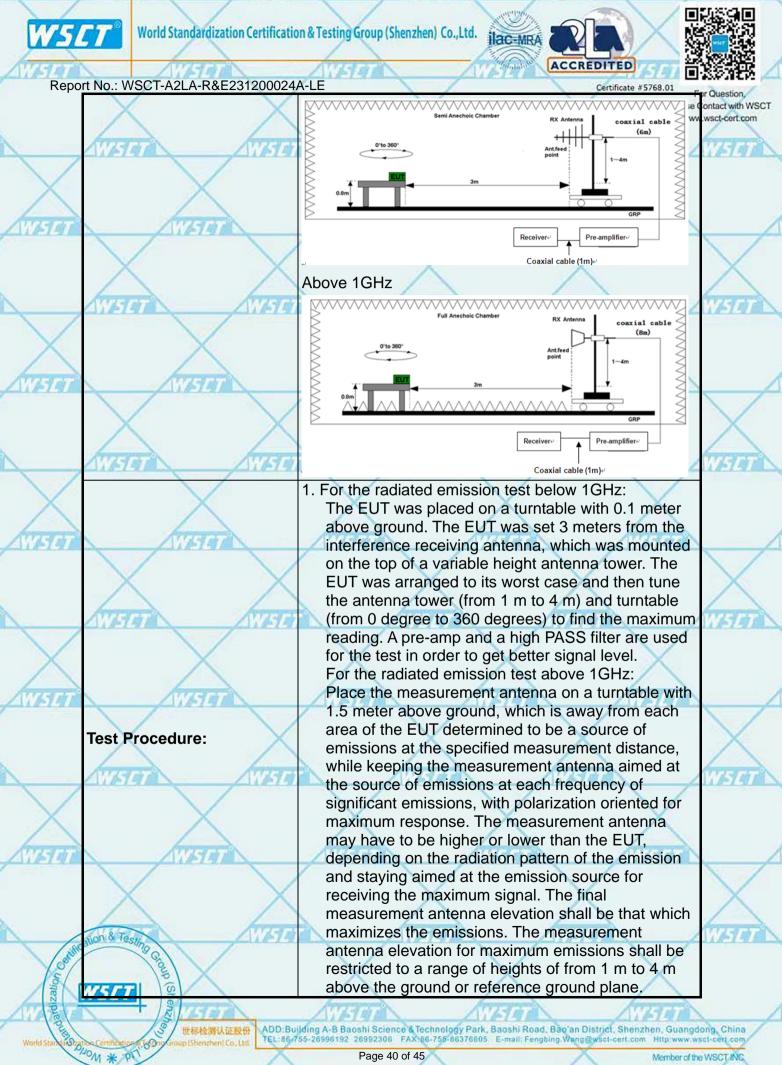
Member of the WSCT INC

世标检测认证数份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China

BB BLOM * PT

M * P

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.


Report No.: WSCT-A2LA-R&E231200024A-LE

6.7. Radiated Spurious Emission Measurement

	THE STORE STORE		WSET		AWIST		/	WSE
~	.7.1. Test Specification			\backslash				1
X	Test Requirement:	FCC Part15	C Section	15.209			X	
WSET	Test Method:	ANSI C63.10):2014	August		K	THE	
	Frequency Range:	9 kHz to 25 0	GHz		1	/		
	Measurement Distance:	3 m	X		X			\times
	Antenna Polarization:	Horizontal &	Vertical		ATT	77		WSC1
\bigvee	Operation mode:	Refer to item	4.1	V			\checkmark	
\wedge	\wedge	Frequency	Detector	RBW	VBW	Re	mark	
WSET	WISTER	9kHz- 150kHz	Quasi-peak	A REAL PROPERTY OF A REAL PROPER	1kHz		eak Value	
ue cau	Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-p	eak Value	
	X	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-p	eak Value	X
		Above 1GHz	Peak	1MHz	3MHz		k Value	
	AWSET AWSE		Peak	1MHz	10Hz	Avera	ge Value	W511
\smallsetminus				Field Stre	ngth	Meas	urement	
X	X	Frequen	-	(microvolts)	,		e (meters)	
		0.009-0.4		2400/F(H		100	300	
WSCT	AWASTAT	0.490-1.7		24000/F(30	KHZ)		30 30	
	\vee	30-88		100			3	\searrow
		88-216		150	1		3	\wedge
	Limit:	216-96	A	200	1000	-	3	111-1-1
	CITETAL CITETA	Above 9	60	500	LIPI		3	LEIS.
\bigvee	\sim				Measure	mont	\vee	
\wedge	\sim	Frequency		d Strength	Distan		Detector	
WSET	THEFT	Auran	(micro	volts/meter)	(meter		U.T. and	
LEIA		Above 1GHz		500	3	1	Average	
			5000	3		Peak	\sim	
	\triangle \triangle	For radiated	emissions	below 30	MHz			\land
	ATTATA ATTA	Di	stance = 3m	~			- /	WSEI
X	\sim					Computer		
\land	\wedge		16		Pre-	Amplifier		
WSIT	Test setup:			$ \neg $			7	
		EUT	2					
	\times \times	▲	Turn table					\times
						Receiver		/ \
/	tion & Test		Ground	1 Plane			1	WSL1
Corum	allion & Testing Ga	30MHz to 10	Hz	1			\bigvee	
tion	WSCT	\sim		\wedge	5.1		\wedge	
Vorded Star And 2	WSCT ST	THE		AVESA	1	K	7500	
Participation	B 世际检测认证股份 ADD:Bu TEL:86/7	Iding A-B Baoshi Scie 55-26996192 26992306	FAX 86-755-86	y Park, Baoshi R 376605 E-mail: F	ad, Bao'an D	istrict, Sher	zhen, Guango	iong, China
mano stantes onen	HOAL AN INTERNATION STOLE (Shenzhen) Co. Ltd.	Dago 2			X	Contraction of the second		AND OT INCO

Member of the WSCT INC

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

				1.2 400.000
WSUT AVIST	AVHIA	AC ACTION AC	CREDITED	
Report No.: WSCT-A2LA-R&E23120002			Certificate #5768.01	Fpr Question,
XX		ling: Antenna Facto		
		Preamp Factor = Le		www.wsct-cert.com
AULTER AULTER		ent below 1GHz, If t		
		asured by the peak		
\sim		applicable limit, the		
		ported. Otherwise, t		
hurses hurses		will be repeated usi	ng the quasi-pe	ak
	detector and re			
		ng spectrum analyz		
		wide enough to fully	capture the	\wedge
	emission be	eing measured;		
11414	(2) Set RBW=1	00 kHz for f < 1 GH	lz; VBW ≥RBW	
	Sweep = au	ito; Detector functio	n = peak: Trace	=
XX	max hold;	X	X	
	(3) Set RBW =	1 MHz, VBW= 3MH	Hz for f 1 GH	z
WATAT AVATAT		asurement.		
		easurement: VBW	= 10 Hz, when	
XX	duty cycle is n	o less than 98 perc	ent. VBW ≥ 1/T	X
		e is less than 98 pe		
AWASIAN AWASI		ransmission duratio	And a second sec	
		n and is transmittin		
XXX		evel for the tested		
Tradamada				
Test mode:	Refer to section 4	T for details	1750	\sim /
Test results:	PASS	/		
X		(X	- X

Note: Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Attenuation factor + Cable loss Level $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Level $(dB\mu V)$ – Limits $(dB\mu V)$

Contincation & Test

WSE1

BAND Compared 60

rdization

Croup (Shenzy

世标检测认证数例 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China niShenzhen Lo Ling



Member of the WSCT INC

oup (Shen

60

PHOM * PT

2	No. N	/k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	ET .
5		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	30.6379	34.27	-3.20	31.07	40.00	-8.93	QP
	2 *	39.2991	33.60	-2.07	31.53	40.00	-8.47	QP
-	3	59.8588	30.04	-3.30	26.74	40.00	-13.26	QP
ร์	4	157.5588	26.33	-2.00	24.33	43.50	-19.17	QP
7	5	470.5232	30.54	1.10	31.64	46.00	-14.36	QP
5	6	958.7943	27.27	7.48	34.75	46.00	-11.25	QP
_				0		~~~		

Note1:

Non & Tes

PHOM * PT

oup (Sher

Cor

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor. Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$

> 世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-28998192 26992308 FAX-86-755-86376605 E-mail: Fengbing, Wang@wsci-cert.com Http://www.wsci-cert.com

> > Member of the WSCT INC

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200024A-LE

				Above 10	Hz		\wedge	ww	w.w
	Frag	Low channel: 2402MHz							
1	Freq. (MHz)	Ant.Pol	Emission I	_evel(dBuV)	Limit 3m	(dBuV/m)	Ove	r(dB)	1
		H/V	PK	AV	PK	AV	PK	AV	
	4804	V	59.93	40.93	74	54	-14.07	-13.07	
X	7206	V	58.22	40.41	74	54	-15.78	-13.59	
L	4804	NoH o	59.12	39.87	74	54	-14.88	-14.13	1
	7206	Н	58.81	39.81	74	54	-15.19	-14.19	
	X		X		X		X		

Freq. (MHz)	Middle channel: 2440MHz							
	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)		
	H/V	PK	AV	PK	AV	PK	AV	
4880	V	59.20	40.30	74	54	-14.80	-13.70	
7320	V	59.06	40.74	74	54	-14.94	-13.26	
4880	W 5H 7 \	58.75	39.65	74	54	-15.25	-14.35	
7320	Н	59.70	40.70	74	54	-14.30	-13.30	

Freq. (MHz)	High channel: 2480 MHz						
	Ant.Pol	Emission Level(dBuV)		Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	AV	PK	AV	PK	AV
4960	V	60.83	39.18	74	54	-13.17	-14.82
7440	V	58.47	40.45	74	54	-15.53	-13.55
4960	MET TN	59.98	40.94	74	54	-14.02	-13.06
7440	H	59.20	40.20	74	54	-14.80	-13.80

Note:

sion & Tee

W51

PHOM * PT

roup (Shen

Cer

Zatio

- 1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
- 2. Emission Level= Reading Level+Probe Factor +Cable Loss.
- 3. Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

世标检测认证股份 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China nShenzhen Co. Ivi

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

For Question, Please Contact with WSCT

www.wsct-cert.com

Report No.: WSCT-A2LA-R&E231200024A-LE

Restricted Bands Requirements

2.5

1-10

Sentification & Test

WSET

BB BLOM * PT

dizatio

aroup (Shenz)

60

	Test result	est result for GFSK Mode (the worst case)						AVIA A	
1	Frequency	Reading	Correct Factor	Emission Level	Limit	Margin	Polar	Detector	
1	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	H/V		
4	À	AUGOR	5	Low Cha	nnel	ATTER	A.	AUES	
10.0	2390	62.02	-8.76	53.26	74	20.74	H	PK	
	2390	54.42	-8.76	45.66	54	8.34	нХ	AV	
	2390	59.35	-8.73	50.62	74	23.38	V	PK	
	2390	54.19	-8.73	45.46	54	8.54	VET	AV	
/				High Cha	nnel				
1	2483.5	60.60	-8.76	51.84	74	22.16	н	PK	
ý	2483.5	53.42	-8.76	44.66	54	9.34	Н	AV	
	2483.5	60.69	-8.73	51.96	74	22.04	V	PK	
	2483.5	57.05	-8.73	48.32	54	5.68	VX	AV	

451

*****END OF REPORT*****

NSE

世标检测认证数例 ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China niShenzhen Lo. Mi